Entries |
Document | Title | Date |
20080317404 | HIGH CONTACT DENSITY MINIATURE CONNECTOR - A miniature high density connector including a thermoplastic insulating body having contact cavities for the insertion, the positioning and the retention of electrical, optical or electro-optical contacts, a back plate having clips for the locking of the contacts into the contact cavities of the insulating body, a receptacle shell constituting an interface element for coupling with a complementary mating connector having a flange for the assembly and the retention of the insulating body and the back plate in the receptacle shell, the back plate being movable and including a projecting dimple located on the side wall, making possible its locking into the receptacle shell. | 12-25-2008 |
20090028498 | Optical fiber connector - An optical fiber connector ( | 01-29-2009 |
20090202199 | OPTICAL MODULE - An optical module ( | 08-13-2009 |
20090252452 | Optical power delivery system - An optical transmission system comprising a laser light source arranged to emit light having a frequency ω; and an optical transmission line adapted to guide the light, wherein said optical transmission line includes a photonic bandgap optical fibre having a core guided mode at frequency ω and an attenuation band at a frequency of ω-13 THz. The optical transmission system suppresses Raman scattered light thereby allowing high optical powers to be transmitted through optical fibre. | 10-08-2009 |
20100014806 | OPTICAL CONNECTION COMPONENT - The present invention provides an optical connection component which comprises a solid state laser component for emitting a modulated beam of light in response to an applied electrical signal. The optical connection component also comprises an optical lens positioned relative to the solid state laser component at a predetermined position in which the optical lens reduces divergence of the emitted beam of light. The optical lens is formed at the predetermined position in a manner such that the optical lens is immobile relative to the solid state laser component. The optical connection component further comprises an optical waveguide having a core for guiding the light. The optical waveguide has first and second end-portions. The first end-portion is positioned for coupling the modulated light from the optical lens into the core. In addition, the optical connection component comprises a receiver for receiving the modulated light from the second end-portion of the optical waveguide and arranged for converting the modulated light into a corresponding electrical signal. | 01-21-2010 |
20100046883 | Coupling Device for Use in Optical Waveguides - An optical waveguide device comprises a plurality of mirrors, wherein at least one mirror comprises a first and second reflective end that reflect and transmit light. The plurality of mirrors comprises at least one first material having at least one first refractive index; an axis line; a first cladding comprising a second material having a second refractive index; a second cladding, formed above the first, comprising a third material having a third refractive index; a core comprising a fourth material; and a plurality of core parts formed within at least one of the first or second claddings. The fourth material has a fourth refractive index that is greater than the second and third refractive indices and the core parts have a plurality of core part ends coupled to one of the reflective ends where at least one core part end is approximately parallel to one of the reflective ends. | 02-25-2010 |
20100129027 | Optical Coupler for Rotating Catheter - An optical coupler for coupling to a rotating catheter has a housing with a rotatable distal face and a stationary proximal face. The distal face has an eccentric port and a central port. A lens is disposed inside the housing to intercept a rotating collection beam emerging from the eccentric port and to re-direct the collection beam to a focus proximal to the lens as the collection beam rotates. A beam re-director disposed between the lens and the distal face is oriented to direct a delivery beam toward the central port. | 05-27-2010 |
20100166365 | APPARATUS FOR COLLECTION AND TRASMISSION OF LIGHT - An apparatus is presented for capture and transfer of sunlight. The apparatus comprises a light capturing section, an optical fibre which comprises a first end, a second end and a light transferring section arranged between the ends, which light transferring section along its entire length has an essentially constant crosssectional area and which first end is connected to the light capturing section, and a body with essentially the same refractive index as the light transferring section. The second end of the optical fibre is connected to a first end of the body, the second end of the body, which is opposite the first end of the body, has a larger crosssectional area than the light transferring section and first and second ends of the body are essentially plane parallel. | 07-01-2010 |
20110013867 | Reconfigurable Materials for Photonic System Embodiment - A light guide device for steering an input light may include a PBC lattice having a input surface and a first surface. The input surface may receive the input light to cooperate with the first surface, and the PBC lattice may direct the input light to the first surface to output the light from the PBC lattice by a programmable lattice of defect. The PBC lattice may include a aperture adapted to be filled with fluid, and the PBC lattice may include a fluid valves adapted to cooperate with the aperture. The PBC lattice may include a layer of fluid to cooperate with the fluid valve and the aperture, and the PBC lattice may include a second surface for output of the light by reprogramming the lattice of defect. The PBC lattice may include a third surface for output of the light by reprogramming the lattice of defect, and the first surface may be substantially perpendicular to the input surface. | 01-20-2011 |
20110091153 | Device, System and Method for Optical Fiber Networks - The present invention relates to a device, system and method for construction of and use in optical fiber networks, such as an Air Blown Fiber (ABF) system. An optical device comprising a housing having arranged therein an optical fiber attachment is provided. Further, an optical transceiver having a port adapted for coupling light to/from an optical fiber attached to the optical fiber attachment, and an electrical interface connected to the optical transceiver are arranged in the housing, and the housing has a form factor adapted for air blown fiber systems. Further a method for constructing a fiber network is provided by blowing an optical device through a duct and connecting the optical device to a docking station. | 04-21-2011 |
20110255825 | Optical universal serial bus (USB) - Embodiments of the invention are directed to an optical USB (OUSB) to enhance the data rate of USB by adding super-high data rate (e.g. 10 Gbps) optical communication on top of its current specification so that backward compatibility is achievable. Mechanical tolerances may be achieved by using embedded lenses to expand a beam emerging from the connector prior to entering its mating connector and using an identical lens in the mating connector to collimate the beam back onto a fiber. | 10-20-2011 |
20120301074 | IMAGE RELAY WAVEGUIDE AND METHOD OF PRODUCING SAME - Described are embodiments of a process including patterning one or more reflectors on a surface of a substrate of a material, the surface oriented at a selected angle relative to a (100) crystallographic plane of the material, and etching one or more reflectors in the surface, each reflector including one or more reflective surfaces formed by (111) crystallographic planes of the material. Also described are process embodiments for forming a molded waveguide including preparing a waveguide mold, the waveguide mold comprising a master mold including one or more reflectors on a surface of a substrate of a master mold material, the surface oriented at a selected angle relative to a (100) crystallographic plane of the material, each reflector including one or more reflective surfaces formed by (111) crystallographic planes of the material, injecting a waveguide material into the waveguide mold, and releasing the molded waveguide from the waveguide mold. | 11-29-2012 |
20130064500 | Semiconductor Laser with Test Pads - A laser diode includes a junction surface configured to interface with an integrated optics slider. Cathode and anode electrical junctions are disposed on the junction surface. The cathode and anode electrical junctions are configured for electrical and mechanical coupling to the integrated optics slider. At least one test pad is disposed on the junction surface that is physically separate from and electrically coupled to one of the cathode and anode electrical junctions. The test pad is configured to be contacted by a test probe and is not configured for electrical or mechanical coupling to the integrated optics slider. | 03-14-2013 |
20130094802 | Differential Driver, Circuits and Devices Including the Same, and Method(s) of Manufacturing the Same - The present disclosure relates to a differential drive circuit. The differential drive circuit generally includes a differential driver, a first transmission line coupled to a first output node of the differential driver, and a second transmission line coupled to a second output node of the differential driver. A laser diode is coupled to the first and second transmission lines. The first and second transmission lines have different delays, lengths, or impedances. In some embodiments, the delay between the first transmission line and the second transmission line is 0.2-0.4 times a rise time or fall time of a signal on either transmission line. | 04-18-2013 |
20130108212 | MODE CONVERTING WAVEGUIDE FOR HEAT ASSISTED MAGNETIC RECORDING | 05-02-2013 |
20130121635 | DIRECT INTERLAYER OPTICAL COUPLER - In an MCM, an optical signal is conveyed by an optical waveguide disposed on a surface of a first substrate to an optical coupler having a vertical facet. This optical coupler has an optical mode that is different than the optical mode of the optical waveguide. For example, the spatial extent of the optical mode associated with the optical coupler may be larger, thereby reducing optical losses and sensitivity to alignment errors. Then, the optical signal is directly coupled from the vertical facet to a facing vertical facet of an identical optical coupler on another substrate, and the optical signal is conveyed in another optical waveguide disposed on the other substrate. | 05-16-2013 |
20130209029 | Spectral Broadening for DTS Application - An apparatus and method for use in distributed temperature sensing (DTS) systems to reduce coherent Rayleigh scattering in fiber optic cables by using photonic crystal fibers. | 08-15-2013 |
20140254981 | GRAPHENE PLASMONIC COMMUNICATION LINK - A signal transfer link includes a first plasmonic coupler, and a second plasmonic coupler spaced apart from the first plasmonic coupler to form a gap. An insulator layer is formed over end portions of the first and second plasmonic couplers and in and over the gap. A plasmonic conductive layer is formed over the gap on the insulator layer to excite plasmons to provide signal transmission between the first and second plasmonic couplers. | 09-11-2014 |
20150016774 | METHOD FOR REGULATING PATTERNED PLASMONIC UNDERLAYER - The embodiments disclose a stack feature of a stack configured to confine optical fields within and to a patterned plasmonic underlayer in the stack configured to guide light from a light source to regulate optical coupling. | 01-15-2015 |
20150147025 | METHOD OF OPTIMIZING MULTICORE OPTICAL FIBER AND DEVICES UTILIZING SAME - A method of designing multicore optical fibers is provided. A geometry for the core arrangement is selected. At least one of i) core width, ii) core position with respect to other cores, or iii) orientation with respect to incoming, outgoing, or at least partially traversing radiation such as an inscription beam are optimized. A design space is created in which no core shadows or blocks any other core with respect to incoming, outgoing, or at least partially traversing radiation. Optimization generally includes tracing tangents of core widths against an orthogonal axis and ensuring no overlap of space between said tangents on said axis. For twisted fiber, optimization also includes optimizing effective length and twist rate of the fiber. Devices entailing such fibers, such as multicore pump coupler and multicore fiber distributed feedback laser, are also contemplated. | 05-28-2015 |
20150293312 | OPTICAL PORT ADAPTED TO MATE WITH PLUGS OF DIFFERENT TYPES - An optical port is provided that is adapted to mate with optical plugs of at least first and second types. For example, the first type of optical plug may be a VLF-type optical plug and the second type of optical plug may be a non-VLF-type optical plug. The optical port has at least one first latching feature for engaging at least one first latching feature of a VLF-type optical plug with which the optical port may be mated. The optical port has at least one second latching feature for engaging at least one second latching feature of a non-VLF-type optical plug with which the optical port may be mated. | 10-15-2015 |
20150338578 | SYSTEMS AND METHODS FOR CONVERTING LEGACY MULTIMODE LINKS TO LONGER-WAVELENGTH LINKS - Systems and methods are disclosed for converting a legacy 850 nm optical-fiber link in a data center to a 1310 nm optical-fiber link. The methods include accessing the primary optical fiber of the legacy 850 nm optical-fiber link and optically connecting thereto one or more sections of compensating optical fiber. The resulting 1310 nm link has a peak wavelength of nominally 1310 nm and supports a bandwidth of greater than 2 GHz·km and a data rate of at least 25 Gb/s. | 11-26-2015 |
20190146136 | LIGHTING ARRANGEMENT WITH LIGHT GUIDE | 05-16-2019 |