Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


UNSATURATED COMPOUND SYNTHESIS

Subclass of:

585 - Chemistry of hydrocarbon compounds

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
585638000 From nonhydrocarbon feed 206
585502000 By addition of entire unsaturated molecules, e.g., polymerization, etc. 164
585648000 By C content reduction, e.g., cracking, etc. 109
585654000 By dehydrogenation 105
585601000 Diolefin product 42
585534000 Triple-bond product 32
585643000 By alkyl transfer, e.g., disproportionation, etc. 32
585501000 With measuring, sensing, testing, or synthesis operation control responsive to diverse condition 15
585634000 With heat conservation or using solid or molten inert heat carrier, e.g., regenerative furnace, etc. 11
585664000 By double-bond-shift isomerization 6
585671000 By skeletal isomerization 6
585636000 Using apparatus of recited composition 4
20100152513System And Method For Reducing Decomposition Byproducts In A Methanol To Olefin Reactor System - The invention relates to a feed vaporization and introduction system for an OTO reactor. The invention includes: means for vaporizing at least a portion of the feed; means for contacting the at least partially vaporized feed with a first catalyst comprising one or more metals from Groups 2, 3, and 4 of the Periodic Table and/or one or more metals in the Lanthanide and Actinide series.06-17-2010
20130267750METHOD AND REACTOR FOR CRACKING HYDROCARBON AND METHOD FOR COATING THE REACTOR - A reactor has an inner surface accessible to the hydrocarbon and comprising a sintered product of at least one of cerium oxide, zinc oxide, tin oxide, zirconium oxide, boehmite and silicon dioxide, and a perovskite material of formula A10-10-2013
20140303419LINEAR BUTENES FROM ISOBUTANOL - The present invention relates to the preparation of linear butenes from isobutanol which has preferably been obtained from renewable raw materials by microbial and/or fermentation processes.10-09-2014
20190143288CATALYTIC REACTOR CONFIGURATION, PREPARATION AND METHOD OF DIRECT SYNTHESIS OF ETHYLENE THROUGH OXYGEN-FREE CATALYSIS OF METHANE05-16-2019
585600000 Product having more than two double bonds 3
20080221377Methods for synthesis of carotenoids, including analogs, derivatives, and synthetic and biological intermediates - A method for synthesizing intermediates for use in the synthesis of carotenoid synthetic intermediates, carotenoid analogs, and/or carotenoid derivatives. The carotenoid analog, derivative, or intermediate may be administered to a subject for the inhibition and/or amelioration of any disease that involves production of reactive oxygen species, reactive nitrogen species, radicals and/or non-radicals. In some embodiments, the invention may include methods for synthesizing chemical compounds including an analog or derivative of a carotenoid. Carotenoid analogs or derivatives may include acyclic end groups. In some embodiments, a carotenoid analog or derivative may include at least one substituent. The substituent may enhance the solubility of the carotenoid analog or derivative such that the carotenoid analog or derivative at least partially dissolves in water.09-11-2008
20100125161METHOD OF PREPARING MULTICOMPONENT BISMUTH MOLYBRDATE CATALYSTS WITH CONTROLLING PH AND A METHOD OF PREPARING 1,3-BUTADIENE USING THEREOF - This invention relates to a method of preparing a multicomponent bismuth molybdate catalyst by changing the pH of a coprecipitation solution upon coprecipitation and a method of preparing 1,3-butadiene using the catalyst. The multicomponent bismuth molybdate catalyst, coprecipitated using a solution having an adjusted pH, the preparation method thereof, and the method of preparing 1,3-butadiene through oxidative dehydrogenation using a C4 mixture including n-butene and n-butane as a reactant are provided. The C4 raffinate, containing many impurities, is directly used as a reactant without an additional process for separating n-butane or extracting n-butene, thus obtaining 1,3-butadiene at high yield. The activity of the multicomponent bismuth molybdate catalyst can be simply increased through precise pH adjustment upon coprecipitation, which is not disclosed in the conventional techniques. This method can be applied to the increase in the activity of multicomponent bismuth molybdate catalysts reported in the art.05-20-2010
20120197055PROCESS FOR ISOMERISATION OF LYCOPENE IN THE PRESENCE OF THIOUREA - The present invention relates to isomerization of Z-lycopene in mixtures of isomers to mixtures enriched with all E-lycopene.08-02-2012
585637000 By displacement of hydrocarbon radical by hydrocarbon molecule 1
20110152595OLEFIN PRODUCTION PROCESS - A process is provided which is capable of producing olefins stably and efficiently by a metathesis reaction of identical or different olefins while preventing the lowering in metathesis catalyst activity due to trace impurities such as heteroatom-containing compounds that are contained in a starting olefin.06-23-2011
Entries
DocumentTitleDate
20080214880Process for Dehydrating Glycerol to Acrolein - The present invention relates to a process for manufacturing acrolein by gas-phase dehydration of glycerol in the presence of strongly acidic solid catalysts with a Hammett acidity H09-04-2008
20080293987Catalyst for Conversion of Hydrocarbons, Process of Making and Process of Using Thereof - Bimetallic Deposition - This invention is for a catalyst for conversion of hydrocarbons. The catalyst is a germanium zeolite, such as Ge-ZSM-5, on which at least two metals, platinum and at least one other metal selected from Group 7, Group 8, Group 9, Group 10 and tin, are deposited on the germanium zeolite. Examples of the other metal are iridium, rhenium, palladium, ruthenium, rhodium, iron, cobalt and tin. The catalyst is prepared by synthesizing a germanium zeolite; depositing platinum and at least one other metal on the germanium zeolite; and calcining after preparation of the zeolite, before depositing the metals or after depositing the metals. The catalyst may be used in a process for the conversion of hydrocarbons, such as propane to aromatics, by contacting the catalyst with a hydrocarbon stream containing alkanes, olefins and mixtures thereof having 2 to 12 carbon atoms per molecule and recovering the product.11-27-2008
20080293988Catalyst for Conversion of Hydrocarbons, Process of Making and Process of Using Thereof - Incorporation 2 - This invention is for a catalyst for conversion of hydrocarbons. The catalyst contains a zeolite with one element from Group 13, Group 14, or the first series transition metals and, optionally, germanium and/or aluminum in the zeolite framework. At least one Group 10 metal, such as platinum, is deposited on the zeolite. Examples of the elements in the framework are tin, boron, iron or titanium. The catalyst is prepared by synthesizing a zeolite with one element from Group 13, Group 14, or the first series transition metals and, optionally, germanium and/or aluminum in the zeolite framework; depositing the metal; and calcining after preparation of the zeolite and before or after depositing the metal. The catalyst may be used in a process for the conversion of hydrocarbons, such as propane to aromatics, by contacting the catalyst with alkanes having 2 to 12 carbon atoms per molecule and recovering the product.11-27-2008
20080293989Catalyst for Conversion of Hydrocarbons, Process of Making and Process of Using Thereof - Incorporation-1 - This invention is for a catalyst for conversion of hydrocarbons. The catalyst contains a zeolite having germanium and at least one selected from the group consisting of tin and boron incorporated into the zeolite framework and at least one metal selected from Group 10 deposited on the zeolite. The catalyst is prepared by synthesizing a zeolite having germanium and at least one selected from the group consisting of tin and boron incorporated into the zeolite framework; depositing the metal; and calcining after preparation of the zeolite and before or after depositing the metal. The catalyst may be used in a process for the conversion of hydrocarbons, such as propane to aromatics, by contacting the catalyst with alkanes having 2 to 12 carbon atoms per molecule and recovering the product.11-27-2008
20080293990Catalyst for Conversion of Hydrocarbons, Process of Making and Process of Using Thereof - Ge Zeolites - This invention is for a catalyst for conversion of hydrocarbons. The catalyst is a medium pore germanium zeolite, a germanium aluminophosphate (AlPO) or a germanium silicoaluminophosphate (SAPO). At least one metal selected from Group 10 is deposited on the medium pore zeolite and, optionally on the germanium aluminophosphate (AlPO) or a germanium silicoaluminophosphate (SAPO). The catalyst is prepared by synthesizing a medium pore zeolite, an aluminophosphate (AlPO) or a silicoaluminophosphate (SAPO) with germanium incorporated into the framework and calcining the medium pore germanium zeolite, germanium aluminophosphate (AlPO) or germanium silicoaluminophosphate (SAPO). At least one metal may be deposited on the germanium zeolite, germanium aluminophosphate (AlPO) or a germanium silicoaluminophosphate (SAPO). The catalyst may be used in a process for the conversion of hydrocarbons, such as propane to aromatics, by contacting the catalyst with a hydrocarbon stream containing alkanes having 2 to 12 carbon atoms per molecule and recovering the product.11-27-2008
20090112035SOLID ACID CATALYST FOR PRODUCING LIGHT OLEFINS AND PROCESS USING THE SAME - A porous solid acid catalyst for producing light olefins is prepared through pillaring and a solid state reaction of a raw material mixture. The catalyst is made of a porous material having a crystalline structure that is different from that of the raw material mixture. The catalyst exhibits excellent catalytic activity (i.e., conversion and selectivity) in the production of light olefins from hydrocarbon feeds such as full range naphthas.04-30-2009
20090216056Production of shaped silica bodies - In a method of forming a shaped body, a mixture is formed comprising a particulate silica-rich material, water and a potassium base or basic salt, wherein the total solids content of the mixture is from about 20 to about 90 weight percent. The mixture is extruded into extrudates and the extrudates are dried and heated to a temperature of from about 300° C. to about 800° C. to form the shaped body.08-27-2009
20090326294 Reactor Process for Smaller Batch Transfers of Catalyst - A moving bed of catalyst loses activity as it moves through the reactor. Creating multiple passes for the process fluid moving across a catalyst bed, increases the utilization of the catalyst and creates a step-wise counter current flow of catalyst and process fluid, where the catalyst flows in the axial direction of the reactor, and the process fluid flows radially, with step-wise axial direction flow when the flow is reversed to flow back across the catalyst bed. The flow improves the temperature profile of the bed and allows higher temperature fluid contacting the less active catalyst.12-31-2009
20100174128Butane Absorption System for Vent Control and Ethylene Purification - The present invention describes a n-butane absorption process for purifying the ethylene product from an ethane oxidation process. The ethane oxidation product is fed to a series of absorption towers using a n-butane solvent that remove the inert components as well as purifying the ethylene from the product. A first absorption tower uses n-butane as a solvent to absorb both the ethane and ethylene, allowing for inert gasses to be removed from the stream. An ethylene-rich side stream from this tower is sent to an ethylene purification tower where ethylene is purified using n-butane solvent. The bottom stream from the first absorption tower is then sent to an intermediate ethylene recovery tower where crude ethylene is purified, and the overhead ethylene stream being sent to the ethylene purification tower. The bottoms stream, along with the bottoms stream of the ethylene purification tower, both of which comprise mostly ethane and n-butane, are then sent to a stripper tower for ethane recovery and n-butane solvent recover.07-08-2010
20100204532PROCESS FOR PRODUCING PROPYLENE - An object of the present invention is to provide a process for producing efficiently and stably propylene from a hydrocarbon raw material containing a high concentration of ethylene. The present invention discloses a process for producing propylene, comprising catalytically converting a hydrocarbon raw material containing ethylene in an amount exceeding 50% by mass with a zeolite-containing catalyst satisfying the following (1) to (3): 08-12-2010
20100228067CONVERSION OF NATURAL PRODUCTS INCLUDING CELLULOSE TO HYDROCARBONS, HYDROGEN AND/OR OTHER RELATED COMPOUNDS - The present invention generally relates to the conversion of sugars and/or other biomass to produce hydrocarbons, hydrogen, and/or other related compounds. In one aspect, the invention includes fermenting biomass to produce one or more organic intermediates, for example, a carboxylic acid, and optionally, hydrogen. The carboxylic acid may then be decarboxylated to produce CO09-09-2010
20100331595Process for the Oxidative Coupling of Methane - A method for the oxidative coupling of hydrocarbons, such as the oxidative coupling of methane, includes providing an oxidative catalyst inside a reactor, and carrying out the oxidative coupling reaction under a set of reaction conditions. The oxidative catalyst includes (A) at least one element selected from the group consisting of the Lanthanoid group, Mg, Ca, and the elements of Group 4 of the periodic table (Ti, Zr, and Hf); (B) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements of Group 3 (including La and Ac) and Groups 5-15 of the periodic table; (C) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements Ca, Sr, and Ba; and (D) oxygen.12-30-2010
20120041246NANOWIRE CATALYSTS - Nanowires useful as heterogeneous catalysts are provided. The nanowire catalysts are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane to ethylene. Related methods for use and manufacture of the same are also disclosed.02-16-2012
20120116140WORK-UP OF A 3-METHYL-1-BUTENE-CONTAINING MIXTURE - The invention is a method for processing a mixture containing water, 3-methyl-1-butene and at least one other methylbutene. The method comprises primary distillation of the mixture, giving a gaseous primary overhead product containing methylbutene and water and a water-free primary bottom product containing 3-methyl-1-butene; condensation of the gaseous primary overhead product so as to give a condensate comprising a liquid aqueous phase and a liquid organic phase; separation of the condensate into a liquid aqueous phase and a liquid organic phase; discharge of the liquid aqueous phase; recirculation of the organic phase to the primary distillation; and finally secondary distillation of the water-free primary bottom product from the primary distillation so as to give a secondary overhead product comprising 3-methyl-1-butene and a secondary bottom product. The secondary overhead product obtained has a purity which enables it to be used directly as monomer or comonomer for preparing polymers or copolymers.05-10-2012
20130131417METHODS AND SYSTEMS FOR OLEFIN PRODUCTION - One example method of the invention includes a process for producing an olefin comprising the steps of communicating a feed stream that comprises a paraffin to a distillation section, communicating a distillation section output stream to a reactor and reacting the distillation section output stream in the reactor to produce a reactor output stream comprising an olefin.05-23-2013
20130253248METHOD FOR ISOLATION OF NANOMATERIALS - Methods for isolation and/or purification of nanomaterials, such as nanowires, are provided. The disclosed methods include isolation of nanomaterials via a filter press and are amenable to large-scale production of nanomaterials. Related methods for isolation, purification and/or doping of nanomaterials are also provided.09-26-2013
20150073192CATALYSTS FOR PETROCHEMICAL CATALYSIS - Metal oxide catalysts comprising various dopants are provided. The catalysts are useful as heterogenous catalysts in a variety of catalytic reactions, for example, the oxidative coupling of methane to C2 hydrocarbons such as ethane and ethylene. Related methods for use and manufacture of the same are also disclosed.03-12-2015
20150314267HETEROGENEOUS CATALYSTS - Heterogeneous catalysts with optional dopants are provided. The catalysts are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane to C11-05-2015
20150368167PROCESS FOR SEPARATING HYDROCARBON COMPOUNDS - Disclosed herein are processes for producing and separating ethane and ethylene. In some embodiments, an oxidative coupling of methane (OCM) product gas comprising ethane and ethylene is introduced to a separation unit comprising two separators. Within the separation unit, the OCM product gas is separated to provide a C12-24-2015
20160107143CATALYSTS FOR PETROCHEMICAL CATALYSIS - Metal oxide catalysts comprising various dopants are provided. The catalysts are useful as heterogeneous catalysts in a variety of catalytic reactions, for example, the oxidative coupling of methane to C2 hydrocarbons such as ethane and ethylene. Related methods for use and manufacture of the same are also disclosed.04-21-2016
20160122261CATALYSTS FOR PETROCHEMICAL CATALYSIS - Metal oxide catalysts comprising various dopants are provided. The catalysts are useful as heterogenous catalysts in a variety of catalytic reactions, for example, the oxidative coupling of methane to C2 hydrocarbons such as ethane and ethylene. Related methods for use and manufacture of the same are also disclosed.05-05-2016

Patent applications in class UNSATURATED COMPOUND SYNTHESIS

Patent applications in all subclasses UNSATURATED COMPOUND SYNTHESIS

Website © 2025 Advameg, Inc.