Class / Patent application number | Description | Number of patent applications / Date published |
505470000 | Coating | 22 |
20080280767 | Method For Producing Superconducting Wire Material - A method for producing a superconducting wire material having a high resistivity layer outside a superconducting material, which is capable of easily forming a homogeneous high resistivity layer, a superconducting wire material and a superconducting device are provided. | 11-13-2008 |
20090036314 | METHOD OF FORMING OXIDE SUPERCONDUCTOR THICK FILM - To provide an oxide superconductor thick film formation method that can enhance adhesiveness of a Bi2223 thick film to a body to be processed on which the Bi2223 thick film is formed, and increase a cross-sectional area of the Bi2223 thick film, without a decrease in Jc of the Bi2223 thick film. A mixture of a compound oxide having composition Bi2212 and Pb is applied to a surface of the body to be processed, and burned to form a first thick film. An oxide superconductor thick film expressed by a general formula (Bi, Pb) | 02-05-2009 |
20090137401 | Chemical Solution Deposition Method of Fabricating Highly Aligned MgO Templates - A superconducting article includes a substrate having an untextured metal surface; an untextured barrier layer of La | 05-28-2009 |
20090156411 | Method of Producing Superconductive Oxide Material - There is provided a method of efficiently producing a superconductive material more excellent in properties, and large in area when executing thermal decomposition of a metalorganic compound, and formation of a superconductive material with heat treatment. The method of producing a superconductive material comprising the step (1) of applying a solution of an organic compound of metals, oxides of the metals forming a superconductive material, onto a support body to be subsequently dried, the provisional baking step (2) of causing organic components of the organic compound of the metals to undergo thermal decomposition, and the main baking process step (3) of causing transformation of the oxides of the metals into the superconductive material, thereby producing an epitaxially-grown superconductive coating material, wherein the support body is irradiated with the laser light during a period between the steps (1) and (2) from a surface of the support body, on the opposite side of the surface coated with the solution of the organic compound of the metals for forming the superconductive material. | 06-18-2009 |
20090270263 | PROCESS FOR PRODUCING TAPE-SHAPED Re-TYPE (123) SUPERCONDUCTOR - This invention provides a production process of a tape-shaped superconductor which can realize high Jc and Ic values by virtue of the elimination of the cause of generation of cracks and deterioration of an electrical connectivity in crystal grain boundaries. In producing an Re-base (123) superconductor on a substrate by an MAD process, the use of a raw material solution having a Re:Ba:Cu molar ratio of 1:X:3, wherein X is a Ba molar ratio satisfying X<2 (preferably 1.0≦X≦1.8, especially 1.3≦x≦1.7), can realize the production of a thick-film tape-shaped superconductor having a superconductivity of Jc=3.20 MA/cm2 and Ic=525 A/cm (X=1.5). | 10-29-2009 |
20090291851 | METHOD AND DEVICE FOR COLD GAS SPRAYING - A device for coating at least one substrate or for producing at least one molding by means of at least one cold gas spraying pistol, wherein the cold gas spraying pistol and the substrate or molding to be coated are arranged in a vacuum chamber, and also a method for cold gas spraying relating thereto in such a manner that while eliminating the wire production, the coil winding and also the cast in procedure, a thoroughly compact coil without a degree of freedom of movement (elimination of the quench risk) can be produced, it is suggested that the particles have at least to some extent an electrically conducting, in particular superconducting, property and at least to some extent an electrically poorly conducting or electrically insulating property. | 11-26-2009 |
20100009855 | PROCESS FOR JOINING OXIDE SUPERCONDUCTING TUBES WITH A SUPERCONDUCTING JOINT - The present invention provides a process for joining oxide-superconducting tubes with a superconducting joint. The process involves the preparation of a partially preformed superconducting material, followed by cold isopressing of the powder of partially performed superconducting material into tube shape and further provided with grooves at both ends of the tubes with a subsequent deposition of a silver layer. The process further involves the lapping of one of the end faces of a pair of said tubes to be joined. These lapped end faces of both the tubes clubbed together on a common silver bush are coated with a paste of the same partially preformed superconducting material in organic formulation. Then these coated end faces are closed pressed together to form a joint. This joint portion and the end portions of the tubes are wrapped with a perforated silver foil followed by deposition of another layer of silver. Finally, the assembly of this joint portion and the pair of tubes is heat treated in air for 100 to 150 hours and at temperatures from 830° to 850° C. The joint made according to this process is able to stably carry not less than 80% of the transport current of the high temperature superconducting tubes. | 01-14-2010 |
20100285969 | IMD-Selective Design of HTS-Based Filters - Intermodulation distortion (IMD) is known to be an impediment to progress in superconductor-based filter technology. The present invention's methodology for reducing IMD can open doors to heretofore unseen practical applications involving high temperature superconductor (HTS) filters. Typical inventive practice includes (a) increasing the thickness d, and/or (b) changing the operation temperature T, of the filter's HTS film. The film's thickness d is increased in such a way as to decrease the IMD power P | 11-11-2010 |
20100304977 | Superconducting Transition Edge Sensors and Methods for Design and Manufacture Thereof - Methods for forming sensors using transition edge sensors (TES) and sensors therefrom are described. The method includes forming a plurality of sensor arrays includes at least one TES device. The TES device includes a TES device body, a first superconducting lead contacting a first portion of the TES device body, and a second superconducting lead contacting of a second portion of the TES device body, where the first and second superconducting leads separated on the TES device body by a lead spacing. The lead spacing can be selected to be different for at least two of the plurality of sensor arrays. The method also includes determining a transition temperature for each of the plurality of sensor arrays and generating a signal responsive to detecting a change in the electrical characteristics of one of the plurality of sensor arrays meeting a transition temperature criterion. | 12-02-2010 |
20110015079 | METHOD OF FORMING PRECURSOR SOLUTION FOR METAL ORGANIC DEPOSITION AND METHOD OF FORMING SUPERCONDUCTING THICK FILM USING THE SAME - The present invention relates to a method of forming a precursor solution for metal organic deposition and a method of forming a superconducting thick film using the same. A first precursor comprising one rare earth element, a second precursor comprising barium, and a third precursor comprising copper are dissolved into acid to form a compound solution, the compound solution is dissolved into solvent to form a pre-precursor solution, and the solvent of the pre-precursor solution is evaporated to form a precursor solution with the increased viscosity. A sufficiently thick film can be formed without any cracking through only one-time coating. | 01-20-2011 |
20110082045 | EXTREMELY LOW RESISTANCE MATERIALS AND METHODS FOR MODIFYING AND CREATING SAME - In some implementations of the invention, existing extremely low resistance materials (“ELR materials”) may be modified and/or new ELR materials may be created by enhancing (in the case of existing ELR materials) and/or creating (in the case of new ELR materials) an aperture within the ELR material such that the aperture is maintained at increased temperatures so as not to impede propagation of electrical charge there through. In some implementations of the invention, as long as the propagation of electrical charge through the aperture remains unimpeded, the material should remain in an ELR state; otherwise, as the propagation of electrical charge through the aperture becomes impeded, the ELR material begins to transition into a non-ELR state. | 04-07-2011 |
20120028810 | METHOD FOR DEPOSITING OXIDE THIN FILMS ON TEXTURED AND CURVED METAL SURFACES - Method of depositing a layer of oxide of at least one metal element on a curved surface of a textured metal substrate,
| 02-02-2012 |
20120165200 | METHODS FOR MAKING LOW RESISTIVITY JOINTS - Method for joining wires using low resistivity joints is provided. More specifically, methods of joining one or more wires having superconductive filaments, such as magnesium diboride filaments, are provided. The wires are joined by a low resistivity joint to form wires of a desired length for applications, such in medical imaging applications. | 06-28-2012 |
20120264615 | CHEMICAL SOLUTION SEED LAYER FOR RABITS TAPES - A method for making a superconducting article includes the steps of providing a biaxially textured substrate. A seed layer is then deposited. The seed layer includes a double perovskite of the formula A | 10-18-2012 |
20130035236 | Fluorinated Precursors of Superconducting Ceramics, and Methods of Making the Same - This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor. | 02-07-2013 |
20130102475 | Composite Biaxially Textured Substrates Using Ultrasonic Consolidation - A method of forming a composite sheet includes disposing an untextured metal or alloy first sheet in contact with a second sheet in an aligned opposing position; bonding the first sheet to the second sheet by applying an oscillating ultrasonic force to at least one of the first sheet and the second sheet to form an untextured intermediate composite sheet; and annealing the untextured intermediate composite sheet at a temperature lower than a primary re-crystallization temperature of the second sheet and higher than a primary re-crystallization temperature of the first sheet to convert the untextured first sheet into a cube textured sheet, wherein the cube texture is characterized by a φ-scan having a FWHM of no more than 15° in all directions, the second sheet remaining untextured, to form a composite sheet. | 04-25-2013 |
20130123112 | METHOD AND ARRANGEMENT FOR PRODUCING SUPERCONDUCTING LAYERS ON SUBSTRATES - A continuous process produces superconducting layers on substrates, such as a superconducting layer of MgB | 05-16-2013 |
20140364319 | Extremely Low Resistance Materials and Methods for Modifying or Creating Same - In some implementations of the invention, existing extremely low resistance materials (“ELR materials”) may be modified and/or new ELR materials may be created by enhancing (in the case of existing ELR materials) and/or creating (in the case of new ELR materials) an aperture within the ELR material such that the aperture is maintained at increased temperatures so as not to impede propagation of electrical charge there through. In some implementations of the invention, as long as the propagation of electrical charge through the aperture remains unimpeded, the material should remain in an ELR state; otherwise, as the propagation of electrical charge through the aperture becomes impeded, the ELR material begins to transition into a non-ELR state. | 12-11-2014 |
20150099641 | METHOD FOR MANUFACTURING ELECTRODE OF LITHIUM BATTERY - The present invention provides a method for manufacturing an electrode of a lithium battery electrode, comprising: (a) providing a substrate; (b) coating a paste on a portion of the substrate; (c) plating a metal film onto the paste or the substrate; (d) disposing a welding point at an end of the substrate; wherein the advantages of the present invention are to conduct current in three-dimensional direction and reduce the problem of electric conductivity because of thermal effect. In addition, the present invention can further avoid the problem of the electrode oxidation. | 04-09-2015 |
20160071632 | METHOD FOR PRODUCING A METAL FILM - A method for producing a metal film from an alloy having more than 50% nickel includes the following steps: (a) the alloy is melted in volumes of more than one ton in a vacuum induction furnace, or open in an induction or arc furnace, followed by treatment in a VOD or VLF system, (b) the alloy is then poured off in blocks, electrodes or as continuous casting to form a pre-product, followed by single or multiple re-melting by VAR and/or ESU (c) the pre-product is then annealed between 800 and 1350° C. for 1-300 hours under air or protection gas, (d) the pre-product is then hot-formed between 1300 and 600° C. to reduce the thickness of the input material by the factor 1.5-200, such that the pre-product has a thickness of 1-100 mm after the forming and is not recrystallized, recovered, and/or (dynamically) recrystallized having a grain size of smaller than 300 μm, (e) the pre-product is then pickled, (f) the pre-product is then cold-formed to produce a film having an end thickness of 10-600 μm, having a deformation ratio of greater than 90%, (g) the film is then cut into strips of 5-300 mm following the cold-forming, (h) the film strips are then annealed under protection gas between 600 and 1200° C. for 1 second to 5 hours in a continuous furnace, (i) wherein the annealed, film-like material is recrystallized after the annealing and has a high proportion of cubic texture. | 03-10-2016 |
505473000 | Vapor deposition | 2 |
20090239754 | COLD GAS SPRAYING METHOD - In a cold gas spraying method, a gas jet ( | 09-24-2009 |
505474000 | Laser evaporative (i.e., ablative) coating | 1 |
20100081574 | SUPERCONDUCTOR FILMS WITH IMPROVED FLUX PINNING AND REDUCED AC LOSSES - The present invention relates to a method for producing a defect-containing superconducting film, the method comprising (a) depositing a phase-separable layer epitaxially onto a biaxially-textured substrate, wherein the phase-separable layer includes at least two phase-separable components; (b) achieving nanoscale phase separation of the phase-separable layer such that a phase-separated layer including at least two phase-separated components is produced; and (c) depositing a superconducting film epitaxially onto said phase-separated components of the phase-separated layer such that nanoscale features of the phase-separated layer are propagated into the superconducting film. | 04-01-2010 |