Class / Patent application number | Description | Number of patent applications / Date published |
438796000 | Compound semiconductor | 13 |
20090191724 | Substrate Heating Apparatus, Heating Method, and Semiconductor Device Manufacturing Method - A substrate heating apparatus having a conductive heater which heats a substrate includes a filament arranged in the conductive heater and connected to a filament power supply to generate thermoelectrons, and an acceleration power supply which accelerates the thermoelectrons between the filament and conductive heater. The filament has inner peripheral portions formed at a predetermined interval along an inner circle concentric with the substrate, outer peripheral portions formed at a predetermined interval on an outer circle concentric with the inner circle and having a diameter larger than that of the inner circle, and a region formed by connecting the end point of each inner peripheral portions and the end point of a corresponding one of the outer peripheral portions. | 07-30-2009 |
20100248499 | Enhanced efficiency growth processes based on rapid thermal processing of gallium nitride films - Rapid thermal processing of freestanding gallium nitride wafers is used to form semiconductor devices. This high speed process is enabled by the low thermal inertia of the growth substrate and the use of a low thermal inertia susceptor. The use of a low thermal inertia susceptor consisting of, but not limited to, silicon carbide, silicon carbide coated graphite, and/or other platen materials. Infrared (IR) heating is a preferred approach for increasing the temperature of the freestanding gallium nitride films via the susceptor but Radio Frequency (RF) and other methods are also approaches. | 09-30-2010 |
20100291772 | Semiconductor Manufacturing Method - The present invention discloses a semiconductor manufacturing method. The method for activating a p-type impurity doped in a semiconductor element in a chamber comprises that a vacuum pressure is exerted to the chamber first, and the semiconductor element is heated to a preset temperature and the heating is persisted for a preset period to activate the p-type impurity doped in the semiconductor element. | 11-18-2010 |
20100304575 | METHOD AND ARRANGEMENT FOR TEMPERING SIC WAFERS - The invention relates to a method and an arrangement for tempering SiC wafers. The invention is to provide a method and an arrangement for tempering SiC wafers for generating a sufficient silicon partial pressure in the processing chamber and while reducing the operating costs. This is achieved in that a source for at least vaporized or gaseous silicon to increase the silicon partial pressure is connected to the processing chamber ( | 12-02-2010 |
20100304576 | CHAMBER, DEVICE AND METHOD FOR ANNEALING A SEMI-CONDUCTOR MATERIAL OF II-VI TYPE - A chamber for annealing a semi-conductor material of II-VI type having a first area for storing an element of group II of the periodic table and a second area designed to receive the semi-conductor material of II-VI type. The chamber s equipped with a separating partition at the level of an intermediate area. This separating partition is provided with a passage aperture equipped with gas anti-reverse flow means to ensure one-way passage of the element of group II of the periodic table, in vapor phase, from the first area to the second area. This chamber is heated by heating means enabling the two areas to be heated independently. | 12-02-2010 |
20110195583 | WAVELENGTH CONVERTING LAYER FOR A LIGHT EMITTING DEVICE - A layer of wavelength converting material is formed by supplying energy to a particle of wavelength converting material and causing the particle to contact a surface such that the energy causes the particle to adhere to the surface. In some embodiments, the wavelength converting material is a phosphor and the surface is a surface of a semiconductor light emitting device. | 08-11-2011 |
20110294306 | CONTROLLED PROCESS AND RESULTING DEVICE - A method for forming a multi-material thin film includes providing a multi-material donor substrate comprising single crystal silicon and an overlying film comprising GaN or SiC. Energetic particles are introduced through a surface of the multi-material donor substrate to a selected depth within the single crystal silicon. The method includes providing energy to a selected region of the donor substrate to initiate a controlled cleaving action in the donor substrate. Then, a cleaving action is made using a propagating cleave front to free a multi-material film from a remaining portion of the donor substrate, the multi-material film comprising single crystal silicon and the overlying film. | 12-01-2011 |
20120122321 | THERMAL MANAGEMENT AND METHOD FOR LARGE SCALE PROCESSING OF CIS AND/OR CIGS BASED THIN FILMS OVERLYING GLASS SUBSTRATES - thermal management for large scale processing of CIS and/or CIGS based thin film is described. The method includes providing a plurality of substrates, each of the substrates having a copper and indium composite structure. The method also includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5. The method further includes introducing a gaseous species including a selenide species and a carrier gas into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to a second temperature, to at least initiate formation of a copper indium diselenide film. | 05-17-2012 |
20130040466 | LASER PROCESSING METHOD - In a modified region forming step, an element-group formation substrate ( | 02-14-2013 |
20130052838 | ANNEALING METHOD TO REDUCE DEFECTS OF EPITAXIAL FILMS AND EPITAXIAL FILMS FORMED THEREWITH - An annealing method to reduce defects of epitaxial films and epitaxial films formed therewith. The annealing method includes features as follows: apply a pressure ranged from 10 MPa to 6,000 MPa to an epitaxial film grown on a substrate through a vapor phase deposition process and heat the epitaxial film at a temperature lower than the melting temperature of the epitaxial film. Through applying pressure to the epitaxial film, the lattice strain of the epitaxial film is alleviated, and therefore the defect density of the epitaxial film also decreases. | 02-28-2013 |
20140057461 | METHOD FOR MANUFACTURING SILICON CARBIDE SEMICONDUCTOR DEVICE - A method for manufacturing a silicon carbide semiconductor device includes the following steps. A silicon carbide substrate is heated in an atmosphere containing oxygen, so as to form a gate insulating film on and in contact with the silicon carbide substrate. The silicon carbide substrate having the gate insulating film is heated at 1250° C. or more in an atmosphere containing nitrogen and nitrogen monoxide. A value obtained by dividing partial pressure of the nitrogen monoxide by a total of partial pressure of the nitrogen and the partial pressure of the nitrogen monoxide in the second heating step is more than 3% and less than 10%. Accordingly, there can be provided a method for manufacturing a silicon carbide semiconductor device having high mobility. | 02-27-2014 |
20140113459 | METHOD FOR IN-SITU DRY CLEANING, PASSIVATION AND FUNCTIONALIZATION OF GE SEMICONDUCTOR SURFACES - A method for in-situ dry cleaning of a Ge containing semiconductor surface, other than SiGe. The method is conducted in a vacuum chamber. An oxygen monolayer(s) is formed and promotes removal of essentially all carbon from the surface, and serves to both clean and functionalize the surface. The Ge semiconductor surface is then annealed at a temperature below that which would induce dopant diffusion. | 04-24-2014 |
20140315394 | PROCESS FOR SMOOTHING A SURFACE VIA HEAT TREATMENT - The process for smoothing a rough surface of a first substrate made of a semiconductor alloy based on at least two elements chosen from Ga, As, Al, In, P and N is implemented by placing a second substrate facing the first substrate so that the rough surface is placed facing a surface of the second substrate. The first and second substrates are separated by a distance d of at least 10 μm, the facing portions of the two substrates defining a confinement space. The first substrate is then heated so as to partially desorb one of the elements of said alloy and to reach the saturated vapor pressure of this element in the confinement space and to obtain a surface atom mobility that is sufficient to reduce the roughness of the rough surface. | 10-23-2014 |