Class / Patent application number | Description | Number of patent applications / Date published |
438608000 | Oxidic conductor (e.g., indium tin oxide, etc.) | 28 |
20090170304 | METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - A method of manufacturing a semiconductor device is provided, which can reduce the contact resistance of an ohmic electrode to a p-type nitride semiconductor layer and can achieve long-term stable operation. In forming, in an electrode forming step, a p-type ohmic electrode of a metal film by successive lamination of a Pd film which is a first p-type ohmic electrode and a Ta film which is a second p-type ohmic electrode on a p-type GaN contact layer, the metal film is formed to include an oxygen atom. In the presence of an oxygen atom in the metal film, then in a heat-treatment step, the p-type ohmic electrode of the metal film is heat-treated in an atmosphere that contains no oxygen atom-containing gas. | 07-02-2009 |
20090239371 | Method For Applying Selectively A Layer To A Structured Substrate By The Usage Of A Temperature Gradient In The Substrate - A semiconductor wafer ( | 09-24-2009 |
20100190331 | System for Depositing a Film Onto a Substrate Using a Low Vapor Pressure Gas Precursor - A method for depositing a film onto a substrate is provided. The substrate is contained within a reactor vessel at a pressure of from about 0.1 millitorr to about 100 millitorr. The method comprises subjecting the substrate to a reaction cycle comprising i) supplying to the reactor vessel a gas precursor at a temperature of from about 20° C. to about 150° C. and a vapor pressure of from about 0.1 torr to about 100 torr, wherein the gas precursor comprises at least one organo-metallic compound; and ii) supplying to the reactor vessel a purge gas, an oxidizing gas, or combinations thereof. | 07-29-2010 |
20100323512 | METAL OXIDE FILM FORMATION METHOD AND APPARATUS - [Problems] There is provided a metal oxide film forming method capable of controlling a film thickness of a metal oxide even if the metal oxide is subject to a self-limited thickness. | 12-23-2010 |
20110008955 | METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE AND SUBSTRATE PROCESSING APPARATUS - A method of manufacturing a semiconductor device including alternately repeating a process of forming a first metal oxide film including a first metal element and a process of forming a second metal oxide film including a second metal element on a substrate accommodated in a processing chamber, so as to form a third metal oxide film including the first and second metal elements with a predetermined composition ratio on the substrate. One of the first and second metal elements of the third metal oxide film has a concentration higher than a concentration of the other, and one of the first and second metal oxide films including the higher-concentration metal element is formed in a chemical vapor deposition (CVD) mode or an atomic layer deposition (ALD) saturation mode, and the other of the first and second metal oxide films is formed in an ALD unsaturation mode. | 01-13-2011 |
20110097890 | METHOD OF FABRICATING SEMICONDUCTOR DEVICE - A method of fabricating a semiconductor device according to an embodiment includes: forming a precursor film containing therein a predetermined metallic element on a surface of a recess portion formed in an insulating film on a semiconductor substrate; forming a wiring formation film on the precursor film; performing a heat treatment in an oxidation ambient atmosphere to cause the precursor film and the insulating film to react with each other, thereby forming a self-formed barrier film containing a compound, containing therein the predetermined metallic element and a constituent element of the insulating film, as a basic constituent in a boundary surface between the precursor film and the insulating film, and moving the predetermined metallic element unreacted into the wiring formation film through diffusion to cause the predetermined metallic element unreacted to react with oxygen contained in the oxidation ambient atmosphere on a surface of the wiring formation film, thereby precipitating an unreacted metallic oxide film including the predetermined metallic element; forming the same material as that of the wiring formation film on the wiring formation film after the unreacted metallic oxide film is removed; and flattening the wiring formation film until a portion of the insulating film located outside the recess portion is exposed. | 04-28-2011 |
20120028456 | ELECTRODE STUCTURE, SEMICONDUCTOR ELEMENT, AND METHODS OF MANUFACTURING THE SAME - According to the present invention, there is provided an electrode structure which includes: a nitride semiconductor layer; an electrode provided over the nitride semiconductor layer; and an electrode protective film provided over the electrode, wherein the nitride semiconductor layer contains a metal nitride containing Nb, Hf or Zr as a constitutive element, the electrode has a portion having a metal oxide containing Ti or V as a constitutive element formed therein, and the electrode protective film covers at least a portion of the electrode, and contains a protective layer having Au or Pt as a constitutive element. | 02-02-2012 |
20120135597 | METHOD OF FORMING TiO2 ARRAY USING ZnO TEMPLATE - Provided is a method of forming a method of forming a titanium dioxide (TiO | 05-31-2012 |
20120302055 | DEPOSITION AND REDUCTION OF MIXED METAL OXIDE THIN FILMS - In one aspect, methods of forming mixed metal thin films comprising at least two different metals are provided. In some embodiments, a mixed metal oxide thin film is formed by atomic layer deposition and subsequently reduced to a mixed metal thin film. Reduction may take place, for example, in a hydrogen atmosphere. The presence of two or more metals in the mixed metal oxide allows for reduction at a lower reduction temperature than the reduction temperature of the individual oxides of the metals in the mixed metal oxide film. | 11-29-2012 |
20120322254 | METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE AND SUBSTRATE PROCESSING APPARATUS - A method of manufacturing a semiconductor device of the present invention includes a first step of forming a metal oxide film containing at least one or more kinds of elements selected from the group consisting of hafnium, yttrium, lanthanum, aluminium, zirconium, strontium, titanium, barium, tantalum, niobium, on a substrate having a metal thin film formed on the surface, at a first temperature allowing no oxidization of the metal thin film to occur, and allowing the metal oxide film to be set in an amorphous state; and a second step of forming a metal oxide film containing at least one or more kinds of elements selected from the group consisting of hafnium, yttrium, lanthanum, aluminium, zirconium, strontium, titanium, barium, tantalum, niobium on the metal oxide film formed in the first step, up to a target film thickness, at a second temperature exceeding the first temperature. | 12-20-2012 |
20130078796 | PROCESS FOR MAKING A PATTERNED METAL OXIDE STRUCTURE - There is provided a process for making a patterned metal oxide structure comprising the step of heating an imprint structure comprising a polymerized organometallic compound to remove organic material and thereby form the patterned metal oxide structure, wherein the imprint structure is formed by polymerizing a resist mixture comprising at least one olefinic polymerizable compound and a polymerizable organometallic compound having, e.g., at least one carboxylate of Formula 1: | 03-28-2013 |
20130130491 | DISPLAY PANEL MANUFACTURING METHOD, DISPLAY PANEL, AND DISPLAY APPARATUS - A method of manufacturing a display panel having a display part and a terminal part each formed on a different area on a TFT substrate, comprising: a step of forming the display part on the TFT substrate; a step of forming a conductive layer of a conductive metal oxide or a metal on an area where the terminal part is to be formed; a step of forming a chemical vapor deposition layer of an inorganic compound by a chemical vapor deposition method so that the chemical vapor deposition layer covers the display part and comes into contact at least with an upper surface of the conductive layer and so that the upper surface of the conductive layer alters; and a step of removing a portion of the chemical vapor deposition layer on the conductive layer. | 05-23-2013 |
20130330920 | METHOD AND APPARATUS FOR SUBSTRATE PRECLEAN WITH HYDROGEN CONTAINING HIGH FREQUENCY RF PLASMA - A high-frequency, hydrogen-based radio-frequency (RF) plasma is used to reduce a metal oxide and other contaminant disposed in an aperture that is formed in an ultra-low k dielectric material. Because the frequency of the plasma is at least about 40 MHz and the primary gas in the plasma is hydrogen, metal oxide can be advantageously removed without damaging the dielectric material. | 12-12-2013 |
20150056798 | METHODS OF FORMING METAL OXIDE - Some embodiments include methods of forming memory cells. Metal oxide may be deposited over a first electrode, with the deposited metal oxide having a relatively low degree of crystallinity. The degree of crystallinity within the metal oxide may be increased after the deposition of the metal oxide. A dielectric material may be formed over the metal oxide, and a second electrode may be formed over the dielectric material. The degree of crystallinity may be increased with a thermal treatment. The thermal treatment may be conducted before, during, and/or after formation of the dielectric material. | 02-26-2015 |
20150318419 | CONDUCTIVE PASTE USED FOR SOLAR CELL ELECTRODES AND METHOD OF MANUFACTURING THE SOLAR CELL ELECTRODES - A conductive paste used for a solar cell electrode comprising, (i) 60 wt % to 95 wt % of a conductive powder; (ii) 0.1 wt % to 5.0 wt % of a lead-tellurium-oxide powder, comprising 20 wt % to 60 wt % of PbO and 20 wt % to 60 wt % of TeO | 11-05-2015 |
20160064275 | Selective Deposition With Alcohol Selective Reduction And Protection - Methods of selectively depositing a metal selectively onto a metal surface relative to a dielectric surface. Methods include reducing a metal oxide surface to a metal surface and protecting a dielectric surface to minimize deposition thereon. | 03-03-2016 |
20160148839 | USE OF AN INHIBITOR MOLECULE IN CHEMICAL VAPOR DEPOSITION TO AFFORD DEPOSITION OF COPPER ON A METAL SUBSTRATE WITH NO DEPOSITION ON ADJACENT SIO2 SUBSTRATE - Provided herein are methods for selectively forming layers of metal films on one portion of a substrate while leaving adjacent portions of the substrate uncoated. The methods provide for selectively depositing metal films on a conductive surface, such as ruthenium oxide, disposed on or near an insulating portion of the substrate, such as a silicon dioxide (SiO | 05-26-2016 |
20160196980 | METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE | 07-07-2016 |
438609000 | Transparent conductor | 10 |
20090221141 | METHOD FOR PATTERNING CRYSTALLINE INDIUM TIN OXIDE USING FEMTOSECOND LASER - A method for patterning crystalline indium tin oxide (ITO) using femtosecond laser is disclosed, which comprises steps of: (a) providing a substrate with an amorphous ITO layer thereon; (b) transferring the amorphous ITO layer in a predetermined area into a crystalline ITO layer by emitting a femtosecond laser beam to the amorphous ITO layer in the predetermined area; and (c) removing the amorphous ITO layer on the substrate using an etching solution. | 09-03-2009 |
20100173489 | METHOD FOR MANUFACTURING LOWER SUBSTRATE OF LIQUID CRYSTAL DISPLAY DEVICE - A method for manufacturing a lower substrate of a liquid crystal display device is disclosed. The method comprises the steps of: (a) forming a patterned first metal layer, a first insulating layer, a patterned second metal layer and a second insulating layer on a substrate in sequence; (b) coating a transparent electrode layer and a negative photo resist layer on the second insulating layer; (c) irradiating the photo resist layer from the second surface of the substrate; (d) irradiating the photo resist layer from the first surface of the substrate, wherein part of the photo resist layer superposed over the second metal layer is covered by a mask; and (e) removing un-reacted photo resist and patterning the transparent electrode. | 07-08-2010 |
20110104885 | METHOD FOR TREATING A METAL OXIDE LAYER - The invention relates to a method for treating a metal oxide layer deposited on a substrate. The method comprises the step of applying a substantially atmospheric plasma process at a relatively low temperature. Preferably, the temperature during the plasma process is lower than approximately 180° C. Further, the atmospheric plasma process can be applied in a plasma chamber comprising H | 05-05-2011 |
20110165771 | METHOD OF FORMING VIAS IN SILICON CARBIDE AND RESULTING DEVICES AND CIRCUITS - A method of fabricating an integrated circuit on a silicon carbide substrate is disclosed that eliminates wire bonding. The method includes fabricating a semiconductor device in epitaxial layers on a surface of a silicon carbide substrate and with at least one metal contact for the device on the uppermost surface of the epitaxial layer. The opposite surface of the substrate is then ground and polished until it is substantially transparent. The polished surface of the silicon carbide substrate is then masked to define a predetermined location for at least one via that is opposite the device metal contact and etching the desired via in steps. The first etching step etches through the silicon carbide substrate at the desired masked location until the etch reaches the epitaxial layer. The second etching step etches through the epitaxial layer to the device contacts. Finally, the via is metallized. | 07-07-2011 |
20120100710 | METHOD AND APPARATUS FOR MANUFACTURING SEMICONDUCTOR DEVICE - A method and apparatus for manufacturing a semiconductor device is disclosed, which is capable of realizing an extension of a cleaning cycle for a processing chamber, the method comprising preheating a substrate; placing the preheated substrate onto a substrate-supporting unit provided in a susceptor while the preheated substrate is maintained at a predetermined height from an upper surface of the susceptor provided in a processing chamber; and forming a thin film on the preheated substrate, wherein a temperature of the preheated substrate is higher than a processing temperature for forming the thin film in the processing chamber. | 04-26-2012 |
20130005135 | PLANAR PATTERNED TRANSPARENT CONTACT, DEVICES WITH PLANAR PATTERNED TRANSPARENT CONTACTS, AND/OR METHODS OF MAKING THE SAME - Certain examples relate to improved methods for making patterned substantially transparent contact films, and contact films made by such methods. In certain cases, the contact films may be patterned and substantially planar. Thus, the contact films may be patterned without intentionally removing any material from the layers and/or film, such as may be required by photolithography. In certain example embodiments, an oxygen exchanging system comprising at least two layers may be deposited on a substrate, and the layers may be selectively exposed to heat and/or energy to facilitate the transfer of oxygen ions or atoms from the layer with a higher enthalpy of formation to a layer with a lower enthalpy of formation. In certain cases, the oxygen transfer may permit the conductivity of selective portions of the film to be changed. This advantageously may result in a planar contact film that is patterned with respect to conductivity and/or resistivity. | 01-03-2013 |
20130183822 | THIN FILM TRANSISTOR AND METHOD OF MANUFACTURING TRENCH, METAL WIRE, AND THIN FILM TRANSISTOR ARRAY PANEL - The present invention relates to a method for forming a trench that can remove residual particles in a trench using a metal mask, a method for forming a metal wire, and a method for manufacturing a thin film transistor array panel. The method for forming a trench includes: forming a first insulating layer on a substrate; forming a first metal layer on the first insulating layer; forming an opening by patterning the first metal layer; forming a trench by dry-etching the first insulating layer using the patterned first metal layer as a mask; and wet-etching the substrate. The dry-etching is performed using a main etching gas and a first auxiliary etching gas, and the first auxiliary etching gas includes argon. | 07-18-2013 |
20140134838 | METHODS OF ANNEALING A CONDUCTIVE TRANSPARENT OXIDE FILM LAYER FOR USE IN A THIN FILM PHOTOVOLTAIC DEVICE - Methods are generally provided for forming a conductive oxide layer on a substrate by sputtering a target to deposit a transparent conductive oxide layer (e.g., comprising comprises cadmium, tin, and oxygen) on the substrate; positioning an anneal surface in close proximity to the transparent conductive oxide layer (e.g., about 3 cm or less); and, annealing the transparent conductive oxide layer while the anneal surface is in close proximity to the transparent conductive oxide layer (e.g., at an anneal temperature of about 500° C. to about 700° C.) to create a localized cadmium vapor between the transparent conductive oxide layer and the anneal surface. The anneal surface can include a material reactive with oxygen at the anneal temperature. Apparatus is also provided for annealing a thin film layer on a substrate. | 05-15-2014 |
20160086981 | FABRICATION METHODS OF TRANSPARENT CONDUCTIVE ELECTRODE AND ARRAY SUBSTRATE - Fabrication methods of a transparent conductive electrode ( | 03-24-2016 |
20160126098 | SYSTEM AND APPARATUS FOR EFFICIENT DEPOSITION OF TRANSPARENT CONDUCTIVE OXIDE - A substrate processing system that includes a substrate processing chamber having one or more sidewalls that at least partially define a substrate processing region and extend away from a bottom wall of the substrate processing chamber at an obtuse angle; a source material holder configured to hold a source material within the substrate processing region; a plasma gun operatively coupled to introduce a plasma beam into the substrate processing region; one or more magnets operatively arranged to generate a magnetic field that guides the plasma beam to the source material holder; and a substrate carrier configured to hold one or more substrates within the substrate processing region. | 05-05-2016 |