Class / Patent application number | Description | Number of patent applications / Date published |
385049000 | Fiber to thin film devices | 30 |
20090003770 | VERTICAL OPTICAL COUPLING STRUCTURE - The present disclosure provides an apparatus, method of manufacturing an apparatus, and method for operation of the same. The apparatus, in one embodiment, includes an optical coupling structure disposed within a cladding region, wherein the optical coupling structure includes a first guiding portion and a second guiding portion. In this embodiment, the first guiding portion is located on a first plane and tapers from a first greater width to a first lesser width in a first direction. The second guiding portion, in turn, is located on a second different plane and tapers from a second greater width to a second lesser width in a second opposite direction. | 01-01-2009 |
20090028505 | Optical Fiber Microscopy Launch System and Method - A launch system and method for microscopy having an optical fiber positioned proximate a sample slide with an optical fiber mounting element so as to deliver an EMR from the optical fiber into a first sample slide and to a surface of a second sample slide at a critical angle for total internal reflection at an interface of the surface of the second sample slide and a sample positioned proximate to the surface of the second sample slide. | 01-29-2009 |
20090103868 | OPTICAL WAVEGUIDE MODULE - An optical waveguide bare module ( | 04-23-2009 |
20090162015 | STITCHES ELIMINATION STRUCTURE AND METHOD TO PROVIDE THE SAME - In one aspect, a planar illumination area includes two light-guide elements, each with an out-coupling region. At least a portion of each out-coupling region overlaps with at least a portion of the other. The overlapping region emits a substantially uniform light output power. | 06-25-2009 |
20090245731 | Optical Fiber Microscopy Launch System and Method - A sample slide, launch system, and method for microscopy having a fiber insertion portal terminating within the sample slide and having a fiber insertion axis such that when an optical fiber is inserted within the fiber insertion portal the optical fiber is positioned so to deliver an EMR to a surface of the sample slide at a desired angle. | 10-01-2009 |
20090317035 | Optical module,optical transmission system, and fabrication method for optical module - An optical module includes a substrate, one or a plurality of planar optical devices mounted on the substrate, and a waveguide block including one or a plurality of curved waveguides formed on a plane. The waveguide block is mounted on the substrate such that the plane on which the curved waveguides are formed is perpendicular to the substrate and the curved waveguides and an incidence face or an emitting face of the planar optical device are opposed to each other on one end face of the waveguide block. Further, the waveguide block is configured so that an optical fiber can be connected to the other end face of the waveguide block which is orthogonal to the one end face. | 12-24-2009 |
20100008628 | SLIM WAVEGUIDE COUPLING APPARATUS AND METHOD - In various embodiments, an illumination structure includes a discrete light source disposed proximate a bottom surface of a waveguide. A top mirror may be disposed above the discrete light source to convert modes of light emitted from the discrete light source into trapped modes, thereby increasing the coupling efficiency of the illumination structure. | 01-14-2010 |
20100086256 | LIGHT COUPLER BETWEEN AN OPTICAL FIBRE AND A WAVEGUIDE MADE ON AN SOI SUBSTRATE - A light coupler between an optical fiber ( | 04-08-2010 |
20100158442 | MODULE HAVING A PLURALITY OF CIRCUIT BOARDS STACKED WITH A PRESCRIBED DISTANCE THEREBETWEEN AND OPTICAL CONNECTOR FOR THE SAME - An optical connector has a body, a mirror provided within the body, an optical waveguide path, and a linking section. The optical waveguide path extends from a first end face exposed on a part of the surface of the body, bending via the mirror up to a second end face exposed on a part of the surface of the body not parallel to the first end face. The linking section is formed so as to include the first end, face and has a mechanism linking the fixing member first end face to the second end face of the optical waveguide path of the fixing member. | 06-24-2010 |
20100172615 | Coupling Device with Compensated Birefringence - The invention relates to a coupling device comprising a support substrate; a first layer arranged on the support substrate and comprising first patterns produced within the thickness of said first layer, said first patterns being arranged in parallel and periodic rows; a second layer arranged on the first layer and comprising second patterns passing through the thickness of said second layer, said second patterns being arranged in parallel and periodic rows. The direction of periodicity of the rows of the first patterns is perpendicular to the direction of periodicity of the rows of the second patterns. The rows of the first patterns extend over a distance greater than or equal to the wavelength in the void of the optical wave intended to be coupled. The first patterns have a width less than or equal to a tenth of the wavelength of the optical wave intended to be coupled, and the period of these patterns is between 50 nm and 1 μm. The second patterns are arranged so as to form a periodic diffraction grating. | 07-08-2010 |
20100209048 | Optical Fiber Microscopy Launch System and Method - A sample slide, launch system, and method for microscopy having two optical fibers positioned proximate a sample slide with optical fiber mounting elements to deliver EMR to a surface of the sample slide at a critical angle for total internal reflection microscopy. In one exemplary embodiment, the EMR from the first optical fiber and the EMR from the second optical fiber may have different polarization states and/or wavelengths. | 08-19-2010 |
20100266241 | OPTICAL TRANSMITTER AND METHOD OF MANUFACTURING THE SAME - Provided is an optical transmitter including, a substrate (silicon optical bench), a light emitting element, and a temperature sensing element; wherein, two recesses are formed in a surficial portion of the silicon optical bench; the light emitting element is provided inside one recess; and the temperature sensing element is provided inside the other recess. | 10-21-2010 |
20100303414 | CHIP-BASED SLOT WAVEGUIDE SPONTANEOUS EMISSION LIGHT SOURCES - An optical device includes an optically emitting material producing spontaneous emission and an optical waveguide coupled to the optically emitting material. The spontaneous emission from the optically emitting material is emitted into at least one optical mode of the optical waveguide. The optical waveguide coupled to the optically emitting material does not provide optical gain, and the presence of the optical waveguide causes the spontaneous emission rate to be substantially more rapid than in the absence of the optical waveguide. The optical waveguide causes the more rapid spontaneous emission rate over a broad range of frequencies. | 12-02-2010 |
20110135252 | SILICON PHOTONICS CHIP - Provided is a silicon photonics chip that is thermally separated from a light emitting device. The silicon photonics chip includes photoelectric devices integrated on a silicon substrate. The photoelectric devices include an optical connection device optically guiding at least one signal light incident from a signal light generation device to transmit the signal light into the silicon substrate. The signal light generation device is thermally separated from the photoelectric devices, and is optically connected to the photoelectric devices. | 06-09-2011 |
20110293221 | CONSUMER INPUT/OUTPUT (CIO) OPTICAL TRANSCEIVER MODULE FOR USE IN AN ACTIVE OPTICAL CABLE, AN ACTIVE OPTICAL CABLE THAT INCORPORATES THE CIO OPTICAL TRANSCEIVER MODULE, AND A METHOD - A consumer input/output (CIO) optical transceiver module, an active optical cable that incorporates a CIO optical transceiver module, and a method for using a CIO optical transceiver module in an active optical cable are provided. In contrast to optical transceiver modules currently used in active optical cables, which utilize parallel arrays of laser diodes and parallel arrays of photodiodes, the CIO optical transceiver module includes two singlet laser diodes and two singlet photodiodes for providing two high-speed transmit channels and two high-speed receive channels, respectively. Because the singlet laser diodes and photodiodes of the CIO optical transceiver module are less costly than the parallel arrays of laser diodes and parallel arrays of photodiodes that are used in known active optical cables, the CIO optical transceiver module can be manufactured at relatively low costs with high quality, and therefore is well suited for consumer applications. | 12-01-2011 |
20120057822 | OPTICAL COUPLER MODULE HAVING OPTICAL WAVEGUIDE STRUCTURE - An optical coupler module includes a semiconductor substrate disposed on the print circuit board; a reflecting trench structure formed on the semiconductor substrate; a reflector formed on a slant surface of the reflecting trench structure; a strip trench structure formed on the semiconductor substrate and connecting with the reflecting trench structure; a thin film disposed on the above-mentioned structure. The optical coupler module further includes a signal conversion unit disposed on the semiconductor substrate and the position of the signal conversion unit corresponds to the reflector; and an optical waveguide structure formed in the trench structures. The optical signal from the signal conversion unit is reflected by the reflector and then transmitted in the optical waveguide structure, or in a reverse direction to reach the signal conversion unit. | 03-08-2012 |
20120195554 | SPLICING AND CONNECTORIZATION OF PHOTONIC CRYSTAL FIBERS - The present invention relates to an optical fiber comprising at least a first end with an first end facet, the optical fiber comprising a core region capable of guiding light at a first wavelength λ; and a microstructured cladding region surrounding said core region. The cladding region comprises an inner cladding region and an outer cladding region. The inner cladding region comprises inner cladding features arranged in an inner cladding background material having a refractive index n | 08-02-2012 |
20120224814 | PHOTOELECTRIC TRANSMISSION MODULE - A photoelectric transmission module being connected to a terminal of a composite cable including an optical fiber and an electrical cable, includes a substrate connected to the electrical cable drawn from the composite cable, a flexible printed circuit board including one end connected to a connector on the substrate and an other end connected to the optical fiber drawn from the composite cable, and an optical waveguide member formed along an outer surface of the flexible printed circuit board and connected to the optical fiber. The flexible printed circuit board further includes a displacement permitting area formed in a section from a connection end of the connector to a connection end of the optical fiber to allow the connection end of the connector and the connection end of the optical fiber to be relatively displaced in a direction along the substrate. | 09-06-2012 |
20120275747 | OPTICAL COUPLING STRUCTURE AND OPTICAL TRANSRECEIVER MODULE - Provided is an optical coupling structure including an optical semiconductor element including a light receiving/emitting portion, an optical transmission path having an optical axis that intersects the optical axis of the optical semiconductor element at a predetermined angle, and an optical coupling portion configured to convert the optical path between the optical semiconductor element and the optical transmission path and optically couple them. The optical coupling portion is made of a resin that is transparent with respect to a transmitted light, the resin adhering to both at least a portion of the light receiving/emitting portion and at least a portion of the end portion of the optical transmission path, and the optical semiconductor element and the optical transmission path are bonded to each other with the resin itself that constitutes the optical coupling portion. | 11-01-2012 |
20130058610 | SLIM WAVEGUIDE COUPLING APPARATUS AND METHOD - In various embodiments, an illumination structure includes a discrete light source disposed proximate a bottom surface of a waveguide and below a depression in a top surface thereof. A top mirror may be disposed above the discrete light source to convert modes of light emitted from the discrete light source into trapped modes, thereby increasing the coupling efficiency of the illumination structure. | 03-07-2013 |
20130064506 | FLEXIBLE LENSED OPTICAL INTERCONNECT DEVICE FOR SIGNAL DISTRIBUTION - A method and device for interconnecting optical components, such as optical fibers and optical circuits, in a flexible, repeatable, and cost-effective manner. Two or more optical components are interconnected by a flexible optical circuit substrate bearing one or more embedded optical fibers with a lens at each end of each fiber. The flexible optical circuit may be incorporated into a housing bearing apertures for receiving optical connectors of the optical components that are to be interconnected with the device. The lensed ends of the fibers embedded in the flexible optical circuit are positioned adjacent to the apertures for optically connecting to the fibers within the connectors installed in the apertures without conventional mating connectors disposed inside the housing. | 03-14-2013 |
20130071064 | DEVICE FOR CONVERTING SIGNAL - A device for converting and optionally processing an optical signal comprises an optical cable having an optical-electrical conversion device at one end, the optical-electrical conversion device to convert the optical signal to an electrical signal or an electrical signal into an optical signal; a electrical package to removably receive the optical-electrical conversion device and generate processed signal; and a general circuit board attached to the electrical package and operable to receive the processed signal. | 03-21-2013 |
20130142484 | OPTICAL ELEMENT PACKAGE AND MANUFACTURING METHOD THEREOF - An optical element package includes an optical wave guide array, at least one optical assembly and at least one optical transmission member. The optical wave guide array has a reflection groove. The reflection groove includes a reflection surface. The at least one optical assembly is positioned on the optical wave guide array adjacent to the reflection surface. The at least one optical transmission member is positioned on the optical wave guide array, and is optically coupled with the reflection surface. The optical signals emitted by the at least one optical assembly are reflected by the reflection surface and then reaching the at least one optical transmission member for transmission. | 06-06-2013 |
20130308906 | SYSTEM AND METHOD FOR DENSE COUPLING BETWEEN OPTICAL DEVICES AND AN OPTICAL FIBER ARRAY - An optical system and method for coupling optical devices and an optical fiber array are provided. The optical system includes a substrate comprising a first side and a second side facing generally opposite to the first side. The optical system further includes at least one optical waveguide extending along at least a portion of the first side, at least one hole extending from the second side towards the first side, and at least one reflective element at the first side. The at least one reflective element is in optical communication with the at least one optical waveguide and with the at least one hole. The at least one reflective element is configured to deflect light between the at least one optical waveguide and the at least one hole. | 11-21-2013 |
20140064663 | APPARATUS AND METHOD FOR COUPLING OPTICAL SIGNALS BETWEEN OPTICAL FIBERS AND PHOTO DEVICES - Apparatus and method for optically interfacing optical fibers with photo devices. In one implementation, the optical fiber comprises an end surface configured to produce internal reflection of an incident optical signal propagating within the fiber from a distal end, and a photo device configured to receive the reflected optical signal. In another implementation, the optical fiber comprises an end surface configured to produce internal reflection of an incident optical signal generated by a photo device for propagation within the fiber towards a distal end. In another implementation, the optical fiber comprises an end surface configured to refract an incident optical signal propagating within the fiber from a distal end, and a photo device configured to receive the refracted optical signal. In another implementation, the optical fiber comprises an end surface configured to refract an incident optical signal generated by a photo device for propagation within the fiber towards a distal end. | 03-06-2014 |
20140286607 | Structures of Connecting Optical Waveguide Parts and Holding Parts of Holding Optical Input Members, and a Method of Producing the Same - A connecting structure includes an optical waveguide part, a holding part of holding an optical input member, and an adhering part adhering the optical waveguide part and holding part. The optical waveguide part includes an optical waveguide substrate including an optical waveguide. At least one of the holding part and optical waveguide part includes a recess and an adhesive face adjacent to the recess. The adhering part is provided on the adhesive face and in a single region distant from the optical waveguide substrate in a direction of thickness of the optical waveguide substrate. The recess is provided between the adhering part and optical waveguide substrate. A space is provided between an end face of the optical input member and an end face of the optical waveguide. | 09-25-2014 |
20140314376 | BACKLIGHT MODULE - The present invention disclosed a backlight module comprising a light collection system, a light guide plate and a plurality of optical fibers, wherein all light incident ends of the plurality of optical fibers are connected to the light collection system for receiving sunlight; the backlight module further includes an optical fiber connector; the plurality of optical fibers are arranged in parallel on the surface of the light guide plate, with all their light emitting ends flush with the light incident end of the light guide plate; the optical fiber connector abuts against the light emitting end of the plurality of optical fibers and the light incident end of the light guide plate, respectively, used for guiding the sunlight emitting from the light emitting end of the plurality of optical fibers to enter the light guide plate from the light incident end of the light guide plate. | 10-23-2014 |
20160202421 | HORIZONTAL COUPLING TO SILICON WAVEGUIDES | 07-14-2016 |
20160377816 | SINGLE-MODE POLYMER WAVEGUIDE CONNECTOR - Waveguide connectors include a ferrule having first alignment features. A polymer waveguide has one or more a topclad portions, each with a waveguide core, second alignment features fastened to the first alignment features, and underclad portion that is thicker than the one or more topclad portions. The polymer waveguide has a higher coefficient of thermal expansion than the ferrule and is fastened to the ferrule under tension. | 12-29-2016 |
20160377817 | SINGLE-MODE POLYMER WAVEGUIDE CONNECTOR - Waveguide connectors and methods of forming the same include heating a polymer waveguide having one or more waveguide cores and alignment features to a first temperature. A ferrule having alignment features is heated to the first temperature, the ferrule having a different coefficient of thermal expansion from the polymer waveguide. The alignment features of the polymer waveguide align with the alignment features of the ferrule when the polymer waveguide and the ferrule are heated to the first temperature. The polymer waveguide is positioned on the ferrule without a waveguide backfilm. The alignment features of the polymer waveguide are bonded to the corresponding alignment features of the ferrule. | 12-29-2016 |