Class / Patent application number | Description | Number of patent applications / Date published |
385052000 | With alignment device | 36 |
20080292245 | SELF-ALIGNING OPTICAL CONNECTOR SYSTEMS AND METHODS - Self-aligning optical connectors, systems, and methods for connecting optically-transmissive elements are disclosed. In one embodiment, a connector includes a first component, a second component connected to the first component, and an optomechanical element. The optomechanical element is positioned adjacent and between said first and second components such that a portion of the optomechanical element is exposed to a leakage light when the first and second components are misaligned. The exposed portion includes a photosensitive material configured to at least attempt to change a dimension when exposed to the leakage light. In operation, the optomechanical element exerts an alignment force on at least one of the first and second components tending to align the first and second components when the exposed portion of the optomechanical element is exposed to the leakage light. | 11-27-2008 |
20090028506 | Passive Alignment Using Elastic Averaging In Optoelectronics Applications - In an optoelectronic assembly in which one or more beam paths are to be aligned with a corresponding number of active optical elements, the cooperation between flexible alignment features and fixed alignment features achieves elastic averaging so as to provide the target accuracy. By averaging dimensional and positional errors over a large number of localized couplings of the flexible and fixed alignment features, elastic averaging provides the same accuracy as the more costly and complex kinematic alignment techniques. | 01-29-2009 |
20090046980 | SYSTEM AND METHOD FOR POSITIONING A PROBE - An adapter couples a length of optical fiber to a hollow probe and to an optical coherence tomography instrument. The length of optical fiber may be greater than the than the length of the adapter itself. The optical fiber is fixed to an optical coupler at a proximal end of the adapter and may be maintained in a curved configuration by features located in an internal cavity of the adapter. An optical fiber advance mechanism be used to advance and/or retract the length of optical fiber to align it within the hollow probe. | 02-19-2009 |
20090087145 | TWO SUBSTRATE PARALLEL OPTICAL SUB-ASSEMBLY - There is provided an optical assembly and a method for assembling components of the optical assembly, the method comprising: providing a structure for guiding light; providing a plurality of optical fibers embedded in a fixed arrangement in the structure, the optical fibers for coupling the light from a coupling surface the structure; abutting a first package against the coupling surface, such that each one of multiple elements comprised in the first package is substantially aligned with each one of a first group of optical fibers in the plurality of optical fibers; and abutting a second package against the coupling surface, adjacent to the first package, and such that: the first and the second package are spaced apart by a gap; and each one of multiple elements comprised in the second package is substantially aligned with each one of a second group of optical fibers in the plurality of optical fibers, the gap providing a tolerance in a position of any one of: each one of the elements in the packages; the packages with respect to each other; and each one of the packages with respect to the structure. | 04-02-2009 |
20090087146 | METHOD FOR ASSEMBLING A TWO SUBSTRATE PARALLEL OPTICAL SUB-ASSEMBLY - There is provided an optical assembly and a method for assembling components of the optical assembly, the method comprising: providing a structure for guiding light; providing a plurality of optical fibers embedded in a fixed arrangement in the structure, the optical fibers for coupling the light from a coupling surface the structure; abutting a first package against the coupling surface, such that each one of multiple elements comprised in the first package is substantially aligned with each one of a first group of optical fibers in the plurality of optical fibers; and abutting a second package against the coupling surface, adjacent to the first package, and such that: the first and the second package are spaced apart by a gap; and each one of multiple elements comprised in the second package is substantially aligned with each one of a second group of optical fibers in the plurality of optical fibers, the gap providing a tolerance in a position of any one of: each one of the elements in the packages; the packages with respect to each other; and each one of the packages with respect to the structure. | 04-02-2009 |
20090129728 | Microfluidic Connections - A junction is made between a first microfluidic substrate ( | 05-21-2009 |
20090148100 | Aligner Apparatus for Connecting Optical Waveguides - Apparatus which adjusts an optical connection between a waveguide and an optical interconnection component that launches light into the waveguide or receives light emitted from the waveguide. The apparatus includes: an excitation light element emitting light that causes the waveguide to fluoresce into the waveguide via the optical interconnection component; an observation unit that observes the waveguide from a side face, different from the end face into which light is launched into the waveguide or light having propagated through the waveguide is emitted, and which receives fluorescent light emitted by the waveguide; and a connection adjusting component that adjusts the optical connection between the optical interconnection component and the waveguide based on the intensity of the fluorescent light received at the light observing section. | 06-11-2009 |
20090304333 | Method and Apparatus for Accurately Aligning Optical Components - A first part has first, second and third inwardly-facing surface portions angularly spaced about an axis, and a second part has outwardly-facing fourth, fifth and sixth surface portions spaced angularly about the axis, a radial distance from the axis to each surface portion decreasing progressively in a given direction along the axis. Each of the fourth, fifth and sixth surface portions faces, is closely adjacent to, and is substantially congruent in shape with a respective one of the first, second and third surface portions. At least one of the first and second parts is an optical component. | 12-10-2009 |
20090317036 | METHODS FOR MOUNTING AN ELECTRO-OPTICAL COMPONENT IN ALIGNMENT WITH AN OPTICAL ELEMENT AND RELATED STRUCTURES - Mounting an electro-optical component ( | 12-24-2009 |
20090324173 | INTERFACE BETWEEN LIGHT SOURCE AND OPTICAL COMPONENT - An optical system includes an optical device having waveguides defined in a first light transmitting medium. The optical device includes stops extending upward from a laser platform. The system also includes a laser bar having a plurality of lasers. The laser bar is positioned on the platform such that each laser is aligned with one of the waveguides. The laser bar includes alignment trenches that each includes a secondary stop extending upward from a bottom of the alignment trench. The secondary stop includes layers of material having different composition. The stops each extend into an alignment trenches such that each stop contacts one of the secondary stops. | 12-31-2009 |
20090324174 | DEVICE CONSISTING OF AT LEAST ONE OPTICAL ELEMENT - An optical assembly comprises at least one optical element movable in at least two degrees of freedom and at least one actuator for adjusting the least one optical element; at least one sensor for sensing the position of the at least one element in at least two degrees of freedom and is characterised in that the at least one sensor is located at least substantially diagonally opposite to the least one actuator. | 12-31-2009 |
20100027940 | Method and System for Coupling Multimode Optical Fiber to an Optical Detector - A method for making a multimode fiber optic subassembly includes alignment of an optical detector with a fiber termination of an optical fiber. The output of the optical detector (e.g. photocurrent) can be measured from light being transmitted through the optical fiber and detected by the optical detector. The end of the optical fiber and/or the optical detector can be positioned and angularly oriented in order to obtain relative maximum or peak output of the optical detector for a given position and orientation. The output of the optical detector can be monitored while mechanically manipulating, e.g. bending, flexing, shaking and/or twisting, the optical fiber, in order to verify that the positional relationship between the end of the optical fiber and the optical detector corresponds to a position and/or orientation that provides stable output from the optical detector. If the optical detector output is not stable, the end of the multimode optical fiber and the optical detector can be moved, changing the position and/or the orientation of one or both, until the output of the optical detector is stable during manipulation. If the optical detector output is stable, the end of the multimode optical fiber is fixed to the optical detector. The resulting subassembly, a fiber optic pigtail, can be made by cutting the optical fiber a short distance from the optical detector. | 02-04-2010 |
20100054664 | Optical Fiber Splitter Module and Fiber Optic Array Therefor - An optical fiber splitter has a higher density fiber optic array that allows for smaller packaging. The optical fibers that extend from the optical fiber splitter have one end connectorized and their spacing at the other end reduced, thereby eliminating components that were heretofore required. A method of making the fiber optic array includes interleaving the optical fibers to reduce the overall dimensions of the fiber optic array and the fiber optic splitter. A tool is used to reduce the spacing of the optical fibers in the fiber optic array. | 03-04-2010 |
20100209049 | IMAGE PROFILE ANALYSIS (IPA) METHOD FOR PM FIBER ALIGNMENT - A method of aligning a polarization-maintaining optical fiber by image profile analysis is provided. The method of aligning a polarization-maintaining optical fiber may include analyzing the polarization-maintaining optical fiber by illuminating a side of the optical fiber; rotating the optical fiber at incremental rotation angles; obtaining an image profile of the optical fiber at each rotation angle such that a focal plane of the image profile is positioned within the optical fiber; measuring an image parameter at each rotation angle based on the respective image profile; and constructing a measured image parameter profile of the optical fiber as a function of rotation angle based on the measured image parameters. The method may also include constructing an approximated image parameter profile of the optical fiber as a function of rotation angle by curve-fitting a mathematical function to the measured image parameter profile. | 08-19-2010 |
20100290739 | ACTIVE ALIGNMENT METHOD FOR MULTI-CHANNEL OPTICAL TRANSMITTER AND RECEIVER - An active alignment method for a multi-channel optical transmitter and receiver is disclosed. The active alignment method for a multi-channel optical transmitter includes actively aligning an optical signal generator with an optical multiplexer based on optical outputs of a plurality of wavelengths from the optical signal generator and an optical output of the optical multiplexer, and actively aligning the optical multiplexer with a fiber optic coupler based on an optical output of the optical multiplexer and an optical output of the fiber optic coupler. | 11-18-2010 |
20110026882 | LENSED OPTICAL CONNECTOR WITH PASSIVE ALIGNMENT FEATURES - A simply constructed and economical optical connector, wherein a fiber ribbon or waveguide ribbon cable incorporates a plurality of projecting fiber or waveguide ends adapted to engage into a guiding feature in a structure that incorporates an array of microlenses, upon said structure being aligned with and attached to a ferrule housing the ribbon cable. The guiding feature enables apertures in the ferrule within which the projecting fiber or waveguide ends are guides towards engagement with guiding feature in the microlens containing structure, to be formed or dimensioned with relaxed tolerances relative to the fiber or waveguide ends, thereby considerable reducing manufacturing costs for the ferrule. | 02-03-2011 |
20110262074 | CONNECTOR ASSEMBLY INCLUDING A FLOATABLE LIGHT PIPE ASSEMBLY - A connector assembly configured to be positioned relative to a light-emitting element. The connector assembly includes a receptacle connector that has a member cavity and a base. The connector assembly also includes a light pipe (LP) structure that has input and output ends. The input end is configured to capture light emitted from the light-emitting element. The connector assembly also includes an alignment member that is received within the member cavity of the receptacle connector and is coupled to the LP structure. The alignment member is sized to float within the member cavity to control a relative position of the input end of the LP structure with respect to the base. | 10-27-2011 |
20120014648 | FERRULE FOR OPTICAL TRANSPORTS - The invention pertains to a ferrule for aligning optical transports within an optical connector for coupling to a mating optical connector for purposes of aligning the optical transports in the first connector with optical transports in the mating connector. The ferrule comprises a main body portion defining a longitudinal cavity running between a front face and the rear face of the main ferrule body. The cavity has an opening to a lateral side of the ferrule main body that permits the installation of optical transports into the cavity from a lateral direction (as well as still permitting longitudinal installation, if desired). A cover may be provided for closing off the lateral opening after the optical transports are installed in the cavity. | 01-19-2012 |
20130064507 | WAVELENGTH DIVISION MULTIPLEXING DEVICE - A technology for wavelength division multiplexing light of a plurality of different wavelengths into one or more optical fibers is disclosed. In a first main embodiment, the light is multiplexed and turned by a designated angle using two lens arrays and a flat surface that functions as a mirror. In a second embodiment, a waveguide-based combiner structure multiplexes and turns a plurality of light beams of different wavelengths. | 03-14-2013 |
20130121642 | METHOD FOR ALIGNING AND FASTENING AN OPTICAL FIBER COUPLED TO AN OPTO-ELECTRONIC COMPONENT - In the method, a slot is cut into a base, an optical fiber is disposed within the slot so that it touches neither the sides nor the bottom, a solidifiable product is deposited onto the optical fiber, a limited polymerization area of the solidifiable product is defined near the opto-electronic component, one part of the solidifiable product is partially solidified so as to allow the optical fiber a limited range of movement, the optical fiber is moved so as to align its optical axis with the optical axis of the opto-electronic component, and the solidifiable product is completely solidified so as to fasten the optical fiber within the slot. | 05-16-2013 |
20130266264 | OPTICAL MODULE AND METHOD FOR MAKING THE SAME - An optical module includes a module substrate; a first optical component disposed on the module substrate; and a second optical component disposed apart from the first optical component in a direction perpendicular to the module substrate, wherein the first optical component includes a first optical main part facing and optically connecting to the second optical component, and a first peripheral part located in the periphery of the first optical main part without facing the second optical component; the first peripheral part includes a first fiducial mark as a reference for a disposed position of the first optical component; the second optical component includes a second fiducial mark as a reference for a disposed position of the second optical component; and the first fiducial mark and the second fiducial mark are aligned on the same straight line when they are projected on to a plane parallel to the module substrate. | 10-10-2013 |
20130336616 | Beam Coupler Alignment System and Method - A beam coupler alignment system for a fiber laser system is disclosed. The system includes a focus adjust collimator assembly having an inner and outer housing assembly portion. The inner assembly includes a coupler housing assembly and a modified lens housing received within and adjustable relative to via a mechanism configured and arranged to apply an asymmetric binding force in a predictable and repeatable manner. A lever assembly contacts the lens housing and exerts an off-center (asymmetric) force relative to coupler housing assembly creating a friction bind eliminating X and Y axis movement yet allowing Z axis movement with minimal effort. The assembly may farther include an alignment mechanism configured and arranged to optically align an input collimator unit and an output collimator unit of a complex fiber laser system about a common optical axis using the proposed assembly. | 12-19-2013 |
20140037247 | APPARATUS FOR USE IN OPTOELECTRONICS HAVING A SANDWICHED LENS - According to an example, an apparatus for use in optoelectronics includes a bottom transparent layer, a top transparent layer having a top surface, a lens sandwiched between the bottom transparent layer and the top transparent layer, and a first alignment element attached to the top surface of the top transparent layer, wherein the first alignment element is offset with respect to the lens and is to mate with a mating alignment element on an optical transmission medium. | 02-06-2014 |
20140086533 | METHOD FOR ALIGNMENT BETWEEN TWO OPTICAL COMPONENTS - A method for aligning two optical assemblies comprises positioning a first optical assembly in relation to a second optical assembly and securing the first optical assembly to the second optical assembly. The positioning aligns a plurality of first alignment features of the first optical assembly to a plurality of second alignment features of the second optical assembly. Aligning the first alignment features to the second alignment features aligns the second optical assembly to a plurality of optical components on the first optical assembly. | 03-27-2014 |
20140093206 | HIGH-PRECISION PASSIVE ALIGNMENT OF OPTICAL COMPONENTS WITH OPTICAL WAVEGUIDES USING A COMMON ADAPTER - A method for aligning optical components comprised in an optical component assembly and optical waveguides comprised in an optical waveguide assembly according to a common optical axis and by using an adapter includes providing the optical component assembly with a first alignment structure comprising a cavity designed according to the position of the optical components within the optical component assembly; providing an adapter presenting a base surface comprising a first step structure; providing the optical waveguide assembly with a second alignment structure comprising a distinct step structure designed according to the position of the waveguides within the waveguides assembly; and positioning the optical component assembly, the optical waveguide assembly and the adapter, so that a sidewall of the cavity and the distinct step structure are put in contact with a sidewall of the first step structure. | 04-03-2014 |
20140093207 | ARRANGEMENT OF PHOTONIC CHIP AND OPTICAL ADAPTOR FOR COUPLING OPTICAL SIGNALS - An apparatus includes an optical adaptor having monolithically integrated optical elements and first micro-mechanical features, the latter defining at least a first horizontal reference surface and a first vertical reference surface; wherein the first horizontal reference surface is perpendicular to an optical plane, the latter being perpendicular the optical axis of the optical elements; and wherein the first vertical reference surface is perpendicular to the first horizontal reference surface and parallel to the optical axis. | 04-03-2014 |
20140093208 | HIGH-PRECISION PASSIVE ALIGNMENT OF OPTICAL COMPONENTS WITH OPTICAL WAVEGUIDES USING A COMMON ADAPTER - A method for aligning optical components comprised in an optical component assembly and optical waveguides comprised in an optical waveguide assembly according to a common optical axis and by using an adapter includes providing the optical component assembly with a first alignment structure comprising a cavity designed according to the position of the optical components within the optical component assembly; providing an adapter presenting a base surface comprising a first step structure; providing the optical waveguide assembly with a second alignment structure comprising a distinct step structure designed according to the position of the waveguides within the waveguides assembly; and positioning the optical component assembly, the optical waveguide assembly and the adapter, so that a sidewall of the cavity and the distinct step structure are put in contact with a sidewall of the first step structure. | 04-03-2014 |
20140093209 | Optical Fiber Assembly, Optical Probe, And Method For Manufacturing Optical Fiber Assembly - Provided is an optical fiber assembly with which flexibility in the vicinity of an alignment member can be maintained, as well as a method for manufacturing this optical fiber assembly, and an optical probe which uses this optical fiber assembly. This optical fiber assembly is equipped with: multiple optical fibers ( | 04-03-2014 |
20140169741 | OPTICAL PORT HAVING A COVER WITH A MOLDED-IN LENS - Disclosed are optical ports and devices having a cover with at least one molded-in lens and a mounting body having a recess for mounting the cover to the mounting body along with a mounting surface for securing an optical port. The molded-in optical lenses of the cover may be aligned with one or more active components for receiving or transmitting the optical signal. The active components may be mounted on a circuit board that may include an electrical tether. In one embodiment, the optical port includes a pocket having an alignment feature such as a piston that is translatable during mating. | 06-19-2014 |
20140169742 | OPTICAL PORT HAVING ONE OR MORE ALIGNMENT FEATURES - Disclosed are optical ports and devices using the optical ports. The optical port includes a mounting body having a first pocket and at least one mounting surface for securing the optical port, one or more optical elements, and a first alignment feature disposed in the pocket, wherein the alignment feature includes a piston that is translatable during mating. The one or more optical elements may be an integral portion of the mounting body or a discrete lens. In other embodiments, the mounting body may include a plurality of pockets and one of the pockets may include a magnet for securing a plug to the optical port. The optical port may optionally have a minimalist optical port footprint so that the complimentary mating optical plug engages a portion of the frame during mating. | 06-19-2014 |
20140193118 | OPTICAL MOVER WITH FUNCTIONS OF NANOMETER FINE ADJUSTMENT AND MICROMETER COARSE ADJUSTMENT - An optical mover with functions of nanometer fine adjustment and micrometer coarse adjustment is mainly used to align two optical elements for connecting two optical elements, such as connection of two optical fibers, connection of one optical fiber with a photo diode, or connection of one optical fiber and one optical waveguide. In using, one optical element is placed upon the supporting seat for fine position adjustment, and another optical element is fixed on an external retainer for aligning to the former optical element on the supporting seat. A coarse control button is firstly used to coarsely adjust the position of the former optical element to approximately align to the later optical element. Then a fine-adjusting button is used to fine adjust the position therebetween so as to well align the two optical elements to a desire level for further operation, such as connecting the two elements. | 07-10-2014 |
20140212094 | OPTICAL FIBER-BASED OPTICAL FUNCTIONAL DEVICE CARTRIDGE MODULE - A cartridge-type optical functional module can achieve excellent optical coupling and has an optical fiber-type module or a waveguide-type module. The present invention relates to a cartridge-type optical functional module which has: first and second optical fiber collimators; an optical functional object which has an optical fiber-type module or a waveguide-type module; and a base section. The optical functional object has a third collimator, and a first alignment mechanism for aligning the position of the third collimator in the optical functional object. | 07-31-2014 |
20140308007 | MICROMECHANICALLY ALIGNED OPTICAL ASSEMBLY - An optical assembly includes a combination of laser sources emitting radiation, focused by a combination of lenses into optical waveguides. The optical waveguide and the laser source are permanently attached to a common carrier, while at least one of the lenses is attached to a holder that is an integral part of the carrier, but is free to move initially. Micromechanical techniques are used to adjust the position of the lens and holder, and then fix the holder it into place permanently using integrated heaters with solder. | 10-16-2014 |
20150316730 | OPTICAL CONNECTOR AND CIRCUIT BOARD ASSEMBLIES - An exemplary optical connector assembly may include a substrate of an optical printed circuit board (OPCB) with at least one optical device thereon, the substrate including one or more recesses, an optical connector with one or more alignment members for coupling an end of an optical waveguide to the optical device, and one or more inserts, each having an orifice for receiving one of the one or more alignment members and each arranged to be received in one of the one or more recesses. When assembled, the one or more inserts may be received in the one or more recesses and the one or more alignment members may be received in the orifices of the one or more inserts thereby coupling the optical waveguide to the substrate to form the exemplary optical connector assembly. | 11-05-2015 |
20160062059 | ALIGNMENT OF RADIATION BEAMS - Apparatus and method are disclosed for co-aligning a number of laterally displaced radiation beams from respective radiation source outputs, each beam having a respective waveband. The apparatus comprises a collimating element for receiving each of said radiation beams with respective lateral displacements and a combining element for receiving each of said radiation beams passed by said collimating element. The apparatus further comprises a radiation source mount for positioning the radiation source outputs relative to the collimating element. The method comprises longitudinally positioning the radiation source outputs upon the mount, relative to the collimating element, in dependence upon the waveband of each beam, to cause the radiation beams passed by the combining element to be co-aligned. | 03-03-2016 |
20160070074 | PASSIVELY ALIGNING OPTICAL FIBERS WITH RESPECTIVE LIGHT SOURCES IN A PARALLEL OPTICAL COMMUNICATIONS MODULE - A parallel optical communications module is provided that passively simultaneously aligns ends of a plurality of optical fibers with respective light sources of the module. A fiber assembly of the module holds the ends of a plurality of optical fibers at precisely-defined locations relative to mating features of the assembly. An optical bench of the module has a plurality of light sources mounted thereon at precisely-defined locations relative to mating features of the optical bench. When the mating features of the fiber assembly are fully engaged with the mating features of the optical bench, the ends of the optical fibers are precisely aligned with the respective light sources with sufficient precision to meet tight tolerances associated with the smaller-diameter cores of single-mode optical fibers. | 03-10-2016 |