Class / Patent application number | Description | Number of patent applications / Date published |
438154000 | Complementary field effect transistors | 53 |
20080233688 | Method of Fabricating a Bipolar Transistor - A method of fabricating a bipolar transistor in a first trench ( | 09-25-2008 |
20080248616 | Integration of strained Ge into advanced CMOS technology - A structure and method of fabrication for PFET devices in a compressively strained Ge layer is disclosed. The fabrication method of such devices is compatible with standard CMOS technology and it is fully scalable. The processing includes selective epitaxial depositions of an over 50% Ge content buffer layer, a pure Ge layer, and a SiGe top layer. Fabricated buried channel PMOS devices hosted in the compressively strained Ge layer show superior device characteristics relative to similar Si devices. | 10-09-2008 |
20080261355 | METHOD OF MAKING A SEMICONDUCTOR DEVICE WITH A STRESSOR - First and second transistors are formed adjacent to each other. Both transistors have gate sidewall spacers removed. A stressor layer is formed overlying the first and second transistors. Stress in the stressor layer that overlies the first transistor is modified. Stress in the stressor layer that overlies the second transistor is permanently transferred to a channel of the second transistor. The stressor layer is removed except adjacent the gate electrode sidewalls of the first transistor and the second transistor where the stressor layer is used as gate sidewall spacers. Electrical contact to electrodes of the first transistor and the second transistor is made while using the gate sidewall spacers for determining a physical boundary of current electrodes of the first and second transistors. Subsequently formed first and a second stressors are positioned close to transistor channels of the first and second transistors. | 10-23-2008 |
20080274595 | Dual substrate orientation or bulk on SOI integrations using oxidation for silicon epitaxy spacer formation - A semiconductor process and apparatus provide a planarized hybrid substrate ( | 11-06-2008 |
20080274596 | SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A silicon nitride film is formed between interlayer insulating films covering an upper surface of an element formed on a surface of a semiconductor layer. With this structure, a semiconductor device comprising an isolation insulating film of PTI structure, which suppresses a floating-body effect and improves isolation performance and breakdown voltage, and a method of manufacturing the semiconductor device can be obtained. | 11-06-2008 |
20080274597 | METHOD AND STRUCTURE TO REDUCE CONTACT RESISTANCE ON THIN SILICON-ON-INSULATOR DEVICE - A method (and system) of reducing contact resistance on a silicon-on-insulator device, including controlling a silicide depth in a source-drain region of the device. | 11-06-2008 |
20080280401 | INCREASING EFFECTIVE TRANSISTOR WITDTH IN MEMORY ARRAYS WITH DUAL BITLINES - A method for forming a memory structure, includes: forming an array of individual memory cells arranged in a network of bit lines and word lines, each individual memory cell further comprising a resistive memory device that is capable of being programmed to a plurality of resistance states, each of the resistive memory devices coupled to one of the bit lines at a first end thereof; configuring a rectifying element in series with each of the resistive memory devices at a second end thereof; configuring an access transistor associated with each of the individual memory cells, the access transistors activated by a signal applied to a corresponding one of the word lines, with each access transistor connected in series with a corresponding rectifying element; and forming a common connection configured to short neighboring rectifying devices together along a word line direction, in groups of two or more. | 11-13-2008 |
20080299711 | DUAL WORK-FUNCTION SINGLE GATE STACK - Disclosed is a complementary CMOS device having a first FET with sidewall channels and a second FET with a planar channel. The first FET can be a p-FET and the second FET can be an n-FET or vice versa. The conductor used to form the gate electrodes of the different type FETs is different and is pre-selected to optimize performance. For example, a p-FET gate electrode material can have a work function near the valence band and an n-FET gate electrode material can have a work function near the conduction band. The first gate electrodes of the first FET are located adjacent to the sidewall channels and the second gate electrode of the second FET is located above the planar channel. However, the device structure is unique in that the second gate electrode extends laterally above the first FET and is electrically coupled to the first gate electrodes. | 12-04-2008 |
20090104737 | METHOD FOR MANUFACTURING TFT SUBSTRATE - To provide a method for manufacturing a TFT substrate in which a channel length can be stably formed while the number of masks is reduced, and a method for manufacturing a TFT substrate which can individually control impurity concentrations for channels of an n-type TFT and a p-type TFT without increasing the number of masks. A method for manufacturing a TFT substrate includes processing a gate of the n-type TFT, a gate of the p-type TFT, and an upper capacitor electrode by using a half-tone mask instead of some of normal masks to reduce the number of masks, and changing impurity concentrations of semiconductor films located in regions which become a channel of the n-type TFT, a source and a drain of the n-type TFT, a channel of the p-type TFT, a source and a drain of the p-type TFT, and an lower capacitor electrode, by using a pattern of the half-tone mask and a normal mask. | 04-23-2009 |
20090305470 | ISOLATING BACK GATES OF FULLY DEPLETED SOI DEVICES - Methods, structure and design structure having isolated back gates for fully depleted semiconductor-on-insulator (FDSOI) devices are presented. In one embodiment, a method may include providing a FDSOI substrate having a SOI layer over a buried insulator over a first polarity-type substrate, the first polarity-type substrate including a second polarity-type well therein of opposite polarity than the first polarity; forming a trench structure in the FDSOI substrate; forming an active region to each side of the trench structure in the SOI layer; and forming a PFET on the active region on one side of the trench structure and an NFET on the active region on the other side of the trench structure. | 12-10-2009 |
20090305471 | THIN SILICON SINGLE DIFFUSION FIELD EFFECT TRANSISTOR FOR ENHANCED DRIVE PERFORMANCE WITH STRESS FILM LINERS - The present invention provides a semiconducting device structure including a thin SOI region, wherein the SOI device is formed with an optional single thin diffusion, i.e., offset, spacer and a single diffusion implant. The device silicon thickness is thin enough to permit the diffusion implants to abut the buried insulator but thick enough to form a contacting silicide. Stress layer liner films are used both over nFET and pFET device regions to enhance performance. | 12-10-2009 |
20100129968 | Semiconductor Devices and Methods of Manufacture Thereof - Semiconductor devices with transistors having different gate dielectric materials and methods of manufacture thereof are disclosed. One embodiment includes a semiconductor device including a workpiece, the workpiece including a first region and a second region proximate the first region. A first transistor is disposed in the first region of the workpiece, the first transistor having at least two first gate electrodes. A first gate dielectric is disposed proximate each of the at least two first gate electrodes, the first gate dielectric comprising a first material. A second transistor is disposed in the second region of the workpiece, the second transistor having at least two second gate electrodes. A second gate dielectric is disposed proximate each of the at least two second gate electrodes, the second gate dielectric comprising a second material. The second material is different than the first material. | 05-27-2010 |
20100184260 | DUAL HIGH-K OXIDES WITH SIGE CHANNEL - A method and apparatus are described for integrating dual gate oxide (DGO) transistor devices ( | 07-22-2010 |
20110033989 | SEMICONDUCTOR DEVICE HAVING MULTI-GATE STRUCTURE AND METHOD OF MANUFACTURING THE SAME - Provided are a semiconductor device having a mesa-type active region including a plurality of slabs and a method of manufacturing the semiconductor device. The semiconductor device includes a first active region and a second active region. The first active region is formed in a line-and-space pattern on a substrate and includes the slabs, each slab having a first surface, a second surface facing a direction opposite to the first side, and a top surface. The first active region and the second active region are composed of identical or different materials. The second active region contacts at least one end of each of the slabs on the substrate to connect the slabs to one another The method includes forming a first active region in a line-and-space pattern on the substrate and forming the second active region. | 02-10-2011 |
20110086473 | HYBRID ORIENTATION SEMICONDUCTOR STRUCTURE WITH REDUCED BOUNDARY DEFECTS AND METHOD OF FORMING SAME - The present invention provides an improved amorphization/templated recrystallization (ATR) method for forming hybrid orientation substrates and semiconductor device structures. A direct-silicon-bonded (DSB) silicon layer having a (011) surface crystal orientation is bonded to a base silicon substrate having a (001) surface crystal orientation to form a DSB wafer in which the in-plane <110> direction of the (011) DSB layer is aligned with an in-plane <110> direction of the (001) base substrate. Selected regions of the DSB layer are amorphized down to the base substrate to form amorphized regions aligned with the mutually orthogonal in-plane <100> directions of the (001) base substrate, followed by recrystallization using the base substrate as a template. This optimal arrangement of DSB layer, base substrate, and amorphized region orientation provides a near-vertical, essentially defect-free boundary between original-orientation and changed-orientation silicon regions, thus enabling complete boundary region removal with smaller footprint shallow trench isolation than possible with ATR methods not so optimized. | 04-14-2011 |
20110165739 | ULTRA-THIN SOI CMOS WITH RAISED EPITAXIAL SOURCE AND DRAIN AND EMBEDDED SIGE PFET EXTENSION - A method for improving channel carrier mobility in ultra-thin Silicon-on-oxide (UTSOI) FET devices by integrating an embedded pFET SiGe extension with raised source/drain regions. The method includes selectively growing embedded SiGe (eSiGe) extensions in pFET regions and forming strain-free raised Si or SiGe source/drain (RSD) regions on CMOS. The eSiGe extension regions enhance hole mobility in the pFET channels and reduce resistance in the pFET extensions. The strain-free raised source/drain regions reduce contact resistance in both UTSOI pFETs and nFETs. | 07-07-2011 |
20110171791 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A single crystal semiconductor substrate including an embrittlement layer is attached to a base substrate with an insulating layer interposed therebetween, and the single crystal semiconductor layer is separated at the embrittlement layer by heat treatment; accordingly, a single crystal semiconductor layer is fixed over the base substrate. The single crystal semiconductor layer is irradiated with a laser beam so that the single crystal semiconductor layer is partially melted and then is re-single crystallized, whereby crystal defects are removed. In addition, an island-shaped single crystal semiconductor layer for forming an n-channel transistor is channel-doped using a photomask and then is etched back using the photomask so that the island-shaped single crystal semiconductor layer for forming an n-channel transistor is thinner than the island-shaped single crystal semiconductor layer for forming a p-channel transistor. | 07-14-2011 |
20110230018 | SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - The purpose of the present invention is to provide a reliable semiconductor device comprising TFTs having a large area integrated circuit with low wiring resistance. One of the features of the present invention is that an LDD region including a region which overlaps with a gate electrode and a region which does not overlap with the gate electrode is provided in one TFT. Another feature of the present invention is that gate electrode comprises a first conductive layer and a second conductive layer and portion of the gate wiring has a clad structure comprising the first conductive layer and the second conductive layer with a low resistance layer interposed therebetween | 09-22-2011 |
20120040501 | METHOD OF FABRICATING A SEMICONDUCTOR DEVICE - There is provided a thin film transistor having improved reliability. A gate electrode includes a first gate electrode having a taper portion and a second gate electrode with a width narrower than the first gate electrode. A semiconductor layer is doped with phosphorus of a low concentration through the first gate electrode. In the semiconductor layer, two kinds of n | 02-16-2012 |
20120108017 | THRESHOLD VOLTAGE ADJUSTMENT THROUGH GATE DIELECTRIC STACK MODIFICATION - Multiple types of gate stacks are formed on a doped semiconductor well. A high dielectric constant (high-k) gate dielectric is formed on the doped semiconductor well. A metal gate layer is formed in one device area, while the high-k gate dielectric is exposed in other device areas. Threshold voltage adjustment oxide layers having different thicknesses are formed in the other device areas. A conductive gate material layer is then formed over the threshold voltage adjustment oxide layers. One type of field effect transistors includes a gate dielectric including a high-k gate dielectric portion. Other types of field effect transistors include a gate dielectric including a high-k gate dielectric portion and a first threshold voltage adjustment oxide portions having different thicknesses. Field effect transistors having different threshold voltages are provided by employing different gate dielectric stacks and doped semiconductor wells having the same dopant concentration. | 05-03-2012 |
20120129302 | FABRICATING PHOTONICS DEVICES FULLY INTEGRATED INTO A CMOS MANUFACTURING PROCESS - Disclosed are process enhancements to fully integrate the processing of a photonics device into a CMOS manufacturing process flow. A CMOS wafer may be divided into different portions. One of the portions is for the CMOS devices and one or more other portions are for the photonics devices. The photonics devices include a ridged waveguide and a germanium photodetector. The germanium photodetector may utilize a seeded crystallization from melt process so there is more flexibility in the processing of the germanium photodetector. | 05-24-2012 |
20120252175 | Stressed Source/Drain CMOS and Method for Forming Same - A complementary metal-oxide semiconductor (CMOS) structure includes a substrate and a P-type field effect transistor (FET) and an N-type FET disposed adjacent to one another on the substrate. Each FET includes a silicon-on-insulator (SOI) region, a gate electrode disposed on the SOI region, a source stressor, and a drain stressor disposed across from the source stressor relative to the gate electrode, wherein proximities of the source stressor and the drain stressor to a channel of a respective FET are substantially equal. | 10-04-2012 |
20120276695 | Strained thin body CMOS with Si:C and SiGe stressor - A method is disclosed which is characterized as being process integration of raised source/drain and strained body for ultra thin planar and FinFET CMOS devices. NFET and PFET devices have their source/drain raised by selective epitaxy with in-situ p-type doped SiGe for the PFET device, and in-situ n-type doped Si:C for the NFET device. Such raised source/drains offer low parasitic resistance and they impart a strain onto the device bodies of the correct sign for respective carrier, electron or hole, mobility enhancement. | 11-01-2012 |
20130005095 | ETSOI CMOS With Back Gates - A method to fabricate a structure includes providing a silicon-on-insulator wafer, implanting through a semiconductor layer and an insulating layer a functional region having a first type of conductivity to be adjacent to a top surface of the substrate; implanting within the functional region through the semiconductor layer and the insulating layer an electrically floating back gate region having a second type of conductivity; forming isolation regions in the semiconductor layer; forming first and second transistor devices to have the same type of conductivity over the semiconductor layer such that one of the transistor devices overlies the implanted back gate region and the other one of the transistor devices overlies only the underlying top surface of the functional region not overlapped by the implanted back gate region; and providing an electrical contact to the functional region for applying a bias voltage. | 01-03-2013 |
20130065366 | SOI INTEGRATED CIRCUIT COMPRISING ADJACENT CELLS OF DIFFERENT TYPES - An integrated circuit on a semiconductor substrate has logic gates comprising FDSOI-type transistors made on said substrate, including at least one first transistor comprising a gate with a first work function, and including a transistor comprising a second work function, a memory including memory cells, each memory cell comprising FDSOI type transistors, including at least one third nMOS transistor with a gate presenting a third work function, the third transistor comprising a buried insulating layer and a ground plane at least one fourth pMOS transistor with a gate presenting said third work function, the fourth transistor comprising a buried insulating layer and a ground plane, the ground planes of the third and fourth transistors being made in a same well separating these ground planes from said substrate. | 03-14-2013 |
20130122665 | Method of Manufacturing a Thin Box Metal Backgate Extremely Thin SOI Device - SOI structures with silicon layers less than 20 nm thick are used to form ETSOI semiconductor devices. ETSOI devices are manufactured using a thin tungsten backgate encapsulated by thin nitride layers to prevent metal oxidation, the tungsten backgate being characterized by its low resistivity. The structure includes at least one FET having a gate stack formed by a high-K metal gate and a tungsten region superimposed thereon, the footprint of the gate stack utilizing the thin SOI layer as a channel. The SOI structure thus formed controls the Vt variation from the thin SOI thickness and dopants therein. The ETSOI high-K metal backgate fully depleted device in conjunction with the thin BOX provides an excellent short channel control and lowers the drain induced bias and sub-threshold swings. The structure supports the evidence of the stability of the wafer having a tungsten film during thermal processing, during STI and contact formation. | 05-16-2013 |
20130164891 | HIGH DENSITY BUTTED JUNCTION CMOS INVERTER, AND MAKING AND LAYOUT OF SAME - A method of manufacturing a butted junction CMOS inverter with asymmetric complementary FETS on an SOI substrate may include: forming a butted junction that physically contacts a first drain region of a first FET and a second drain region of a second complementary FET on the SOI substrate, where the butted junction is disposed medially to a first channel region of the first FET and a second channel region of the second complementary FET; implanting a first halo implant on only a source side of the first channel region, to form a first asymmetric FET; and forming a second halo implant on only a source side of the second channel region of the second complementary FET, to form a second asymmetric complementary FET. | 06-27-2013 |
20140024181 | SEMICONDUCTOR STRUCTURE HAVING NFET EXTENSION LAST IMPLANTS - A method of forming a semiconductor structure which includes an extremely thin silicon-on-insulator (ETSOI) semiconductor structure having a PFET portion and an NFET portion, a gate structure in the PFET portion and the NFET portion, a high quality nitride spacer adjacent to the gate structures in the PFET portion and the NFET portion and a doped faceted epitaxial silicon germanium raised source/drain (RSD) in the PFET portion. An amorphous silicon layer is formed on the RSD in the PFET portion. A faceted epitaxial silicon RSD is formed on the ETSOI adjacent to the high quality nitride in the NFET portion. The amorphous layer in the PFET portion prevents epitaxial growth in the PFET portion during formation of the RSD in the NFET portion. Extensions are ion implanted into the ETSOI underneath the gate structure in the NFET portion. | 01-23-2014 |
20140038369 | METHOD OF FORMING FIN-FIELD EFFECT TRANSISTOR (finFET) STRUCTURE - Various embodiments include methods of forming semiconductor structures. In one embodiment, a method includes: providing a precursor structure including a substrate and a set of fins overlying the substrate; forming a dummy epitaxy between the fins in the set of fins; masking a first group of fins in the set of fins and the dummy epitaxy between the first group of fins in the set of fins; removing the dummy epitaxy to expose a second group of the fins; forming a first in-situ doped epitaxy between the exposed fins; masking the second group of fins in the set of fins and the in-situ doped epitaxy between the second group of fins in the set of fins; unmasking the first group of fins; removing the dummy epitaxy layer between the first group of fins to expose of the first group of fins; and forming a second in-situ doped epitaxy between the exposed fins. | 02-06-2014 |
20140080268 | FABRICATING PHOTONICS DEVICES FULLY INTEGRATED INTO A CMOS MANUFACTURING PROCESS - Disclosed are process enhancements to fully integrate the processing of a photonics device into a CMOS manufacturing process flow. A CMOS wafer may be divided into different portions. One of the portions is for the CMOS devices and one or more other portions are for the photonics devices. The photonics devices include a ridged waveguide. One or more process steps may be performed simultaneously on the CMOS devices and the photonics devices. | 03-20-2014 |
20140080269 | FABRICATING PHOTONICS DEVICES FULLY INTEGRATED INTO A CMOS MANUFACTURING PROCESS - Disclosed are process enhancements to fully integrate the processing of a photonics device into a CMOS manufacturing process flow. A CMOS wafer may be divided into different portions. One of the portions is for the CMOS devices and one or more other portions are for the photonics devices. The photonics devices include a ridged waveguide and a germanium photodetector. The germanium photodetector may utilize a seeded crystallization from melt process so there is more flexibility in the processing of the germanium photodetector. | 03-20-2014 |
20140087525 | COMPLEMENTARY METAL OXIDE SEMICONDUCTOR TRANSISTOR AND FABRICATING METHOD THEREOF - A fabricating method of CMOS transistor includes following steps. A first gate and a second gate are formed on a substrate. A gate insulator is formed on the substrate to cover the first and second gates. A first source, a first drain, a second source, and a second drain are formed on the gate insulator. The first source and the first drain are above the first gate. The second source and the second drain are above the second gate. A first channel layer and a mask layer are formed on the gate insulator. The mask layer is on the first channel layer. The first channel layer is above the first gate and contacts with the first source and the first drain. A second channel layer is formed on the gate insulator. The second channel layer is above the second gate and contacts with the second source and the second drain. | 03-27-2014 |
20140099756 | THIN FILM TRANSISTOR AND FABRICATING METHOD - A thin-film transistor comprises a semiconductor panel, a dielectric layer, a semiconductor film layer, a conduct layer, a source and a drain. The semiconductor panel comprises a base, an intra-dielectric layer, at least one metal wire layer and at least one via layer. The dielectric layer is stacked on the semiconductor panel. The semiconductor film layer is stacked on the dielectric layer. The conduct layer is formed on the semiconductor film layer. The source is formed on the via of the vias that is adjacent to and connects to the gate via. The drain is formed on another via of the vias that is adjacent to and connects to the gate via. A fabricating method for a thin-film transistor with metal-gates and nano-wires is also disclosed. | 04-10-2014 |
20140206156 | FINFET DEVICE AND METHOD OF MANUFACTURING SAME - A semiconductor device and method for fabricating a semiconductor device is disclosed. An exemplary semiconductor device includes a substrate including a fin structure disposed over the substrate. The fin structure includes one or more fins. The semiconductor device further includes an insulation material disposed on the substrate. The semiconductor device further includes a gate structure disposed on a portion of the fin structure and on a portion of the insulation material. The gate structure traverses each fin of the fin structure. The semiconductor device further includes a source and drain feature formed from a material having a continuous and uninterrupted surface area. The source and drain feature includes a surface in a plane that is in direct contact with a surface in a parallel plane of the insulation material, each of the one or more fins of the fin structure, and the gate structure. | 07-24-2014 |
20140308781 | DUAL EPITAXIAL INTEGRATION FOR FinFETS - A dual epitaxial integration process for FinFET devices. First and second pluralities of fins and gates are formed, with some of the fins and gates being for NFETs and some of the fins and gates being for PFETs. A first layer of a hard mask material selected from the group consisting of titanium nitride, tungsten nitride, tantalum nitride, amorphous carbon and titanium carbide is deposited over the NFETs and PFETs. The hard mask material is removed from one of the NFETs and PFETs and a first source and drain material is epitaxially deposited on the fins. A second layer of the hard mask material is deposited over the NFETs and PFETs. The first and second layers of the hard mask material are removed from the other of the NFETs and PFETs and a second source and drain material is deposited on the fins. | 10-16-2014 |
20140315357 | METHOD OF MANUFACTURING AN LTPS ARRAY SUBSTRATE - The present disclosure discloses a method of manufacturing the LTPS array substrate, comprising: depositing a polysilicon layer and an amorphous silicon layer on the substrate successively and crystallizing the amorphous silicon layer to form the polysilicon layer by laser annealing; coating a photoresist layer covering the PMOS area, NMOS area and TFT area of the polysilicon layer; forming a polysilicon pattern and a channel by dry etching the polysilicon layer, then removing the regions of the photoresist layer which are thinner and covering the NMOS area and the TFT area by ashing, the region of the photoresist layer covering the PMOS area is remained. The present disclosure saves the cost of the equipment, improves the yield, reduces the design defect and the process difficulty of the conventional process using 8 photomasks. | 10-23-2014 |
20140357027 | METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - The present invention discloses a method for manufacturing a semiconductor device, comprising: forming a gate stacked structure on a substrate; forming a source/drain region and a gate sidewall spacer at both sides of the gate stacked structure; depositing a Nickel-based metal layer at least in the source/drain region; performing a first annealing so that the silicon in the source/drain region reacts with the Nickel-based metal layer to form a Ni-rich phase of metal silicide; performing an ion implantation by implanting doping ions into the Ni-rich phase of metal silicide; performing a second annealing so that the Ni-rich phase metal silicide is transformed into a Nickel-based metal silicide, and meanwhile, forming a segregation region of the doping ions at an interface between the Nickel-based metal silicide and the source/drain region. The method according to the present invention performs the annealing after implanting the doping ions into the Ni-rich phase of metal silicide, thereby improving the solid solubility of the doping ions and forming a segregation region of highly concentrated doping ions, thus the SBH of the metal-semiconductor contact between the Nickel-based metal silica and the source/drain region is effectively reduced, the contact resistance is decreased, and the driving capability of the device is improved. | 12-04-2014 |
20150050785 | METHOD OF FORMING A COMPLEMENTARY METAL-OXIDESEMICONDUCTOR (CMOS) DEVICE - A complementary metal-oxide-semiconductor (CMOS) device and methods of formation thereof are disclosed. In a particular example, a method of forming a CMOS device includes forming a first layer on an extension layer of a wafer, forming a first gate on a portion of the first layer, and forming an expansion region proximate to the extension layer. The method also includes removing a portion of the first gate to create a cavity and removing a portion of the first layer to extend the cavity to the extension layer. | 02-19-2015 |
20150093861 | METHOD FOR THE FORMATION OF CMOS TRANSISTORS - An SOI substrate includes first and second active regions separated by STI structures and including gate stacks. A spacer layer conformally deposited over the first and second regions including the gate stacks is directionally etched to define sidewall spacers along the sides of the gate stacks. An oxide layer and nitride layer are then deposited. Using a mask, the nitride layer over the first active region is removed, and the mask and oxide layer are removed to expose the SOI substrate in the first active region. Raised source-drain structures are then epitaxially grown adjacent the gate stacks in the first active region and a protective nitride layer is deposited. The masking, nitride layer removal, and oxide layer removal steps are then repeated to expose the SOI in the second active region. Raised source-drain structures are then epitaxially grown adjacent the gate stacks in the second active region. | 04-02-2015 |
20150140743 | CMOS WITH DUAL RAISED SOURCE AND DRAIN FOR NMOS AND PMOS - An apparatus and a method for creating a CMOS with a dual raised source and drain for NMOS and PMOS. The spacers on both stack gates are of equal thickness. In this method, a first insulating layer is formed on the surface. The first region is then masked while the other region has the first layer etched away and has an epitaxial source and drain grown on the region. A second layer is formed to all exposed surfaces. The second region is then masked while the first region is etched away. The epitaxial source and drain is formed on the first region. The second region can also be masked by adding a thin layer of undoped silicon and then oxidize it. Another way to mask the second region is to use a hard mask. Another way to form the second source and drain is to use amorphous material. | 05-21-2015 |
20150140744 | CMOS WITH DUAL RAISED SOURCE AND DRAIN FOR NMOS AND PMOS - An apparatus and a method for creating a CMOS with a dual raised source and drain for NMOS and PMOS. The spacers on both stack gates are of equal thickness. In this method, a first insulating layer is formed on the surface. The first region is then masked while the other region has the first layer etched away and has an epitaxial source and drain grown on the region. A second layer is formed to all exposed surfaces. The second region is then masked while the first region is etched away. The epitaxial source and drain is formed on the first region. The second region can also be masked by adding a thin layer of undoped silicon and then oxidize it. Another way to mask the second region is to use a hard mask. Another way to form the second source and drain is to use amorphous material. | 05-21-2015 |
20150147853 | CMOS WITH DUAL RAISED SOURCE AND DRAIN FOR NMOS AND PMOS - An apparatus and a method for creating a CMOS with a dual raised source and drain for NMOS and PMOS. The spacers on both stack gates are of equal thickness. In this method, a first insulating layer is formed on the surface. The first region is then masked while the other region has the first layer etched away and has an epitaxial source and drain grown on the region. A second layer is formed to all exposed surfaces. The second region is then masked while the first region is etched away. The epitaxial source and drain is formed on the first region. The second region can also be masked by adding a thin layer of undoped silicon and then oxidize it. Another way to mask the second region is to use a hard mask. Another way to form the second source and drain is to use amorphous material. | 05-28-2015 |
20150325481 | CMOS IMPLEMENTATION OF GERMANIUM AND III-V NANOWIRES AND NANORIBBONS IN GATE-ALL-AROUND ARCHITECTURE - Architectures and techniques for co-integration of heterogeneous materials, such as group III-V semiconductor materials and group IV semiconductors (e.g., Ge) on a same substrate (e.g. silicon). In embodiments, multi-layer heterogeneous semiconductor material stacks having alternating nanowire and sacrificial layers are employed to release nanowires and permit formation of a coaxial gate structure that completely surrounds a channel region of the nanowire transistor. In embodiments, individual PMOS and NMOS channel semiconductor materials are co-integrated with a starting substrate having a blanket layers of alternating Ge/III-V layers. In embodiments, vertical integration of a plurality of stacked nanowires within an individual PMOS and individual NMOS device enable significant drive current for a given layout area. | 11-12-2015 |
20150325487 | METHOD FOR THE FORMATION OF FIN STRUCTURES FOR FINFET DEVICES - On a first semiconductor material substrate, an overlying sacrificial layer formed of a second semiconductor material is deposited. In a first region, a first semiconductor material region is formed over the sacrificial layer. In a second region, a second semiconductor material region is formed over the sacrificial layer. The first semiconductor material region is patterned to define a first FinFET fin. The second semiconductor material region is patterned to define a second FinFET fin. The fins are each covered with a cap and sidewall spacer. The sacrificial layer formed of the second semiconductor material is then selectively removed to form an opening below each of the first and second FinFET fins (with those fins being supported by the sidewall spacers). The openings below each of the fins are then filled with a dielectric material that serves to isolate the semiconductive materials of the fins from the substrate. | 11-12-2015 |
20160020154 | SIMPLIFIED MULTI-THRESHOLD VOLTAGE SCHEME FOR FULLY DEPLETED SOI MOSFETS - A method for semiconductor fabrication includes providing channel regions on a substrate including at least one Silicon Germanium (SiGe) channel region, the substrate including a plurality of regions including a first region and a second region. Gate structures are formed for a first n-type field effect transistor (NFET) and a first p-type field effect transistor (PFET) in the first region and a second NFET and a second PFET in the second region, the gate structure for the first PFET being formed on the SiGe channel region. The gate structure for the first NFET includes a gate material having a first work function and the gate structures for the first PFET, second NFET and second PFET include a gate material having a second work function such that multi-threshold voltage devices are provided. | 01-21-2016 |
20160035843 | CMOS IN SITU DOPED FLOW WITH INDEPENDENTLY TUNABLE SPACER THICKNESS - A method for manufacturing a microelectronic device with transistors of different types having raised source and drain regions and different overlap regions. | 02-04-2016 |
20160042952 | Method for Semiconductor Device Fabrication - A method of forming a semiconductor device includes receiving a substrate with a gate structure and forming a spacer layer over the substrate and the gate structure. The method further includes implanting carbon into the spacer layer at an angle tilted away from a first direction perpendicular to a top surface of the substrate, which increases etch resistance of the spacer layer on sidewalls of the gate structure. The method optionally includes implanting germanium into the spacer layer at the first direction, which decreases etch resistance of the spacer layer overlaying the gate structure and the substrate. The method further includes etching the spacer layer to expose the gate structure, resulting in a first portion of the spacer layer on the sidewalls of the gate structure. Due to increased etch resistance, the first portion of the spacer layer maintains its profile and thickness in subsequent fabrication processes. | 02-11-2016 |
20160049339 | BLOCK PATTERNING PROCESS FOR POST FIN - A method of reducing etch time needed for patterning an organic planarization layer (OPL) in a block mask stack so as to minimize damages to gate structures and fin structures in a block mask patterning process is provided. The block mask stack including an OPL, a developable antireflective coating (DARC) layer atop the OPL and a photoresist layer atop the DARC layer is employed to mask one conductivity type of FinFET while exposing the other conductivity type FinFET during source/drain ion implantation. The OPL is configured to have a minimum thickness sufficient to fill in spaces between semiconductor fins and to cover the semiconductor fins. The DARC layer is configured to planarize topography of semiconductor fins so as to provide a planar top surface for the ensuing lithography and etch processes. | 02-18-2016 |
20160079127 | FULLY-DEPLETED SILICON-ON-INSULATOR TRANSISTORS - A fully-depleted silicon-on-insulator (FDSOI) semiconductor structure includes: a first PFET, a second PFET, and a third PFET each having a different threshold voltage and each being over an n-well that is biased to a first voltage; and a first NFET, a second NFET, and a third NFET each having a different threshold voltage and each being over a p-type substrate that is biased to a second voltage. The second voltage is different than the first voltage. | 03-17-2016 |
20160079128 | METHOD TO CO-INTEGRATE OPPOSITELY STRAINED SEMICONDUCTOR DEVICES ON A SAME SUBSTRATE - Methods and structures for forming localized, differently-strained regions in a semiconductor layer on a substrate are described. An initial, unstrained, semiconductor-on-insulator substrate may be processed to form the differently-strained regions in the original semiconductor layer. The differently-strained regions may have opposite types of strain. The strains in the different regions may be formed independently. | 03-17-2016 |
20160086803 | METHOD FOR FABRICATING SEMICONDUCTOR LAYERS INCLUDING TRANSISTOR CHANNELS HAVING DIFFERENT STRAIN STATES, AND RELATED SEMICONDUCTOR LAYERS - Methods of fabricating a semiconductor structure include providing a semiconductor-on-insulator (SOI) substrate including a base substrate, a strained stressor layer above the base substrate, a surface semiconductor layer, and a dielectric layer between the stressor layer and the surface semiconductor layer. Ions are implanted into or through a first region of the stressor layer, and additional semiconductor material is formed on the surface semiconductor layer above the first region of the stressor layer. The strain state in the first region of the surface semiconductor layer above the first region of the stressor layer is altered, and a trench structure is formed at least partially into the base substrate. The strain state is altered in a second region of the surface semiconductor layer above the second region of the stressor layer. Semiconductor structures are fabricated using such methods. | 03-24-2016 |
20160111337 | STRAINED STACKED NANOSHEET FETS AND/OR QUANTUM WELL STACKED NANOSHEET - Exemplary embodiments provide for fabricating a biaxially strained nanosheet. Aspects of the exemplary embodiments include: growing an epitaxial crystalline initial superlattice having one or more periods, each of the periods comprising at least three layers, an active material layer, a first sacrificial material layer and a second sacrificial material layer, the first and second sacrificial material layers having different material properties; in each of the one or more periods, placing each of the active material layers between the first and second sacrificial material layers, wherein lattice constants of the first and second sacrificial material layers are different than the active material layer and impose biaxial stress in the active material layer; selectively etching away all of the first sacrificial material layers thereby exposing one surface of the active material for additional processing, while the biaxial strain in the active material layers is maintained by the second sacrificial material layers; and selectively etching away all of the second sacrificial material layers thereby exposing a second surface of the active material layers for additional processing. | 04-21-2016 |
20160111517 | DUAL GATE STRUCTURE - Methods for forming a dual gate structure for a vertical TFT are described. The dual gate structure may be formed by performing a first etching process that includes forming a first set of trenches by etching a first set of oxide pillars to a first depth and forming a second set of trenches by etching a second set of oxide pillars to a second depth higher than the first depth, forming a first set of gate structures within the first set of trenches, forming a second set of gate structures within the second set of trenches, performing a second etching process that includes forming a third set of trenches by etching the first set of gate structures from a second initial depth to a third depth and forming a fourth set of trenches by etching the second set of gate structures to a fourth depth higher than the third depth. | 04-21-2016 |