Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Introducing a dopant into the channel region of selected transistors

Subclass of:

438 - Semiconductor device manufacturing: process

438142000 - MAKING FIELD EFFECT DEVICE HAVING PAIR OF ACTIVE REGIONS SEPARATED BY GATE STRUCTURE BY FORMATION OR ALTERATION OF SEMICONDUCTIVE ACTIVE REGIONS

438197000 - Having insulated gate (e.g., IGFET, MISFET, MOSFET, etc.)

438275000 - Making plural insulated gate field effect transistors of differing electrical characteristics

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
438276000 Introducing a dopant into the channel region of selected transistors 25
20080248623Method for forming high-drain-voltage tolerance MOSFET transistor in a CMOS process flow with double well dose approach - A method for forming a high-voltage drain metal-oxide-semiconductor (HVD-MOS) device includes providing a semiconductor substrate; forming a well region of a first conductivity type; and forming an embedded well region in the semiconductor substrate and only on a drain side of the HVD-MOS device, wherein the embedded region is of a second conductivity type opposite the first conductivity type. The step of forming the embedded well region includes simultaneously doping the embedded well region and a well region of a core regular MOS device, and simultaneously doping the embedded well region and a well region of an I/O regular MOS device, wherein the core and I/O regular MOS devices are of the first conductivity type. The method further includes forming a gate stack extending from over the embedded well region to over the well region.10-09-2008
20080299729METHOD OF FABRICATING HIGH VOLTAGE MOS TRANSISTOR DEVICE - A substrate is provided, and a sacrificial pattern having an opening partially exposing a high voltage device region is formed on the substrate. Subsequently, a gate oxide layer is formed in the opening, and the sacrificial pattern is removed. A gate electrode, and two heavily doped regions are formed. Than, a salicidation process is carried out to form salicides on the surface of the gate electrode and the heavily doped regions.12-04-2008
20090035909METHOD OF FABRICATION OF A FINFET ELEMENT - The present disclosure provides a method of fabricating a FinFET element including providing a substrate including a first fin and a second fin. A first layer is formed on the first fin. The first layer comprises a dopant of a first type. A dopant of a second type is provided to the second fin. High temperature processing of the substrate is performed on the substrate including the formed first layer and the dopant of the second type.02-05-2009
20090093098Manufacturing method of semiconductor device having trench isolation - A manufacturing method of semiconductor device includes: forming a nitride film above a silicon substrate including a first region and a second region which respectively correspond to an outside of a memory cell region and the memory cell region; forming trenches reaching from the nitride film to the silicon substrate; retreating the nitride film such that widths of the trenches at the nitride film become wider; forming a buried oxide film to be buried in the trenches after the retreating; polishing the buried oxide film with the nitride film being used as a stopper; removing the nitride film after the polishing; implanting impurity after the removing; forming gate electrodes after the implanting; and implanting impurity after the forming the gate electrodes.04-09-2009
20090191679LOCAL STRESS ENGINEERING FOR CMOS DEVICES - A first dielectric layer is formed over a PFET gate and an NFET gate, and lithographically patterned to expose a PFET area, while covering an NFET area. Exposed PFET active area is etched and refilled with a SiGe alloy, which applies a uniaxial compressive stress to a PFET channel. A second dielectric layer is formed over the PFET gate and the NFET gate, and lithographically patterned to expose the NFET area, while covering the PFET area. Exposed NFET active area is etched and refilled with a silicon-carbon alloy, which applies a uniaxial tensile stress to an NFET channel. Dopants may be introduced into the SiGe and silicon-carbon regions by in-situ doping or by ion implantation.07-30-2009
20100047983SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - A threshold control layer of a second MIS transistor is formed under the same conditions for forming a threshold control layer of a first MIS transistor. LLD regions of the second MIS transistor are formed under the same conditions for forming LDD regions of a third transistor.02-25-2010
20100173462METHOD AND APPARATUS FOR FABRICATING A CARBON NANOTUBE TRANSISTOR - A method of fabricating a nanotube field-effect transistor having unipolar characteristics and a small inverse sub-threshold slope includes forming a local gate electrode beneath the nanotube between drain and source electrodes of the transistor and doping portions of the nanotube. In a further embodiment, the method includes forming at least one trench in the gate dielectric (e.g., a back gate dielectric) and back gate adjacent to the local gate electrode. Another aspect of the invention is a nanotube field-effect transistor fabricated using such a method.07-08-2010
20100248438SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - In a semiconductor substrate in a first section, a channel region having an impurity concentration peak in an interior of the semiconductor substrate is formed, and in the semiconductor substrate in a second section and a third section, channel regions having an impurity concentration peak at a position close to a surface of the substrate are formed. Then, extension regions are formed in the first section, the second section and the third section. After that, the substrate is thermally treated to eliminate defects produced in the extension regions. Then, using gate electrodes and side-wall spacers as a mask, source/drain regions are formed in the first section, the second section and the third section.09-30-2010
20110081758Semiconductor device including I/O oxide nitrided core oxide on substrate, and method of manufacture - A semiconductor device includes a semiconductor substrate, wherein the semiconductor substrate includes a core area for core circuits and a peripheral area for peripheral circuits. The semiconductor device includes a core oxide on the semiconductor substrate in the core area, a portion of the core oxide being nitrided, a first polysilicon pattern on the core oxide, an I/O oxide including pure oxide on the semiconductor substrate in the peripheral area, and a second polysilicon pattern on the I/O oxide.04-07-2011
20120164805FORMATION OF A CHANNEL SEMICONDUCTOR ALLOY BY FORMING A HARD MASK LAYER STACK AND APPLYING A PLASMA-BASED MASK PATTERNING PROCESS - When forming sophisticated high-k metal gate electrode structures, a threshold adjusting semiconductor alloy may be formed on the basis of selective epitaxial growth techniques and a hard mask comprising at least two hard mask layers. The hard mask may be patterned on the basis of a plasma-based etch process, thereby providing superior uniformity during the further processing upon depositing the threshold adjusting semiconductor material. In some illustrative embodiments, one hard mask layer is removed prior to actually selectively depositing the threshold adjusting semiconductor material.06-28-2012
20140120674METHOD FOR 1/F NOISE REDUCTION IN NMOS DEVICES - An integrated circuit, in which a minimum gate length of low-noise NMOS transistors is less than twice a minimum gate length of logic NMOS transistors, is formed by: forming gates of the low-noise NMOS transistors concurrently with gates of the logic NMOS transistors, forming a low-noise NMDD implant mask which exposes the low-noise NMOS transistors and covers the logic NMOS transistors and logic PMOS transistors, ion implanting n-type NMDD dopants and fluorine into the low-noise NMOS transistors and limiting p-type halo dopants to less than 20 percent of a corresponding logic NMOS halo dose, removing the low-noise NMDD implant mask, forming a logic NMDD implant mask which exposes the logic NMOS transistors and covers the low-noise NMOS transistors and logic PMOS transistors, ion implanting n-type NMDD dopants and p-type halo dopants, but not implanting fluorine, into the logic NMOS transistors, and removing the logic NMDD implant mask.05-01-2014
20140120675CARBON AND NITROGEN DOPING FOR SELECTED PMOS TRANSISTORS ON AN INTEGRATED CIRCUIT - A method of forming an integrated circuit (IC) including a core and a non-core PMOS transistor includes forming a non-core gate structure including a gate electrode on a gate dielectric and a core gate structure including a gate electrode on a gate dielectric. The gate dielectric for the non-core gate structure is at least 2 Å of equivalent oxide thickness (EOT) thicker as compared to the gate dielectric for the core gate structure. P-type lightly doped drain (PLDD) implantation including boron establishes source/drain extension regions in the substrate. The PLDD implantation includes selective co-implanting of carbon and nitrogen into the source/drain extension region of the non-core gate structure. Source and drain implantation forms source/drain regions for the non-core and core gate structure, wherein the source/drain regions are distanced from the non-core and core gate structures further than their source/drain extension regions. Source/drain annealing is performed after source and drain implantation.05-01-2014
20150340287SEMICONDUCTOR DEVICE INCLUDING A HIGH VOLTAGE P-CHANNEL TRANSISTOR AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device in which a reliable high voltage p-channel transistor is formed without an increase in cost and the number of manufacturing steps. The transistor includes: a semiconductor substrate having a main surface and a p-type region therein; a p-type well region located over the p-type region and in the main surface, having a first p-type impurity region to obtain a drain electrode; an n-type well region adjoining the p-type well region along the main surface and having a second p-type impurity region to obtain a source electrode; a gate electrode between the first and second p-type impurity regions along the main surface; and a p-type buried channel overlying the n-type well region and extending along the main surface. The border between the n-type and p-type well regions is nearer to the first p-type impurity region than the gate electrode end near to the first p-type impurity region.11-26-2015
20160013315TRANSISTOR INCLUDING A STRESSED CHANNEL, A METHOD FOR FABRICATING THE SAME, AND AN ELECTRONIC DEVICE INCLUDING THE SAME01-14-2016
20160163823Semiconductor Structure with Multiple Transistors Having Various Threshold Voltages - A semiconductor structure includes first, second, and third transistor elements each having a first screening region concurrently formed therein. A second screening region is formed in the second and third transistor elements such that there is at least one characteristic of the screening region in the second transistor element that is different than the second screening region in the third transistor element. Different characteristics include doping concentration and depth of implant. In addition, a different characteristic may be achieved by concurrently implanting the second screening region in the second and third transistor element followed by implanting an additional dopant into the second screening region of the third transistor element06-09-2016
438277000 Including forming overlapping gate electrodes 1
20110207278METHOD OF FABRICATING SEMICONDUCTOR DEVICE - Disclosed is a method of fabricating a semiconductor device that includes both an enhancement-mode FET and a depletion-mode FET. The method includes forming an opening in a gate electrode for the depletion-mode FET. The opening is located in or in the vicinity of one of the overlapping regions in which the gate electrode extends over active regions. The method further includes ion-implanting dopant impurities into the active regions at an oblique angle using the gate electrode as a mask, thereby to form the doped region that is located under the opening and continuously extending from one of the opposite sides of the gate electrode to the other.08-25-2011
438278000 After formation of source or drain regions and gate electrode (e.g., late programming, encoding, etc.) 9
20080286929METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - The method for manufacturing a semiconductor device according to the invention includes the first doping step of doping source/drain regions including source/drain extension regions adjacent to a channel region of a MOS transistor, the second doping step of doping pocket implant regions disposed from the bottom of the source/drain extension regions in the depth direction, the step of forming an amorphous surface layer at the surface of a semiconductor crystal substrate so as to overlap the source/drain extension regions and the pocket implant regions, and the recrystallization step of recrystallizing the amorphous surface layer by a solid-phase epitaxy technique.11-20-2008
20080311715Method for forming semiconductor device - A method for forming a semiconductor device is disclosed. A substrate comprising trenches are provided. Dopants are doped into a region of the substrate neighboring a sidewall of the trenches by using an isotropic doping method. A gate dielectric layer is formed on the sidewall of the substrate. A gate electrode is formed in the trenches, wherein the gate electrode protrudes a surface of the substrate.12-18-2008
20090124056METHOD OF FABRICATING SEMICONDUCTOR DEVICE - A method of fabricating a semiconductor device is provided. A gate structure is formed on a substrate and then a first spacer is formed at a sidewall of the gate structure. Next, recesses are respectively formed in the substrate at two sides of the first spacer. Thereafter, a buffer layer and a doped semiconductor compound layer are formed in each recess. An extra implantation region is respectively formed on the surfaces of each buffer layer and each doped semiconductor compound layer. Afterward, source/drain contact regions are formed in the substrate at two sides of the gate structure.05-14-2009
20090137090METHOD FOR FABRICATING SEMICONDUCTOR DEVICE - A method for fabricating a semiconductor device is provided. A first active region and a second active region are defined in a substrate. An electrode covering the first active region and the second active region is formed on the substrate. A first sacrificial layer is formed on the second active layer. A first work function electrode is formed on the first active layer by performing a first doping process to a portion of the electrode. The first sacrificial layer is removed. A second sacrificial layer is formed on the first active layer.05-28-2009
20090197381METHOD FOR SELECTIVELY FORMING STRAIN IN A TRANSISTOR BY A STRESS MEMORIZATION TECHNIQUE WITHOUT ADDING ADDITIONAL LITHOGRAPHY STEPS - A selective stress memorization technique is disclosed in which the creation of tensile strain may be accomplished without additional photolithography steps by using an implantation mask or any other mask required during a standard manufacturing flow, or by providing a patterned cap layer for a strained re-crystallization of respective drain and source areas. In still other aspects, additional anneal steps may be used for selectively creating a crystalline state and a non-crystalline state prior to the re-crystallization on the basis of a cap layer. Thus, enhanced strain may be obtained in one type of transistor while not substantially negatively affecting the other type of transistor without requiring additional photolithography steps.08-06-2009
20100009506DOPANT IMPLANTATION METHOD AND INTEGRATED CIRCUITS FORMED THEREBY - A method of forming a dopant implant region in a MOS transistor device having a dopant profile having a target dopant concentration includes implanting a first concentration of dopants into a region of a substrate, where the first concentration of dopants is less than the target dopant concentration, and without annealing the substrate after the implanting step, performing at least one second implanting step to implant at least one second concentration of dopants into the region of the substrate to bring the dopant concentration in the region to the target dopant concentration.01-14-2010
20110086484BODY TIE TEST STRUCTURE FOR ACCURATE BODY EFFECT MEASUREMENT - A body tie test structure and methods for its manufacture are provided. The transistor comprises a body-tied semiconductor on insulator (SOI) transistor formed in a layer of semiconductor material, the transistor comprising a cross-shaped gate structure with a substantially constant gate length L. An insulating blocking layer enables formation of a spacer region in the layer of semiconductor material separating the source and drain regions from the body tie region. A conductive channel with substantially the same inversion characteristics as the intrinsic transistor body connects the body tie to the intrinsic transistor body through the spacer region.04-14-2011
20120282747EFFECTING SELECTIVITY OF SILICON OR SILICON-GERMANIUM DEPOSITION ON A SILICON OR SILICON-GERMANIUM SUBSTRATE BY DOPING - A method for selective deposition of Si or SiGe on a Si or SiGe surface exploits differences in physico-chemical surface behavior according to a difference in doping of first and second surface regions. By providing at least one first surface region with a Boron doping of a suitable concentration range and exposing the substrate surface to a cleaning and passivating ambient atmosphere in a prebake at a temperature lower or equal to 800° C., a subsequent deposition step will prevent deposition in the first surface region. This allows selective deposition in the second surface region, which is not doped with the Boron (or doped with another dopant or not doped). Several devices are, thus, provided. The method saves a usual photolithography sequence, which according to prior art is required for selective deposition of Si or SiGe in the second surface region.11-08-2012
20150011067FLATBAND SHIFT FOR IMPROVED TRANSISTOR PERFORMANCE - An integrated circuit includes MOS and DEMOS transistors with at least one of indium, carbon, nitrogen, and a halogen dopant raising the threshold voltage of a portion of the DEMOS transistor gate overlying the DEMOS transistor channel. An integrated circuit includes MOS and LDMOS transistors with at least one of indium, carbon, nitrogen, and a halogen dopant raising the threshold voltage of a portion of the LDMOS transistor gate overlying the DEMOS transistor channel. A method of forming an integrated circuit with MOS and DEMOS transistors with at least one of indium, carbon, nitrogen, and a halogen dopant raising the threshold voltage of a portion of the DEMOS transistor gate overlying the DEMOS transistor channel. A method of forming an integrated circuit with MOS and LDMOS transistors with at least one of indium, carbon, nitrogen, and a halogen dopant raising the threshold voltage of a portion of the LDMOS transistor gate overlying the DEMOS transistor channel.01-08-2015
Website © 2025 Advameg, Inc.