Class / Patent application number | Description | Number of patent applications / Date published |
585501000 | With measuring, sensing, testing, or synthesis operation control responsive to diverse condition | 15 |
20080275282 | Monitoring and control of processes for making 1-hexene - Processes, methods and apparatus relating to olefin oligomerization include the use of Raman spectrometry to monitor the concentration of reactants, products or other chemical components. One or more oligomerization conditions are adjusted in response to those monitored concentrations. The present processes, methods and apparatus are capable of monitoring olefin oligomerization with the use of low resolution Raman spectrometry equipment, even where there is some degree of overlap between Raman spectral peaks. Apparatus for olefin oligomerization reactions have at least one Raman probe located in the oligomerization equipment, the Raman probe providing an output signal, and Raman spectrometry equipment located outside the oligomerization equipment and operatively connected to at least one Raman probe. | 11-06-2008 |
20090306447 | PROCESS FOR PREPARING ACETYLENE BY PARTIAL OXIDATION OF HYDROCARBONS - A process is proposed for continuously operating a plant for preparing acetylene from hydrocarbons by partial oxidation, cleavage in an arc or pyrolysis of hydrocarbons to obtain a reaction gas mixture which is conducted through one or more compressors, the pressure of the reaction gas mixture on the suction side of the compressor being controlled within a predefined range by means of a conventional controller, which comprises additionally using a higher-level model-supported predictive controller which reacts to abrupt changes in the mass flow rate of the reaction gas mixture. | 12-10-2009 |
20100174129 | HIGH THROUGHPUT PROPYLENE FROM METHANOL CATALYTIC PROCESS DEVELOPMENT METHOD - A catalytic process development apparatus and method for simulating a commercial scale methanol and/or DME to propylene catalytic conversion system that includes a plurality of series-connected plug-flow reactors. The method involves simulating the operation of the series-connected plug-flow reactors by operating a series of multistage series-connected laboratory scale plug-flow reactors, the stages of which each containing a zeolite catalyst bed, each of the laboratory scale reactors corresponding to a separate one of the commercial scale series-connected reactors. Fresh feed, including methanol and/or DME, is supplied to the first of the laboratory scale reactor stages, and selected ones of steam, methanol and/or DME, contaminants and reaction products are supplied to selected ones of the laboratory scale reactor stages. The simulation is repeated at different sets of operating conditions and catalyst characteristics. | 07-08-2010 |
20110082324 | METHOD FOR REACTION CONTROL OF EXOTHERMIC REACTION AND APPARATUS THEREFORE - The present invention relates to method for reaction control of an exothermic reaction, comprising the steps:
| 04-07-2011 |
20120004488 | Method for Enhancing the Performance of a Catalyzed Reaction - A method for improving performance of a catalyzed reaction carried out in a moving bed system having a reaction zone. A process stream is introduced into the reaction zone at a temperature, and the temperature of the catalyst introduced to the reaction zone is different from the process stream introduction temperature to increase conversion. | 01-05-2012 |
20120197054 | PROCESS AND APPARATUS FOR DEHYDRATING ALKANES WITH EQUALIZATION OF THE PRODUCT COMPOSITION - A process for the dehydrogenation of alkanes. In several reactors of the adiabatic, allothermal or isothermal type or combinations thereof a gaseous alkane-containing material stream is passed through a catalyst bed in continuous operating mode. The gas stream produced contains an alkene, hydrogen and a non-converted alkane. In order to achieve a constant product composition, at least one of the process parameters of temperature, pressure or steam/hydrocarbon ratio is recorded in the form of measured values at one or several points of at least one of the reactors, where at least one of the process parameters is selectively controlled and influenced such that the composition of the product gas at the outlet of one reactor remains constant throughout the operating period. | 08-02-2012 |
20120296145 | METHODS FOR MONITORING IONIC LIQUIDS USING VIBRATIONAL SPECTROSCOPY - Methods for monitoring ionic liquids using vibrational spectroscopy may involve contacting an infrared (IR) transmissive medium with the ionic liquid, recording an IR spectrum of the ionic liquid, and quantifying at least one chemical characteristic of the ionic liquid based on the IR spectrum. The IR spectrum may be recorded ex situ or in situ. Methods for controlling ionic liquid catalyzed processes are also disclosed, wherein a condition of the ionic liquid may be determined during such processes based on IR spectral analysis of the ionic liquid. | 11-22-2012 |
20130041195 | Systems And Methods For Controlling Transport Reactors - Systems and methods for operating transport reactors are provided. The method can include fluidizing one or more particulates within a transport reactor. The one or more particulates can include one or more carbonaceous materials. The method can also include maintaining one or more pressure differentials between two or more points within the transport reactor using at least one integrally geared compression system. The at least one integrally geared compression system can include a bull gear, at least one pinion, and two or more compressors. | 02-14-2013 |
20140107385 | OXIDATIVE COUPLING OF METHANE SYSTEMS AND METHODS - Systems and methods conducive to the formation of one or more alkene hydrocarbons using a methane source and an oxidant in an oxidative coupling of methane (OCM) reaction are provided. One or more vessels each containing one or more catalyst beds containing one or more catalysts each having similar or differing chemical composition or physical form may be used. The one or more catalyst beds may be operated under a variety of conditions. At least a portion of the catalyst beds may be operated under substantially adiabatic conditions. At least a portion of the catalyst beds may be operated under substantially isothermal conditions. | 04-17-2014 |
20140163287 | Method and Apparatus for Managing Hydrogen Content Through The Conversion of Hydrocarbons Into Olefins - An apparatus and method are provided for processing hydrocarbon feeds. The method enhances the conversion of hydrocarbon feeds into conversion products, such as ethylene and propylene. In particular, the present techniques combine a first hydrocarbon feed with a second hydrocarbon feed and a hydrogen (H | 06-12-2014 |
20140221718 | EXCESS AIR CONTROL FOR CRACKER FURNACE BURNERS - A method for control of the air/fuel ratio of the burner(s) (excess air) of a thermal cracker includes three steps. The thermal cracker has three consecutive zones or portions through which combustion gases pass, a firebox portion, a bridge wall portion and a convection portion The first step is to direct a wavelength modulated beam of near infrared light from two different tunable diode lasers located in the bridge wall portion through combustion gas from the burner to a pair of near infrared light detectors, each positioned to receive the wavelength modulated beam of near infrared light from a different one of the two tunable diode lasers to generate a detector signal. The second step is to analyze the detector signals for spectroscopic absorption at wavelengths characteristic of oxygen and carbon monoxide to determine their respective concentrations in the combustion gas. The third step is to adjust the air/fuel ratio of the burner(s) (excess air) in response to the concentrations of oxygen and carbon monoxide of the second step. | 08-07-2014 |
20150321974 | OXIDATIVE COUPLING OF METHANE SYSTEMS AND METHODS - Systems and methods conducive to the formation of one or more alkene hydrocarbons using a methane source and an oxidant in an oxidative coupling of methane (OCM) reaction are provided. One or more vessels each containing one or more catalyst beds containing one or more catalysts each having similar or differing chemical composition or physical form may be used. The one or more catalyst beds may be operated under a variety of conditions. At least a portion of the catalyst beds may be operated under substantially adiabatic conditions. At least a portion of the catalyst beds may be operated under substantially isothermal conditions. | 11-12-2015 |
20150353441 | PROCESS FOR THE PREPARATION OF AN OLEFINIC PRODUCT FROM AN OXYGENATE - The invention relates to a process for the preparation of an olefinic product comprising ethylene and/or propylene from an oxygenate comprising: a) an oxygenate conversion step wherein a gaseous effluent comprising olefins is obtained; b) separation of water from the effluent; c) compression of the effluent; d) acid gas removal from the effluent wherein the water-depleted compressed gaseous effluent is treated with a caustic solution in a caustic tower and a non-aqueous liquid stream comprising one or more aromatic C7 | 12-10-2015 |
20160176780 | EXCESS AIR CONTROL FOR CRACKER FURNACE BURNERS | 06-23-2016 |
20160176781 | Hydrocarbon Conversion to Ethylene | 06-23-2016 |