Class / Patent application number | Description | Number of patent applications / Date published |
438746000 | Utilizing electromagnetic or wave energy | 24 |
20080242104 | SEMICONDUCTOR DEVICE, METHOD OF MANUFACTURING THEREOF AND MASK FOR DIVIDING EXPOSURE - A method of manufacturing a semiconductor device has a first exposure to the photoresist by using a first mask having a first portion of a monitor pattern, a second exposure to the photoresist by using a second mask having a second portion of the monitor pattern so that a first image of the first portion and a second image of the second portion are connected. | 10-02-2008 |
20090191716 | POLYSILICON LAYER REMOVING METHOD AND STORAGE MEDIUM - A polysilicon layer removing method capable of substantially removing etching residue, while improving the shape of an etching boundary is disclosed. The method for removing the polysilicon layer from a beveled portion of a wafer W through wet etching includes hydrophilizing the polysilicon layer, without removing the polysilicon layer from the beveled portion, and supplying an etchant having the mixture of hydrofluoric acid and nitric acid onto the hydrophilized polysilicon layer of the beveled portion, while the wafer is rotated at revolutions enough for flattening an etching boundary. | 07-30-2009 |
20100015810 | SURFACE PROCESSING METHOD AND SURFACE PROCESSING APPARATUS - A processing object | 01-21-2010 |
20100190351 | METHODS FOR REMOVING DIELECTRIC MATERIALS - A method for removing a plurality of dielectric films from a supporting substrate by providing a substrate with a dielectric layer overlying another dielectric layer, contacting the substrate at a first temperature with an acid solution exhibiting a positive etch selectivity at the first temperature, and then contacting the substrate at a second temperature with an acid solution exhibiting a positive etch selectivity at the second temperature. The dielectric layers exhibit different etch rates when etched at the first and second temperatures. The first and second acid solutions may contain phosphoric acid. The first dielectric layer may be silicon nitride and the second dielectric layer may be silicon oxide. Under these conditions, the first temperature may be about 175° C. and the second temperature may be about 155° C. | 07-29-2010 |
20110065281 | METHOD OF RAPID THERMAL TREATMENT USING HIGH ENERGY ELECTROMAGNETIC RADIATION OF A SEMICONDUCTOR SUBSTRATE FOR FORMATION OF EPITAXIAL MATERIALS - A method for fabricating semiconductor devices includes providing a semiconductor substrate having a surface region containing one or more contaminants and having an overlying oxide layer. In an embodiment, the one or more contaminants are at least a carbon species. The method includes processing the surface region using at least a wet processing process to selectively remove the overlying oxide layer and expose the surface region including the one or more contaminants. The method includes subjecting the surface region to a high energy electromagnetic radiation having wavelengths ranging from about 300 to about 800 nanometers for a time period of less than 1 second to increase a temperature of the surface region to greater than 1000 degrees Celsius to remove the one or more contaminants. The method includes removing the high energy electromagnetic radiation to cause a reduction in temperature to about 300 to about 600 degrees Celsius in a time period of less than 1 second. | 03-17-2011 |
20110217848 | PHOTORESIST REMOVING PROCESSOR AND METHODS - A processing chamber successfully removes hardened photoresist via direct infrared radiation onto the wafer, in the presence of an acid such as sulfuric acid, optionally along with an oxidizer such as hydrogen peroxide. The processing chamber includes a fixture for holding and optionally rotating the wafer. An infrared irradiating assembly has infrared lamps outside of the processing chamber positioned to radiate infrared light into the processing chamber. The infrared lamps may be arranged to irradiate substantially the entire surface of a wafer on the rotor. A cooling assembly can be associated with the infrared radiating assembly to provide a quick cool down and avoid over-processing. Photoresist is removed using small amounts of chemical solutions. | 09-08-2011 |
20110263129 | METHOD OF ETCHING SEMICONDUCTOR NANOCRYSTALS - Disclosed is a method of etching semiconductor nanocrystals, which includes dissolving semiconductor nanocrystals in a halogenated solvent containing phosphine so that anisotropic etching of the surface of semiconductor nanocrystals is induced or adding a primary amine to a halogenated solvent containing phosphine and photoexciting semiconductor nanocrystals thus inducing isotropic etching of the surface of the nanocrystals, thereby reproducibly controlling properties of semiconductor nanocrystals including absorption wavelength, emission wavelength, emission intensity, average size, size distribution, shape, and surface state. | 10-27-2011 |
20110263130 | METHODS FOR RF PULSING OF A NARROW GAP CAPACITIVELY COUPLED REACTOR - A method for etching a layer over a substrate in a process chamber, wherein the process chamber including a first electrode and a second electrode and the first electrode is disposed opposite of the second electrode is provided. The method includes placing the substrate on the second electrode and providing an etching gas into the process chamber. The method also includes providing a first radio frequency (RF) signal into the process chamber and modulating the first RF signal. The method further includes providing a second RF signal into the process chamber and modulating the second RF signal. | 10-27-2011 |
20110294302 | Method for Fast Macropore Etching in n-Type Silicon - Method for the electrochemical etching of macropores in n-type silicon wafers, using illumination of the wafer reverse sides and using an aqueous electrolyte, characterized in that the electrolyte is an aqueous acetic acid solution with the composition of H | 12-01-2011 |
20120015523 | SYSTEMS AND METHODS FOR ETCHING SILICON NITRIDE - To remove a silicon nitride layer on a silicon wafer, phosphoric acid is applied onto the wafer in a sealed chamber. The phosphoric acid may be atomized and sprayed onto the wafer as a mist or aerosol. The wafer is heated to a processing temperature and then maintained at or near the processing temperature with a coating of phosphoric acid on the wafer. The heating and applying phosphoric acid are then stopped, the wafer is cooled, and then removed from the process chamber. An infrared radiating assembly above the processing chamber may project infrared radiation into the chamber to heat the wafer. The wafer may be cooled by optionally spraying de-ionized water and/or nitrogen gas onto the workpiece. A cooling assembly may be used to cool an infrared radiating assembly. Silicon nitride is rapidly removed using very small amounts of phosphoric acid, and without the risks and disadvantages of conventional hot phosphoric bath techniques. | 01-19-2012 |
20120015524 | Process for Enhancing Solubility and Reaction Rates In Supercritical Fluids - Processes for enhancing solubility and the reaction rates in supercritical fluids are provided. In preferred embodiments, such processes provide for the uniform and precise deposition of metal-containing films on semiconductor substrates as well as the uniform and precise removal of materials from such substrates. In one embodiment, the process includes, providing a supercritical fluid containing at least one reactant, the supercritical fluid being maintained at above its critical point, exposing at least a portion of the surface of the semiconductor substrate to the supercritical fluid, applying acoustic energy, and reacting the at least one reactant to cause a change in at least a portion of the surface of the semiconductor substrate. | 01-19-2012 |
20120238104 | ETCHING METHOD, METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE, AND ETCHING DEVICE - An etching method includes: applying a radiation to an etching aqueous solution; and etching a material to be etched by using the etching aqueous solution irradiated with the radiation. | 09-20-2012 |
20120282781 | METHODS FOR REMOVING DIELECTRIC MATERIALS - A method for removing a plurality of dielectric materials from a supporting substrate by providing a substrate with a plurality of materials, contacting the substrate at a first temperature with a solution to more quickly remove a first dielectric material than a second dielectric materials at the first temperature, and then contacting the substrate at a second temperature with a solution to more quickly remove the second dielectric material than the first dielectric material at the second temperature. Thus, the dielectric materials exhibit different etch rates when etched at the first and second temperatures. The solutions to which the first and second dielectric materials are exposed may contain phosphoric acid. The first dielectric material may be silicon nitride and the second dielectric material may be silicon oxide. Under these conditions, the first temperature may be about 175° C., and the second temperature may be about 155° C. | 11-08-2012 |
20130005153 | Process for Enhancing Solubility and Reaction Rates In Supercritical Fluids - Processes for enhancing solubility and the reaction rates in supercritical fluids are provided. In preferred embodiments, such processes provide for the uniform and precise deposition of metal-containing films on semiconductor substrates as well as the uniform and precise removal of materials from such substrates. In one embodiment, the process includes, providing a supercritical fluid containing at least one reactant, the supercritical fluid being maintained at above its critical point, exposing at least a portion of the surface of the semiconductor substrate to the supercritical fluid, applying acoustic energy, and reacting the at least one reactant to cause a change in at least a portion of the surface of the semiconductor substrate. | 01-03-2013 |
20130196513 | PROCESSING METHOD - Disclosed is a processing method which can achieve a high processing rate, and is capable of making a surface smooth, In order to achieve this an SiC substrate is arranged in a potassium hydroxide solution containing hydrogen peroxide, and ultraviolent radiation is irradiated on the surface of the SiC substrate. An SiO2 layer is formed on the surface of the SiC substrate due to the irradiation of ultraviolet radiation, and this SiO2 layer is chemically removed by means of the potassium hydroxide solution, and also removed by a synthetic quartz surface plate | 08-01-2013 |
20130224962 | NON-CONTACT SUBSTRATE PROCESSING - Embodiments of the present invention provide apparatus and methods for supporting, positioning or rotating a semiconductor substrate during processing. One embodiment of the present invention provides a method for processing a substrate comprising positioning the substrate on a substrate receiving surface of a susceptor, and rotating the susceptor and the substrate by delivering flow of fluid from one or more rotating ports. | 08-29-2013 |
20130273744 | SUBSTRATE PROCESSING METHOD AND SUBSTRATE PROCESSING APPARATUS - A method of processing a substrate is disclosed. The method uses a substrate processing apparatus including a processing tank that retains a processing liquid and that accommodates a workpiece substrate, a recirculation system recirculating the processing liquid into the processing tank by supplying the processing liquid heated by a recirculation system heater from a lower portion of the processing tank and collecting the processing liquid from an upper portion of the processing tank, a plurality of heaters distributed on an upper portion and a lower portion of the processing tank to heat the processing liquid. The method includes setting a first temperature setpoint to a heater located on the upper portion of the processing tank, and setting a second temperature setpoint lower than the first temperature setpoint to a heater located on the lower portion of the processing tank. | 10-17-2013 |
20130288484 | USE OF SURFACTANTS HAVING AT LEAST THREE SHORT-CHAIN PERFLUORINATED GROUPS RF FOR MANUFACTURING INTEGRATED CIRCUITS HAVING PATTERNS WITH LINE-SPACE DIMENSIONS BELOW 50 NM - The use of surfactants A, the 1% by weight aqueous solutions of which exhibit a static surface tension <25 mN/m, the said surfactants A containing at least three short-chain perfluorinated groups Rf selected from the group consisting of trifluoromethyl, pentafluoroethyl, 1-heptafluoropropyl, 2-heptafluoropropyl, heptafluoroisopropyl, and pentafluorosulfanyl; for manufacturing integrated circuits comprising patterns having line-space dimensions below 50 nm and aspect ratios >3; and a photolithographic process making use of the surfactants A in immersion photoresist layers, photoresist layers exposed to actinic radiation, developer solutions for the exposed photoresist layers and/or in chemical rinse solutions for developed patterned photoresists comprising patterns having line-space dimensions below 50 nm and aspect ratios >3. By way of the surfactants A, pattern collapse is prevented, line edge roughness is reduced, watermark defects are prevented and removed and defects are reduced by removing particles. | 10-31-2013 |
20140213063 | METHOD AND SYSTEM FOR ENERGIZED AND PRESSURIZED LIQUIDS FOR CLEANING/ETCHING APPLICATIONS IN SEMICONDUCTOR MANUFACTURING - A wet chemical processing method and apparatus for use in semiconductor manufacturing and in other applications, is provided. The method and apparatus provide for energizing a processing liquid such as a cleaning or etching liquid using ultrasonic, megasonic or other energy waves or by combining the liquid with a pressurized gas to form a pressurized spray, or using both. The energized, pressurized fluid is directed to a substrate surface using a fluid delivery system and overcomes any surface tensions associated with liquids, solids, or air and enables the processing liquid to completely fill any holes such as contact holes, via holes or trenches, formed on the semiconductor substrate. | 07-31-2014 |
20140242805 | LASER-ENHANCED CHEMICAL ETCHING OF NANOTIPS - A method for sharpening a nanotip involving a laser-enhanced chemical etching is provided. The method includes immersing a nanotip in an etchant solution. The nanotip includes a base and an apex, the apex having a diameter smaller than a diameter of the base. The method also includes irradiating the nanotip with laser fluence to establish a temperature gradient in the nanotip along a direction from the apex to the base of the nanotip such that the apex and base are etched at different rates. | 08-28-2014 |
20140248781 | SEMI-AQUEOUS POLYMER REMOVAL COMPOSITIONS WITH ENHANCED COMPATIBILITY TO COPPER, TUNGSTEN, AND POROUS LOW-K DIELECTRICS - A composition is provided that is effective for removing post etch treatment (PET) polymeric films and photoresist from semiconductor substrates. The composition exhibits excellent polymer film removal capability while maintaining compatibility with copper and low-κ dielectrics and contains water, ethylene glycol, a glycol ether solvent, morpholinopropylamine and a corrosion inhibiting compound and optionally one or more metal ion chelating agent, one or more other polar organic solvent, one or more tertiary amine, one or more aluminum corrosion inhibition agent, and one or more surfactant. | 09-04-2014 |
20140248782 | SUBSTRATE PROCESSING METHOD - A substrate processing method includes rotating a substrate about a central axis thereof; starting irradiation of a surface of the substrate with soft X-rays; simultaneously with or after starting the irradiation of the surface of the substrate with the soft X-rays, starting supply of pure water onto the surface of the substrate; stopping the supply of the pure water onto the surface of the substrate; and then stopping the irradiation of the surface of the substrate with the soft X-rays. | 09-04-2014 |
20140256150 | WAFER PROCESSING METHOD - A wafer processing method for forming a via hole in a wafer. The wafer processing method includes a filament forming step of applying a pulsed laser beam to the wafer, the pulsed laser beam having a transmission wavelength to the wafer, in the condition where the focal point of the pulsed laser beam is set inside the wafer in a subject area where the via hole is to be formed, thereby forming an amorphous filament inside the wafer in the subject area, and an etching step of etching the amorphous filament formed inside the wafer by using an etching agent to thereby form the via hole inside the wafer. | 09-11-2014 |
20150064928 | PHOTORESIST REMOVAL - Among other things, one or more systems and techniques for removing a photoresist from a semiconductor wafer are provided. The photoresist is formed over the semiconductor wafer for patterning or material deposition. Once completed, the photoresist is removed in a manner that mitigates damage to the semiconductor wafer or structures formed thereon. In an embodiment, trioxygen liquid is supplied to the photoresist. The trioxygen liquid is activated using an activator, such as an ultraviolet activator or a hydrogen peroxide activator, to create activated trioxygen liquid used to remove the photoresist. In an embodiment, the activation of the trioxygen liquid results in free radicals that aid in removing the photoresist. In an embodiment, an initial photoresist strip, such as using a sulfuric acid hydrogen peroxide mixture, is performed to remove a first portion of the photoresist, and the activated trioxygen liquid is used to remove a second portion of the photoresist. | 03-05-2015 |