Class / Patent application number | Description | Number of patent applications / Date published |
438548000 | Plural dopants simultaneously in plural regions | 7 |
20100081264 | METHODS FOR SIMULTANEOUSLY FORMING N-TYPE AND P-TYPE DOPED REGIONS USING NON-CONTACT PRINTING PROCESSES - Methods for simultaneously forming doped regions of opposite conductivity using non-contact printing processes are provided. In one exemplary embodiment, a method comprises the steps of depositing a first liquid dopant comprising first conductivity-determining type dopant elements overlying a first region of a semiconductor material and depositing a second liquid dopant comprising second conductivity-determining type dopant elements overlying a second region of the semiconductor material. The first conductivity-determining type dopant elements and the second conductivity-determining type dopant elements are of opposite conductivity. At least a portion of the first conductivity-determining type dopant elements and at least a portion of the second conductivity-determining type dopant elements are simultaneously diffused into the first region and into the second region, respectively. | 04-01-2010 |
20100167511 | METHODS FOR SIMULTANEOUSLY FORMING DOPED REGIONS HAVING DIFFERENT CONDUCTIVITY-DETERMINING TYPE ELEMENT PROFILES - Method for simultaneously forming doped regions having different conductivity-determining type elements profiles are provided. In one exemplary embodiment, a method comprises the steps of diffusing first conductivity-determining type elements into a first region of a semiconductor material from a first dopant to form a doped first region. Second conductivity-determining type elements are simultaneously diffused into a second region of the semiconductor material from a second dopant to form a doped second region. The first conductivity-determining type elements are of the same conductivity-determining type as the second conductivity-determining type elements. The doped first region has a dopant profile that is different from a dopant profile of the doped second region. | 07-01-2010 |
20120129327 | METHOD OF FABRICATING SEMICONDUCTOR DEVICE USING A HARD MASK AND DIFFUSION - Provided is a method that can include forming a gate dielectric layer, a first diffusion layer, and a hard mask layer on a substrate defined to include first and second spaced apart regions, forming a photoresist pattern on the hard mask layer in the first region and exposing the hard mask layer on the second region, removing the exposed hard mask layer on the second region and the first diffusion layer on the second region to expose the gate dielectric layer on the second region, removing the photoresist pattern, forming a second diffusion layer on uppermost surfaces of the first and second regions, and performing a heat treatment process to diffuse a first diffusion material included in the first diffusion layer and a second diffusion material included in the second diffusion layer. | 05-24-2012 |
20130102137 | DOPING METHOD IN 3D SEMICONDUCTOR DEVICE - The present disclosure provides a method to dope fins of a semiconductor device. The method includes forming a first doping film on a first fin and forming a second doping film on the second fin. The first and second doping films include a different dopant type (e.g., n-type and p-type). An anneal process is performed which drives a first dopant from the first doping film into the first fin and drives a second dopant from the second doping film into the second fin. In an embodiment, the first and second dopants are driven into the sidewall of the respective fin. | 04-25-2013 |
20140087549 | METHOD FOR FORMING PATTERNED DOPING REGIONS - A method for forming doping regions is disclosed, including providing a substrate, forming a first-type doping material on the substrate and forming a second-type doping material on the substrate, wherein the first-type doping material is separated from the second-type doping material by a gap; forming a covering layer to cover the substrate, the first-type doping material and the second-type doping material; and performing a thermal diffusion process to diffuse the first-type doping material and the second-type doping material into the substrate. | 03-27-2014 |
20140308805 | Method of In-Line Diffusion for Solar Cells - A method is provided for the simultaneous diffusion of dopants of different types on respective sides of a solar cell wafer in a single stage process. The dopants are applied to respective sides of the wafer in wet chemical form preferably by pad printing. The doping materials can be applied to the entire wafer surface or effective area thereof, or can be applied in a pattern to suit the intended solar cell configuration. In a typical embodiment, the dopants are boron and phosphorus. | 10-16-2014 |
20160379826 | CAPPED ALD FILMS FOR DOPING FIN-SHAPED CHANNEL REGIONS OF 3-D IC TRANSISTORS - Disclosed herein are methods of doping a fin-shaped channel region of a partially fabricated 3-D transistor on a semiconductor substrate. The methods may include forming a multi-layer dopant-containing film on the substrate, forming a capping film comprising a silicon carbide material, a silicon nitride material, a silicon carbonitride material, or a combination thereof, the capping film located such that the multi-layer dopant-containing film is located in between the substrate and the capping film, and driving dopant from the dopant-containing film into the fin-shaped channel region. Multiple dopant-containing layers of the film may be formed by an atomic layer deposition process which includes adsorbing a dopant-containing film precursor such that it forms an adsorption-limited layer on the substrate and reacting adsorbed dopant-containing film precursor. Also disclosed herein are multi-station substrate processing apparatuses for doping the fin-shaped channel regions of partially fabricated 3-D transistors. | 12-29-2016 |