Class / Patent application number | Description | Number of patent applications / Date published |
438306000 | Plural doping steps | 37 |
20080293207 | INTEGRATION OF NON-VOLATILE CHARGE TRAP MEMORY DEVICES AND LOGIC CMOS DEVICES - A semiconductor structure and method to form the same. The semiconductor structure includes a substrate having a non-volatile charge trap memory device disposed on a first region and a logic device disposed on a second region. A charge trap dielectric stack may be formed subsequent to forming wells and channels of the logic device. HF pre-cleans and SC1 cleans may be avoided to improve the quality of a blocking layer of the non-volatile charge trap memory device. The blocking layer may be thermally reoxidized or nitridized during a thermal oxidation or nitridation of a logic MOS gate insulator layer to densify the blocking layer. A multi-layered liner may be utilized to first offset a source and drain implant in a high voltage logic device and also block silicidation of the nonvolatile charge trap memory device. | 11-27-2008 |
20080299737 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A manufacturing method of a semiconductor device which can decrease the degradation of an element due to plasma in the LDD formation process is provided. The degradation of an element due to plasma is decreased by forming an element having an LDD structure according to a manufacturing method of a semiconductor device using a hard mask. Covering the substrate by an electrically conductive film allover, the density of electric charge accumulated in a gate electrode in the plasma process such as anisotropic etching can be reduced, and the degradation due to plasma process can be reduced. | 12-04-2008 |
20090004805 | Damage Implantation of a Cap Layer - A method for fabricating a transistor on a semiconductor wafer includes providing a partial transistor containing a gate stack, extension regions, and source/drain sidewalls. The method also includes performing a source/drain implant of the semiconductor wafer, forming a cap layer over the semiconductor wafer, and performing a source/drain anneal. In addition, the method includes performing a damage implant of the cap layer and removing the cap layer over the semiconductor wafer. | 01-01-2009 |
20090004806 | NOISE REDUCTION IN SEMICONDUCTOR DEVICE USING COUNTER-DOPING - One or more embodiments describe a method of fabricating a silicon based metal oxide semiconductor device, comprising: implanting a first dopant into a first partial completion of the device, the first dopant comprising a first noise reducing species; and implanting a second dopant into a second partial completion of the device, the second dopant and the first dopant being opposite conductivity types. | 01-01-2009 |
20090047768 | FORMATION OF SHALLOW JUNCTIONS BY DIFFUSION FROM A DIELECTRIC DOPED BY CLUSTER OR MOLECULAR ION BEAMS - A process for forming diffused region less than 20 nanometers deep with an average doping dose above 10 | 02-19-2009 |
20090068811 | SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A semiconductor device is disclosed that comprises a high breakdown voltage MOSFET. The MOSFET includes a source region of a second conductivity type and a drain region of the second conductivity type formed apart from each other in a well region of a first conductivity type, a channel region formed between the source region and the drain region, a gate insulation film formed on the channel region, a LOCOS oxide film having a greater film thickness than the gate insulation film and formed adjacent to the gate insulation film, and a gate electrode formed across the gate insulation film and the LOCOS oxide film. | 03-12-2009 |
20090209079 | METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A method for manufacturing a semiconductor device includes forming a diffusion layer on a silicon substrate by doping an impurity of a first conductivity type into a region of a second conductivity type opposite to the first conductivity type and performing a heat treatment; implanting nitrogen or fluorine ions into the diffusion layer; and irradiating carbon dioxide gas laser light to the diffusion layer after the implanting. | 08-20-2009 |
20090221124 | Manufacturing method of semiconductor device - The method includes the steps of forming a gate insulating film over a first conductivity-type layer surface of a semiconductor substrate, implanting a second conductivity-type impurity into the first conductivity-type layer located on both sides adjacent to a conductive layer forming predetermined region, forming a conductive layer over the gate insulating film surface located to cover the first conductivity-type layer surface with no impurity implanted therein and the partial regions surface of the pair of low-concentration diffusion layers adjacent to the first conductivity-type layer, implanting a second conductivity-type impurity into regions uncovered with the conductive layer, of the pair of low-concentration diffusion layers to contact source and drain electrodes, and forming slits to divide regions lying on the sides of the high-concentration diffusion layers, each of which is provided to contact at least the drain electrode of the conductive layer located over the low-concentration diffusion layers, into two respectively. | 09-03-2009 |
20090280615 | METHOD OF FORMING A CONDUCTIVE STRUCTURE IN A SEMICONDUCTOR DEVICEAND METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE - A method of forming a conductive structure in a semiconductor device includes forming a conductive layer on a substrate, forming a conductive layer pattern on the substrate by patterning the conductive layer, forming an oxide layer on the substrate and a portion of the conductive layer, and forming a capping layer on the oxide layer and the conductive layer pattern. | 11-12-2009 |
20090325358 | METHOD OF REDUCING DISLOCATION-INDUCED LEAKAGE IN A STRAINED-LAYER FIELD-EFFECT TRANSISTOR - A structure and method of fabricating a semiconductor field-effect transistor (MOSFET) such as a strained Si n-MOSFET where dislocation or crystal defects spanning from source to drain is partially occupied by heavy p-type dopants. Preferably, the strained-layer n-MOSFET includes a Si, SiGe or SiGeC multi-layer structure having, in the region between source and drain, impurity atoms that preferentially occupy the dislocation sites so as to prevent shorting of source and drain via dopant diffusion along the dislocation. Advantageously, devices formed as a result of the invention are immune to dislocation-related failures, and therefore are more robust to processing and material variations. The invention thus relaxes the requirement for reducing the threading dislocation density in SiGe buffers, since the devices will be operable despite the presence of a finite number of dislocations. | 12-31-2009 |
20100029053 | METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - A method of manufacturing a semiconductor device for forming an n-type FET has forming an isolation insulating film on a surface of the semiconductor substrate consisting primarily of silicon, the isolation insulating film partitioning a device region of the semiconductor substrate; forming a gate insulating film on the device region of the semiconductor substrate; forming a gate electrode on the gate insulating film; amorphizing regions to be source/drain contact regions adjacent to the gate electrode, of the device region, by ion implanting of one of a carbon cluster ion, a carbon monomer ion and a molecular ion containing carbon into the regions to be the source/drain contact regions; forming an impurity-implanted layer to be the source/drain contact regions by ion implanting at least one of arsenic and phosphorus as an n-type impurity into the amorphized regions; and activating the carbon and the impurity in the impurity-implanted layer by heat treatment. | 02-04-2010 |
20100210086 | Junction Profile Engineering Using Staged Thermal Annealing - An annealing method includes performing an activation annealing on a wafer with a peak temperature of greater than about 1200° C., wherein the activation annealing has a first duration; and performing a defect-recovery annealing on the wafer at a defect-recovery temperature lower than the peak temperature for a second duration. The second duration is longer than the first duration. The annealing method includes no additional annealing steps at temperatures greater than about 1200° C., and no room-temperature cooling step exists between the activation annealing and the defect-recovery annealing. | 08-19-2010 |
20100233864 | Methods of fabricating a semiconductor device - Methods of fabricating a semiconductor device are provided, the methods include forming a gate stack on a substrate, forming an insulation layer on the substrate to cover the gate stack, forming a spacer at both side walls of the gate stack by etching the insulation layer, and ion implanting impurities in the spacer or the insulation layer. | 09-16-2010 |
20100297823 | METHOD FOR ANGULAR DOPING OF SOURCE AND DRAIN REGIONS FOR ODD AND EVEN NAND BLOCKS - Stacked gate structures for a NAND string are created on a substrate. Source implantations are performed at a first implantation angle to areas between the stacked gate structures. Drain implantations are performed at a second implantation angle to areas between the stacked gate structures. The drain implantations create lower doped regions of a first conductivity type in the substrate on drain sides of the stacked gate structures. The source implantations create higher doped regions of the first conductivity type in the substrate on source sides of the stacked gate structures. | 11-25-2010 |
20110008944 | Gate Electrodes of HVMOS Devices Having Non-Uniform Doping Concentrations - A semiconductor structure includes a semiconductor substrate; a first high-voltage well (HVW) region of a first conductivity type overlying the semiconductor substrate; a second well region of a second conductivity type opposite the first conductivity type overlying the semiconductor substrate and laterally adjoining the first well region; a gate dielectric extending from over the first well region to over the second well region; a drain region in the second well region; a source region on an opposite side of the gate dielectric than the drain region; and a gate electrode on the gate dielectric. The gate electrode includes a first portion directly over the second well region, and a second portion directly over the first well region. The first portion has a first impurity concentration lower than a second impurity concentration of the second portion. | 01-13-2011 |
20110027959 | Tunnel Field-Effect Transistors with Superlattice Channels - A semiconductor device includes a channel region; a gate dielectric over the channel region; a gate electrode over the gate dielectric; and a first source/drain region adjacent the gate dielectric. The first source/drain region is of a first conductivity type. At least one of the channel region and the first source/drain region includes a superlattice structure. The semiconductor device further includes a second source/drain region on an opposite side of the channel region than the first source/drain region. The second source/drain region is of a second conductivity type opposite the first conductivity type. At most, one of the first source/drain region and the second source/drain region comprises an additional superlattice structure. | 02-03-2011 |
20110097868 | METHOD FOR FABRICATING P-CHANNEL FIELD-EFFECT TRANSISTOR (FET) - A method for fabrication a p-type channel FET includes forming a gate on a substrate. Then, a PAI ion implantation process is performed. Further, a pocket implantation process is conducted to form a pocket region. Thereafter, a first co-implantation process is performed to define a source/drain extension region depth profile. Then, a p-type source/drain extension region is formed. Afterwards, a second co-implantation process is performed to define a source/drain region depth profile. Thereafter, an in-situ doped epitaxy growth process is performed to form a doped semiconductor compound for serving as a p-type source/drain region. | 04-28-2011 |
20110177665 | THERMAL PROCESS - A thermal process is disclosed. The thermal process preferably includes the steps of: providing a semiconductor substrate ready to be heated; and utilizing at least a first heating beam and a second heating beam with different energy density to heat the semiconductor substrate simultaneously. Accordingly, the present invention no only eliminates the need of switching between two different thermal processing equipments and shortens the overall fabrication cycle time, but also improves the pattern effect caused by the conventional front side heating. | 07-21-2011 |
20110212592 | METHOD OF FORMING ULTRA-SHALLOW JUNCTIONS IN SEMICONDUCTOR DEVICES - A method of forming MOS transistor includes the steps of performing a pocket implantation process on a substrate having a gate stack, performing a co-implanted ion implantation process on the substrate at a temperature less than room temperature, performing a lightly doped source/drain implantation process on the substrate, and forming source and drain regions in the substrate, adjacent the gate stack. | 09-01-2011 |
20110269287 | METHODS FOR DOPING FIN FIELD-EFFECT TRANSISTORS - An embodiment of the disclosure includes doping a FinFET. A dopant-rich layer comprising an dopant is formed on a top surface and sidewalls of a semiconductor fin of a substrate. A cap layer is formed to cover the dopant-rich layer. The substrate is annealed to drives the dopant from the dopant-rich layer into the semiconductor fin. | 11-03-2011 |
20120034750 | METHOD FOR FABRICATING SEMICONDUCTOR DEVICE AND PLASMA DOPING APPARATUS - After a fin-semiconductor region ( | 02-09-2012 |
20120289017 | METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - A method of manufacturing a semiconductor device comprises placing a semiconductor substrate in an ashing chamber, the semiconductor substrate having a gate, a silicon nitride gate sidewall offset spacer or a silicon nitride gate sidewall pacer formed thereon, and a photo resist residue remaining on the semiconductor substrate, introducing a gas mixture including D | 11-15-2012 |
20130023104 | METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - According to an embodiment, a method for manufacturing a semiconductor device includes a step of forming an impurity layer on a semiconductor layer, the impurity layer including an impurity element to be doped to the semiconductor layer, and a step of applying a first gas in a plasma state including a first noble gas atom and a second gas in a plasma state including a second noble gas atom or hydrogen (H) toward the impurity layer, the second noble gas atom having a smaller atomic mass than the first noble gas atom. | 01-24-2013 |
20130065373 | Methods and Systems for Forming Implanted Doped Regions for a Semiconductor Device Using Reduced Temperature Ion Implantation - In one example, a method disclosed herein includes reducing a temperature of at least an implant surface of a semiconducting substrate to a temperature less than −50° C. and after reducing the temperature of the implant surface, performing at least one ion implantation process to implant ions into the substrate with the implant surface at a temperature less than −50° C. | 03-14-2013 |
20130109146 | METHOD FOR FABRICATING SMALL-SCALE MOS DEVICE | 05-02-2013 |
20130122676 | SOURCE/DRAIN DOPING METHOD IN 3D DEVICES - The present disclosure provides methods of semiconductor device fabrication for 3D devices. One method includes provide a substrate having a recess and forming a doping layer on the substrate and in the recess. The substrate is then annealed. The annealing drives dopants of a first type from the doping layer into the substrate. This can form a doped region that may be the source/drain extension of the 3D device. An epitaxial region is then grown in the recess. The epitaxial region can form the source/drain region of the 3D device. | 05-16-2013 |
20140073105 | METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE WITH ION IRRADIATION - According to one embodiment, a method of manufacturing a semiconductor device is provided. An impurity layer containing impurity atoms is formed on a semiconductor layer. The impurity layer is then irradiated with first ions having a first energy. Further, the impurity layer is irradiated with second ions having a second energy larger than the first energy. | 03-13-2014 |
20140087539 | PROCESS FOR MANUFACTUIRNG SUPER-BARRIER RECTIFIERS - A process for manufacturing a semiconductor device, wherein a semiconductor layer is formed on a body of semiconductor material; a first mask is formed on the semiconductor layer; a first conductive region is implanted in the body using the first mask; a second mask is formed laterally and complementarily to the first mask, at least in a projection in a plane parallel to the surface of the body; a second conductive region is implanted in the body using the second mask, in an adjacent and complementary position to the first conductive region; spacers are formed on the sides of the second mask region, to form a third mask aligned to the second mask; and, using the third mask, portions of the semiconductor layer are removed to form a gate region. | 03-27-2014 |
20140141589 | SEMICONDUCTOR DEVICES INCLUDING A STRESSOR IN A RECESS AND METHODS OF FORMING THE SAME - Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a fast etching region comprising phosphorous in an active region and forming a first trench in the active region by recessing the fast etching region. The methods may also include forming a second trench in the active region by enlarging the first trench using a directional etch process and forming a stressor in the second trench. The second trench may include a notched portion of the active region. | 05-22-2014 |
20150333144 | High Uniformity Screen and Epitaxial Layers for CMOS Devices - A transistor and method of fabrication thereof includes a screening layer formed at least in part in the semiconductor substrate beneath a channel layer and a gate stack, the gate stack including spacer structures on either side of the gate stack. The transistor includes a shallow lightly doped drain region in the channel layer and a deeply lightly doped drain region at the depth relative to the bottom of the screening layer for reducing junction leakage current. A compensation layer may also be included to prevent loss of back gate control. | 11-19-2015 |
20160099152 | SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - A method for fabricating a semiconductor device includes: implanting a first species into a substrate at a cold temperature to form a first region; and implanting a second species into the substrate at a hot temperature to form a second region that is adjacent to the first region. | 04-07-2016 |
20160197142 | METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE | 07-07-2016 |
20160204226 | STRESS MODULATION IN FIELD EFFECT TRANSISTORS IN REDUCING CONTACT RESISTANCE AND INCREASING CHARGE CARRIER MOBILITY | 07-14-2016 |
438307000 | Using same conductivity-type dopant | 4 |
20090068812 | Method of Forming Memory Devices by Performing Halogen Ion Implantation and Diffusion Processes - Disclosed is a method of forming memory devices employing halogen ion implantation and diffusion processes. In one illustrative embodiment, the method includes forming a plurality of word line structures above a semiconducting substrate, each of the word line structures comprising a gate insulation layer, performing an LDD ion implantation process to form LDD doped regions in the substrate between the word line structures, performing a halogen ion implantation process to implant atoms of halogen into the semiconducting substrate between the word line structures, and performing at least one anneal process to cause at least some of the atoms of halogen to diffuse into the gate insulation layers on adjacent word line structures. | 03-12-2009 |
20090191684 | Novel Approach to Reduce the Contact Resistance - A method for fabricating a semiconductor device is disclosed. First, a semiconductor substrate having a doped region(s) is provided. Thereafter, a pre-amorphous implantation process and neutral (or non-neutral) species implantation process is performed over the doped region(s) of the semiconductor substrate. Subsequently, a silicide is formed in the doped region(s). By conducting a pre-amorphous implantation combined with a neutral species implantation, the present invention reduces the contact resistance, such as at the contact area silicide and source/drain substrate interface. | 07-30-2009 |
20100124809 | METHOD FOR FORMING A SHALLOW JUNCTION REGION USING DEFECT ENGINEERING AND LASER ANNEALING - A method for forming a shallow junction region in a crystalline semiconductor substrate and method for fabricating a semiconductor device having the shallow junction region includes a defect engineering step in which first ions are introduced into a first region of the substrate and vacancies are generated in the first region. During the generation of substrate vacancies, the first region remains substantially crystalline. Interstitial species are generated in a second region and second ions are introduced into the second region to capture the interstitial species. Laser annealing is used to activate dopant species in the first region and repair implantation damage in the second region. The defect engineering process creates a vacancy-rich surface region in which source and drain extension regions having high dopant activation and low sheet resistance are created in an MOS device. | 05-20-2010 |
20110237041 | ALTERNATING-DOPING PROFILE FOR SOURCE/DRAIN OF A FET - A semiconductor device is provided. In an embodiment, the device includes a substrate and a transistor formed on the semiconductor substrate. The transistor may include a gate structure, a source region, and a drain region. The drain region includes an alternating-doping profile region. The alternating-doping profile region may include alternating regions of high and low concentrations of a dopant. In an embodiment, the transistor is a high voltage transistor. | 09-29-2011 |