Class / Patent application number | Description | Number of patent applications / Date published |
438212000 | Vertical channel | 17 |
20080318375 | Method of Fabricating a Duel-Gate Fet - The invention provides a method of fabricating an extremely short-length dual-gate FET, using conventional semi-conductor processing techniques, with extremely small and reproducible fins with a pitch and a width that are both smaller than can be obtained with photolithographic techniques. On a protrusion ( | 12-25-2008 |
20100112765 | METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A manufacturing method of a semiconductor device includes: forming multiple trenches on a semiconductor substrate; forming a second conductive type semiconductor film in each trench to provide a first column with the substrate between two trenches and a second column with the second conductive type semiconductor film in the trench, the first and second columns alternately repeated along with a predetermined direction; thinning a second side of the substrate; and increasing an impurity concentration in a thinned second side so that a first conductive type layer is provided. The impurity concentration of the first conductive type layer is higher than the first column. The first column provides a drift layer so that a vertical type first-conductive-type channel transistor is formed. | 05-06-2010 |
20110086476 | Methods of Forming Field Effect Transistors on Substrates - The invention includes methods of forming field effect transistors. In one implementation, the invention encompasses a method of forming a field effect transistor on a substrate, where the field effect transistor comprises a pair of conductively doped source/drain regions, a channel region received intermediate the pair of source/drain regions, and a transistor gate received operably proximate the channel region. Such implementation includes conducting a dopant activation anneal of the pair of source/drain regions prior to depositing material from which a conductive portion of the transistor gate is made. Other aspects and implementations are contemplated. | 04-14-2011 |
20120214282 | CMOS TRANSISTOR USING GERMANIUM CONDENSATION AND METHOD OF FABRICATING THE SAME - Provided is a CMOS transistor formed using Ge condensation and a method of fabricating the same. The CMOS transistor may include an insulating layer, a silicon layer on the insulating layer and including a p-MOS transistor region and an n-MOS transistor region, a first gate insulating layer and a first gate on a channel region of the p-MOS transistor region, and a second gate insulating layer and a second gate on a channel region of the n-MOS transistor region, wherein a source region and a drain region of the p-MOS transistor region may be tensile-strained due to Ge condensation, and the channel region of the n-MOS transistor region may be tensile-strained due to the Ge condensation. | 08-23-2012 |
20120244669 | Method of Manufacturing Semiconductor Device Having Metal Gates - The present invention provides a method of manufacturing semiconductor device having metal gates. First, a substrate is provided. A first conductive type transistor having a first sacrifice gate and a second conductive type transistor having a second sacrifice gate are disposed on the substrate. The first sacrifice gate is removed to form a first trench. Then, a first metal layer is formed in the first trench. The second sacrifice gate is removed to form a second trench. Next, a second metal layer is formed in the first trench and the second trench. Lastly, a third metal layer is formed on the second metal layer wherein the third metal layer is filled into the first trench and the second trench. | 09-27-2012 |
20130149822 | METHOD FOR FABRICATING SEMICONDUCTOR DEVICE - A method for fabricating a semiconductor device is provided. A method for fabricating a semiconductor device includes providing a semiconductor substrate having a first conductive type. An epitaxy layer having the first conductive type is formed on the semiconductor substrate. First trenches are formed in the epitaxy layer. First insulating liner layers are formed on sidewalls and bottoms of the first trenches. A first dopant having the first conductive type dopes the epitaxy layer from the sidewalls of the first trenches to form first doped regions. A first insulating material is filled into the first trenches. Second trenches are formed in the epitaxy layer. Second insulating liner layers are formed on sidewalls and bottoms of the second trenches. A second dopant having a second conductive type dopes the epitaxy layer from the sidewalls of the second trenches to form second doped regions. | 06-13-2013 |
20130171782 | METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE - Forming a photoresist on a region other than a region on a trench gate electrode for a mask, a third gate insulating film on the trench gate electrode is etched and removed. After that, a non-doped polycrystalline silicon layer is formed on second and third gate insulating films and also on the trench gate electrode, and, N-type and P-type high concentration impurities are introduced by an ion implantation with the use of separate masks on the polycrystalline silicon layer of NMOS transistors and PMOS transistors with a low breakdown voltage and a high breakdown voltage. Then, a second gate electrode is formed by anisotropic etching. With the steps as described above, a first gate electrode inside the trench and the second gate electrode to be used in the lateral MOS transistor are laminated, to thereby reduce fluctuations due to the etching. | 07-04-2013 |
20130288440 | MINIMIZING LEAKAGE CURRENT AND JUNCTION CAPACITANCE IN CMOS TRANSISTORS BY UTILIZING DIELECTRIC SPACERS - A semiconductor structure and method for forming dielectric spacers and epitaxial layers for a complementary metal-oxide-semiconductor field effect transistor (CMOS transistor) are disclosed. Specifically, the structure and method involves forming dielectric spacers that are disposed in trenches and are adjacent to the silicon substrate, which minimizes leakage current. Furthermore, epitaxial layers are deposited to form source and drain regions, wherein the source region and drain regions are spaced at a distance from each other. The epitaxial layers are disposed adjacent to the dielectric spacers and the transistor body regions (i.e., portion of substrate below the gates), which can minimize transistor junction capacitance. Minimizing transistor junction capacitance can enhance the switching speed of the CMOS transistor. Accordingly, the application of dielectric spacers and epitaxial layers to minimize leakage current and transistor junction capacitance in CMOS transistors can enhance the utility and performance of the CMOS transistors in low power applications. | 10-31-2013 |
20140106523 | Vertical Super-Thin Body Semiconductor on Dielectric Wall Devices and Methods of Their Fabrication - The present invention is a semiconductor device comprising a semiconducting low doped vertical super-thin body (VSTB) formed on Dielectric Body Wall (such as STI-wall as isolating substrate) having the body connection to bulk semiconductor wafer on the bottom side, isolation on the top side, and the channel, gate dielectric, and gate electrode on opposite to STI side surface. The body is made self-aligned to STI hard mask edge allowing tight control of body thickness. Source and Drain are made by etching holes vertically in STI at STI side of the body and filling with high doped crystalline or poly-Si appropriately doped with any appropriate silicides/metal contacts or with Schottky barrier Source/Drain. Gate first or Gate last approaches can be implemented. Many devices can be fabricated in single active area with body isolation between the devices by iso-plugs combined with gate electrode isolation by iso-trenches. The body can be made as an isolated nano-plate or set nano-wire MOSFET's on the STI wall to form VSTB SOI devices. | 04-17-2014 |
20140134811 | CO-INTEGRATION OF ELEMENTAL SEMICONDUCTOR DEVICES AND COMPOUND SEMICONDUCTOR DEVICES - First and second template epitaxial semiconductor material portions including different semiconductor materials are formed within a dielectric template material layer on a single crystalline substrate. Heteroepitaxy is performed to form first and second epitaxial semiconductor portions on the first and second template epitaxial semiconductor material portions, respectively. At least one dielectric bonding material layer is deposited, and a handle substrate is bonded to the at least one dielectric bonding material layer. The single crystalline substrate, the dielectric template material layer, and the first and second template epitaxial semiconductor material portions are subsequently removed. Elemental semiconductor devices and compound semiconductor devices can be formed on the first and second semiconductor portions, which are embedded within the at least one dielectric bonding material layer on the handle substrate. | 05-15-2014 |
20140206161 | METHOD OF FABRICATING A SEMICONDUCTOR DEVICE HAVING A CAPPING LAYER - A method of semiconductor device fabrication includes forming a first dummy gate structure in a first region of a semiconductor substrate and forming a second dummy gate structure in a second region of the semiconductor substrate. A protective layer (e.g., oxide and/or silicon nitride hard mask) is formed on the second dummy gate structure. The first dummy gate structure is removed after forming the protective layer, thereby providing a first trench. A capping layer (e.g., silicon) is formed in the first trench. A metal gate structure may be formed on the capping layer. The protective layer may protect the second dummy gate structure during the removal of the first dummy gate structure. | 07-24-2014 |
20150132903 | Structure and Method For SRAM Cell Circuit - The present disclosure provides a static random access memory (SRAM) cell. The SRAM cell includes a first and a second pull-up devices; a first and a second pull-down devices configured with the first and second pull-up devices to form two cross-coupled inverters for data storage; and a first and second pass-gate devices configured with the two cross-coupled inverters to form a port for data access, wherein the first and second pull-down devices each includes a first channel doping feature of a first doping concentration, and the first and second pass-gate devices each includes a second channel doping feature of a second doping concentration greater than the first doping concentration. | 05-14-2015 |
20160111521 | THRESHOLD ADJUSTMENT FOR QUANTUM DOT ARRAY DEVICES WITH METAL SOURCE AND DRAIN - Incorporation of metallic quantum dots (e.g., silver bromide (AgBr) films) into the source and drain regions of a MOSFET can assist in controlling the transistor performance by tuning the threshold voltage. If the silver bromide film is rich in bromine atoms, anion quantum dots are deposited, and the AgBr energy gap is altered so as to increase V | 04-21-2016 |
20160181258 | Methods of Fabricating Semiconductor Devices | 06-23-2016 |
20160204227 | Apparatus and Method for Power MOS Transistor | 07-14-2016 |
20160254198 | SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE | 09-01-2016 |
20220140110 | THRESHOLD ADJUSTMENT FOR QUANTUM DOT ARRAY DEVICES WITH METAL SOURCE AND DRAIN - Incorporation of metallic quantum dots (e.g., silver bromide (AgBr) films) into the source and drain regions of a MOSFET can assist in controlling the transistor performance by tuning the threshold voltage. If the silver bromide film is rich in bromine atoms, anion quantum dots are deposited, and the AgBr energy gap is altered so as to increase V | 05-05-2022 |