Class / Patent application number | Description | Number of patent applications / Date published |
607106000 | Blood | 33 |
20080200970 | Patient temperature regulation method and apparatus - A device and method for providing body cooling. The cooling device applies cooling to blood flowing in a vena cavae that is then distributed throughout the body. The cooling can be assisted by use of thermoregulatory drugs or warming devices to prevent shivering and vasoconstriction. | 08-21-2008 |
20080221651 | Medical procedure - The use of an intravascular cooling element to induce hypothermia in connection with a medical procedure. According to a first aspect of the present, invention, a coronary bypass procedure is conducted in which a patient's blood is oxygenated with the patient's lungs and in which blood is circulated using the patient's heart or using an intracorporeal pump. The procedure preferably comprises: (a) positioning a heat transfer element in a blood vessel of a patient; (b) cooling the body of the patient to less than 35° C., more preferably 32±2° C., using the heat transfer element; and (c) forming a fluid communicating graft between an arterial blood supply and the coronary artery. The body of the patient is preferably heated to about 37° C. using the heat transfer element subsequent to the step of forming the fluid communicating graft. According to a further aspect of the invention, a hypothermic medical procedure is provided while a patient is in a conscious or semiconscious state, comprising (a) administering a beta-blocking drug to the patient; (b) delivering a heat transfer element to a blood vessel of the patient; and (c) cooling a region of the patient or the body of the patient to less than 35° C. using the heat transfer element. | 09-11-2008 |
20080228246 | System and method for inducing hypothermia with control and determination of catheter pressure - Embodiments of the invention provide a system for temperature control of the human body. The system includes an indwelling catheter with a tip-mounted heat transfer element. The catheter is fluidically coupled to a console that provides a heated or cooled heat transfer working fluid to exchange heat with the heat transfer element, thereby heating or cooling blood. The heated or cooled blood then heats or cools the patient's body or a selected portion thereof. In particular, methods and devices are provided for control and determination of the pressure within the heat transfer element. | 09-18-2008 |
20080319519 | METHOD AND DEVICE FOR PATIENT TEMPERATURE CONTROL EMPLOYING OPTIMIZED REWARMING - Embodiments of the invention provide a system for temperature control of the human body. The system includes an indwelling catheter with a tip-mounted heat transfer element. The catheter is fluidically coupled to a console that provides a heated or cooled heat transfer working fluid to exchange heat with the heat transfer element, thereby heating or cooling blood. The heated or cooled blood then heats or cools the patient's body or a selected portion thereof. In particular, strategies for optimizing the rewarming of patients for various medical procedures are provided, including stroke, neurosurgery, and myocardial infarction. | 12-25-2008 |
20110125235 | INDWELLING HEAT EXCHANGE CATHETER AND METHOD OF USING SAME - A catheter is adapted to exchange heat with a body fluid, such as blood, flowing in a body conduit, such as a blood vessel. The catheter includes a shaft with a heat exchange region disposed at its distal end. This region may include hollow fibers which are adapted to receive a remotely cooled heat exchange fluid preferably flowing in a direction counter to that of the body fluid. The hollow fibers enhance the surface area of contact, as well as the mixing of both the heat exchange fluid and the body fluid. The catheter can be positioned to produce hypothermia in a selective area of the body or alternatively positioned to systemically cool the entire body system. | 05-26-2011 |
20110125236 | INDWELLING HEAT EXCHANGE CATHETER AND METHOD OF USING SAME - A catheter is adapted to exchange heat with a body fluid, such as blood, flowing in a body conduit, such as a blood vessel. The catheter includes a shaft with a heat exchange region disposed at its distal end. This region may include hollow fibers which are adapted to receive a remotely cooled heat exchange fluid preferably flowing in a direction counter to that of the body fluid. The hollow fibers enhance the surface area of contact, as well as the mixing of both the heat exchange fluid and the body fluid. The catheter can be positioned to produce hypothermia in a selective area of the body or alternatively positioned to systemically cool the entire body system. | 05-26-2011 |
20110125237 | INDWELLING HEAT EXCHANGE CATHETER AND METHOD OF USING SAME - A catheter is adapted to exchange heat with a body fluid, such as blood, flowing in a body conduit, such as a blood vessel. The catheter includes a shaft with a heat exchange region disposed at its distal end. This region may include hollow fibers which are adapted to receive a remotely cooled heat exchange fluid preferably flowing in a direction counter to that of the body fluid. The hollow fibers enhance the surface area of contact, as well as the mixing of both the heat exchange fluid and the body fluid. The catheter can be positioned to produce hypothermia in a selective area of the body or alternatively positioned to systemically cool the entire body system. | 05-26-2011 |
20110130812 | INDWELLING HEAT EXCHANGE CATHETER AND METHOD OF USING SAME - A catheter is adapted to exchange heat with a body fluid, such as blood, flowing in a body conduit, such as a blood vessel. The catheter includes a shaft with a heat exchange region disposed at its distal end. This region may include hollow fibers which are adapted to receive a remotely cooled heat exchange fluid preferably flowing in a direction counter to that of the body fluid. The hollow fibers enhance the surface area of contact, as well as the mixing of both the heat exchange fluid and the body fluid. The catheter can be positioned to produce hypothermia in a selective area of the body or alternatively positioned to systemically cool the entire body system. | 06-02-2011 |
20110166634 | INHIBITION OF PLATELET ACTIVATION, AGGREGATION AND/OR ADHESION BY HYPOTHERMIA - A method for treating acute coronary syndromes (i.e., unstable angina or non-Q-wave MI) or transient ischemic attacks in a human or animal patient by placing a heat exchange apparatus in the patient=s vasculature and using that heat exchange apparatus to cool the patient to a temperature (e.g. 30-36_C) at which platelet inhibition (i.e., inhibition of platelet activation and/or aggregation and/or adhesion) occurs. Anti-shivering drugs or anesthesia may be administered to patients whose body temperature is cooled below that patient=s shivering threshold (typically approximately 35.5 C). If it is determined that platelet inhibition is no longer desirable, such as when the patient is about to undergo a surgical or interventional procedure wherein bleeding could be problematic, the hypothermia-induced platelet inhibition may be rapidly reversed by using the intravascular heat exchange apparatus to re-warm the patient=s body to normothermia or near normothermia. | 07-07-2011 |
20110208278 | METHOD AND APPARATUS FOR REGIONAL AND WHOLE BODY TEMPERATURE MODIFICATION - A heat exchange fluid supply system for supplying a heat exchange fluid to an intravascular heat exchange catheter includes a disposable cassette having a bulkhead and an external heat exchanger, and which is configured to operate in combination with a reusable master control unit. The bulkhead includes a reservoir section and a pump section. The reservoir section is provided with a means to monitor the amount of heat exchange fluid that is in the system. The bulkhead provides the mechanism for priming the system with heat exchange fluid from an external source and for circulating fluid to the catheter in a closed circuit. The pump section is configured to allow for pumping of heat exchange fluid at a constant pressure. | 08-25-2011 |
20110276115 | Cooling Guide Catheter And Associated Method Of Use - A catheter apparatus configured to provide a delivery system for standard intervention devices typically used during emergency angioplasty and to provide rapid localized cooling to organs at risk of ischemic and reperfusion injury. The catheter apparatus including a catheter shaft having an inner core defining at least two coolant flow lumens adjacent to a blood conveyance lumen. Each coolant flow lumen in thermal contact with the blood conveyance lumen and thermally insulated from each other and the exterior surfaces of the catheter shaft. | 11-10-2011 |
20110313496 | Method for Controlling a Patent's Body Temperature - The present invention provides a method and apparatus for controlling the internal body temperature of a patient. According to the present invention, a catheter is inserted through an incision into a large blood vessel of a patient. By selectively heating or cooling a portion of the catheter lying within the blood vessel, heat may be transferred to or from blood flowing within the vessel and the patient's body temperature may thereby be increased or decreased as desired. The invention will find use in treating undesirable conditions of hypothermia and hyperthermia, or for inducing a condition of artificial hypothermia when desired. | 12-22-2011 |
20120185022 | INDWELLING HEAT EXCHANGE CATHETER AND METHOD OF USING SAME - A catheter is adapted to exchange heat with a body fluid, such as blood, flowing in a body conduit, such as a blood vessel. The catheter includes a shaft with a heat exchange region disposed at its distal end. This region may include hollow fibers which are adapted to receive a remotely cooled heat exchange fluid preferably flowing in a direction counter to that of the body fluid. The hollow fibers enhance the surface area of contact, as well as the mixing of both the heat exchange fluid and the body fluid. The catheter can be positioned to produce hypothermia in a selective area of the body or alternatively positioned to systemically cool the entire body system. | 07-19-2012 |
20120197363 | Wound Heat Exchanger - A capillary tube bundle sub-assembly for use in an extracorporeal heat exchanger includes a continuous capillary tubing wound about a core to define a plurality of capillary layers each including a plurality of capillary segments. The capillary segments each define opposing terminal ends adjacent opposing ends of the core. The capillary segments of each layer are circumferentially aligned relative to an axis of the core, with each successive layer being radially outward of an immediately preceding layer. The capillary segments are non-parallel with the axis, spiraling partially about the axis in extension between the opposing terminal ends. Each capillary segment forms less than one complete revolution (i.e., winds less than 360°). The segments within each layer are substantially parallel with one another; however, an orientation of the segments differs from layer-to-layer such as by pitch or angle. | 08-02-2012 |
20130073015 | METHODS AND DEVICES FOR NON-INVASIVE CEREBRAL AND SYSTEMIC COOLING ALTERNATING LIQUID MIST/GAS FOR INDUCTION AND GAS FOR MAINTENANCE - Methods for cerebral and systemic cooling via a patient's nasopharyngeal cavity are described. In one method, a cooling assembly is inserted into a nasal cavity through a patient's nostril. A substantially dry gas is delivered through a lumen of the catheter onto the surface of the patient's nasal cavity. Evaporative heat loss cools the patient's nasal cavity. If additional cooling is needed, a liquid coolant is delivered through a separated lumen of the catheter. The liquid coolant is nebulized at a plurality of delivery ports on the distal end of the catheter and is delivered onto the surface of the patient's nasal cavity in combination with the dry gas. The dry gas enhances evaporation of the nebulized coolant and additional cooling is provided from the evaporative heat loss of the liquid coolant. | 03-21-2013 |
20130079858 | TRANSATRIAL PATIENT TEMPERATURE CONTROL CATHETER - A transatrial intravascular temperature management catheter has a lower heat exchange segment positionable in the inferior vena cava and an upper heat exchange segment positionable in the superior vane cava, with a connecting segment lying between the two and positionable in the right atrium. A temperature sensor on the distal tip of the upper heat exchange segment provides accurate core body temperature signals for feedback purposes since the blood flowing past the sensor has not yet reached the heat exchange segment. | 03-28-2013 |
20130079859 | SELF-CENTERING PATIENT TEMPERATURE CONTROL CATHETER - A patient temperature control catheter ( | 03-28-2013 |
20130090709 | METHOD AND APPARATUS FOR REGIONAL AND WHOLE BODY TEMPERATURE MODIFICATION - Methods and apparatuses for temperature modification of a patient, or selected regions thereof, including an induced state of hypothermia. The temperature modification is accomplished using an in-dwelling heat exchange catheter within which a fluid heat exchange medium circulates. A heat exchange cassette of any one of several disclosed variations is attached to the circulatory conduits of the catheter, the heat exchange cassette being sized to engage a cavity within one of various described re-usable control units. The control units include a heater/cooler device, a user input device, and a processor connected to receive input from various sensors around the body and the system. The heater/cooler device may be thermoelectric to enable both heating and | 04-11-2013 |
20130211483 | COMPACT HEAT EXCHANGER FOR VENO-VENOUS PERFUSION-INDUCED SYSTEMIC HYPERTHERMIA SYSTEMS - A compact heat exchanger for veno-venous perfusion-induced hyperthermia includes an integral pneumatic pump and a hollow tubule heat exchange array. A veno-venous perfusion-induced hyperthermia system incorporating the compact heat exchanger is described. The heat exchanger provides a compact, efficient design allowing a lesser heat exchanging surface area and lesser required pumping power compared to conventional systems. In turn, the system provides a shorter blood circuit compared to conventional systems, allowing maintaining a lower blood temperature than such conventional systems while supplying sufficiently heated blood to patient visceral organs to provide a therapeutic effect, such as in supplementing chemotherapy drugs. | 08-15-2013 |
20130296985 | INDWELLING HEAT EXCHANGE CATHETER AND METHOD OF USING SAME - A catheter is adapted to exchange heat with a body fluid, such as blood, flowing in a body conduit, such as a blood vessel. The catheter includes a shaft with a heat exchange region disposed at its distal end. This region may include hollow fibers which are adapted to receive a remotely cooled heat exchange fluid preferably flowing in a direction counter to that of the body fluid. The hollow fibers enhance the surface area of contact, as well as the mixing of both the heat exchange fluid and the body fluid. The catheter can be positioned to produce hypothermia in a selective area of the body or alternatively positioned to systemically cool the entire body system. | 11-07-2013 |
20130304166 | INHIBITION OF PLATELET ACTIVATION, AGGREGATION AND/OR ADHESION BY HYPOTHERMIA - A method for treating acute coronary syndromes (i.e., unstable angina or non-Q-wave MI) or transient ischemic attacks in a human or animal patient by placing a heat exchange apparatus in the patient's vasculature and using that heat exchange apparatus to cool the patient to a temperature (e.g. 30-36 degrees C.) at which platelet inhibition (i.e., inhibition of platelet activation and/or aggregation and/or adhesion) occurs. Anti-shivering drugs or anesthesia may be administered to patients whose body temperature is cooled below that patient's shivering threshold (typically approximately 35.5 degrees C.). If it is determined that platelet inhibition is no longer desirable, such as when the patient is about to undergo a surgical or interventional procedure wherein bleeding could be problematic, the hypothermia-induced platelet inhibition may be rapidly reversed by using the intravascular heat exchange apparatus to re-warm the patient's body to normothermia or near normothermia. | 11-14-2013 |
20130331916 | SYSTEMS AND METHODS FOR INTRAVASCULAR COOLING - Methods and systems for infusing a cooled infusate to a target location in a patient are described. A temperature of the blood and infusate admixture upstream of the catheter as well as at other locations along the catheter may be monitored and a feedback system utilized to control the volume, temperature, and/or infusion rate of the infusate so as to achieve a predetermined temperature at the target location. Control may also be based on the patient's native vessel flow rate. The system may monitor or calculate hematocrit upstream of the catheter and adjust infusion so as to provide sufficient oxygenation of the blood and infusate admixture. The system may also monitor reflux of the infusate past a distal end of the catheter and reduce infusion upon the detection of reflux. | 12-12-2013 |
20140094882 | INTRAVASCULAR HEAT EXCHANGE CATHETER WITH NON-ROUND COILED COOLANT PATH - A catheter has a hollow conduit through which working fluid from a heat exchange system flows. The conduit in turn is configured to extend along a longitudinal central axis in a continuously varying non-constant azimuthal orientation so that it defines a non-round enclosed passageway through which blood can flow to exchange heat through a wall of the conduit with the working fluid flowing within the conduit. | 04-03-2014 |
20140094883 | INTRAVASCULAR HEAT EXCHANGE CATHETER WITH RIB CAGE-LIKE COOLANT PATH - An intravascular heat exchange catheter has serpentine-like supply and return conduits circulating working fluid with a heat exchange system to warm or cool a patient in which the catheter is intubated. | 04-03-2014 |
20140121735 | Method for Reducing Myocardial Infarct by Application of Intravascular Hypothermia - Methods and apparatus for preventing myocardial infarction, or lessening the size/severity of an evolving myocardial infarction, by cooling at least the affected area of the myocardium using an intravascular heat exchange catheter. The heat exchange catheter may be inserted into the vasculature (e.g., a vein) and advanced to a position wherein a heat exchanger on the catheter is located in or near the heart (e.g., within the vena cava near the patient's heart). Thereafter, the heat exchange catheter is used to cool the myocardium (or the entire body of the patient) to a temperature that effectively lessens the metabolic rate and/or oxygen consumption of the ischemic myocardial cells or otherwise protects the ischemic myocardium from undergoing irreversible damage or infarction. | 05-01-2014 |
20140135879 | Method and apparatus for measuring and treating shivering during therapeutic temperature control - Methods and apparatus for the prevention and treatment of shivering encountered during therapeutic temperature regulation are disclosed that utilize an active system of counterwarming such that the timing and intensity of warmth provided to selected body areas is regulated dynamically in response to such factors as the extent of cooling applied to the core, the degree of shivering encountered, and patient temperature. Additionally, methods and apparatus are disclosed for the measurement and quantification of shivering for use in this and other applications. | 05-15-2014 |
20140148882 | Devices and Methods for Using Endovascular Cooling to Treat Septic Shock and Other Disorders - Apparatus, systems and methods for cooling or warming the temperature of all or a portion of the body of a human or animal subject to treat disorders including but not limited to sepsis, septic shock or other inflammatory or infectious conditions which can result in shock, hypoxia, ischemia and/or multiple organ failure in human or animal subjects. | 05-29-2014 |
20140172050 | SYSTEM AND METHOD FOR MANAGEMENT OF BODY TEMPERATURE - A system and method for adding or removing heat from a heat exchange fluid circulating between an external heat exchanger and an intravascular heat exchange catheter is described. The system includes a two stage cooling system providing for a high rate of cooling in one stage and a lower rate of cooling in a second stage. Both stages may be used to provide maximal cooling while the second stage is used to provide improved control of the cooling rate as a target temperature is approached. The second stage may also be used to provide heat to the heat exchange fluid. | 06-19-2014 |
20140214140 | METHOD AND APPARATUS FOR CONTROLLING A PATIENT'S BODY TEMPERATURE BY IN SITU BLOOD TEMPERATURE MODIFICATION - The present invention provides a method and apparatus for controlling the internal body temperature of a patient. According to the present invention, a catheter is inserted through an incision into a large blood vessel of a patient. By selectively heating or cooling a portion of the catheter lying within the blood vessel, heat may be transferred to or from blood flowing within the vessel and the patient's body temperature may thereby be increased or decreased as desired. The invention will find use in treating undesirable conditions of hypothermia and hyperthermia, or for inducing a condition of artificial hypothermia when desired. The method and system further provide for the cooling of initially hypothermic patients whose blood or body temperature has been warmed above the desired target level and the warming of initially hyperthermic patients whose blood or body temperature has been cooled below the desired target temperature. | 07-31-2014 |
20140257441 | Method for Controlling Patient's Body Temperature - The present invention provides a method and apparatus for controlling the internal body temperature of a patient. According to the present invention, a catheter is inserted through an incision into a large blood vessel of a patient. By selectively heating or cooling a portion of the catheter lying within the blood vessel, heat may be transferred to or from blood flowing within the vessel and the patient's body temperature may thereby be increased or decreased as desired. The invention will find use in treating undesirable conditions of hypothermia and hyperthermia, or for inducing a condition of artificial hypothermia when desired. | 09-11-2014 |
20140364928 | DISPOSABLE CASSETTE FOR INTRAVASCULAR HEAT EXCHANGE CATHETER - A heat exchange fluid supply system for supplying a heat exchange fluid to an intravascular heat exchange catheter includes a disposable cassette having a bulkhead and an external heat exchanger, and which is configured to operate in combination with a reusable master control unit. The bulkhead includes a reservoir section and a pump section. The reservoir section is provided with a means to monitor the amount of heat exchange fluid that is in the system. The bulkhead provides the mechanism for priming the system with heat exchange fluid from an external source and for circulating fluid to the catheter in a closed circuit. The pump section is configured to allow for pumping of heat exchange fluid at a constant pressure. | 12-11-2014 |
20160113813 | INTRAVASCULAR HEAT EXCHANGE CATHETER WITH MULTIPLE SPACED APART DISCRETE COOLANT LOOPS - A catheter has a series of hollow loops arranged along a tube for carrying working fluid from a heat exchange system to exchange heat with a patient in whom the catheter is advanced. The loops when inflated are transverse to the catheter axis and parallel to each other, and circumscribe a hollow passageway through which blood can flow. Blood also flows around the outer perimeters of the loops. | 04-28-2016 |
20160143773 | TRANSATRIAL PATIENT TEMPERATURE CONTROL CATHETER - A transatrial intravascular temperature management catheter has a lower heat exchange segment positionable in the inferior vena cava and an upper heat exchange segment positionable in the superior vane cava, with a connecting segment lying between the two and positionable in the right atrium. A temperature sensor on the distal tip of the upper heat exchange segment provides accurate core body temperature signals for feedback purposes since the blood flowing past the sensor has not yet reached the heat exchange segment. | 05-26-2016 |