Class / Patent application number | Description | Number of patent applications / Date published |
385046000 | Star coupler | 11 |
20080219623 | Star coupler for optical networks, in particular for optical data buses in motor vehicles - In order to achieve an increased reliability in respect of failure in optical networks, the invention provides a passive star coupler comprising a multiplicity of at least three optical waveguides as arms of the star coupler, which are combined at one end, and comprising, adjacent to the combined end, a reflective light mixer in the form of a common individual optical waveguide section with a light reflector, which reflects light which is guided through one of the optical waveguides and passes through the adjacent common individual optical waveguide section back into the common individual optical waveguide section, such that the light is split between the individual optical waveguides and is forwarded through the latter. | 09-11-2008 |
20080298748 | Direct-connect optical splitter module - A compact optical splitter module is disclosed. One type of compact optical splitter module is a planar attenuated splitter module that includes a branching waveguide network having j≧1 50:50 splitters that form up to n≦2 | 12-04-2008 |
20090052842 | Method for producing an optical splitter, and optical splitter - An optical splitter has an optical chip, in which a conductor track is arranged on a carrier substrate, wherein a conductor track section of the conductor track running from a first side of the chip branches into different conductor track sections which run to a second side of the chip via a plurality of branching nodes. An optical waveguide section of an optical waveguide is bonded at the first side of the chip by means of an adhesive material. Correspondingly, optical waveguide sections are bonded on the second side of the chip by means of an adhesive material. In order to reinforce the fixing, glass plates are arranged over and under the optical waveguides, said glass plates being bonded to the optical chip at the respective lateral surfaces. | 02-26-2009 |
20090154880 | PHOTONICS DEVICE - Provided is a photonics device. The photonics device includes: a substrate including a star coupler region and a transition region; a lower core layer formed on the substrate; and upper core patterns formed on the substrate to define a waveguide. The upper core patterns are disposed on the lower core layer at the transition region, so that the transition region has a multi-layered core structure. | 06-18-2009 |
20090154881 | Optical Fiber Combiner and Method of Manufacturing Thereof - The invention relates to an optical fiber combiner and a method for the manufacture thereof. The combiner has a tapering support preform with a plurality of capillary bores, a plurality of input fibers including a core and a cladding around the core and being arranged in parallel in the capillary bores of a support preform, and an output fiber coupled to the tapered end of the support preform in optical connection with the input fibers. The cladding thickness to core thickness ratio of at least one of the input fibers is decreased at the region of the support preform. The invention provides an optically high quality fiber combiner. | 06-18-2009 |
20090252457 | WAVEGUIDE STRUCTURE AND ARRAYED WAVEGUIDE GRATING STRUCTURE - Provided are a waveguide structure and an arrayed waveguide grating structure. The arrayed waveguide grating structure includes an input star coupler, an output star coupler, and a plurality of arrayed waveguides optically connecting the input star coupler and the output star coupler. Each of the arrayed waveguides includes at least one section having a high confinement factor and at least two sections having a relatively low confinement factor. The sections of the arrayed waveguides having a high confinement factor have the same structure. | 10-08-2009 |
20090257716 | OPTICAL STAR COUPLER - A plastic optical fiber (POF) based reflective star coupler is provided. The POF based reflective star coupler comprises a hollow cylindrical holding tube for receiving a plurality of plastic optical fibers (POF) at a front end of the holding tube and a mixing rod at a rear end of the holding tube; wherein a rear end of each POF is affixed to a front surface of the mixing rod; a rear convex surface of the mixing rod is coated with a highly reflective coating; and where the POFs, the mixing rod, and the holding tube are made from similar material, having similar refractive index and material properties. | 10-15-2009 |
20100027939 | OPTICAL APPARATUS - An optical apparatus including a 360-degree star coupler with derivative structure(s) and applications to optical imaging, optical communications and optical spectroscopy. | 02-04-2010 |
20100119195 | METHOD AND APPARATUS FOR A WAVELENGTH INSENSITIVE 90-DEGREE HYBRID DEVICE - Various embodiments include means of reducing wavelength dependency of an optical device by causing oscillating modes within at least one terminal associated with the device. | 05-13-2010 |
20120002924 | STAR COUPLER AND OPTICAL MULTIPLEXER/DEMULTIPLEXER - A star coupler includes a core embedded in a clad on a major surface of a substrate. The refractive index of the core differs by at least 40% from the refractive index of the clad. The core includes a slab optical waveguide, at least one input-output optical waveguide connected to the slab optical waveguide, and an array of channel optical waveguides connected to the slab optical waveguide. The star coupler also includes a high-index layer having a refractive index intermediate between the refractive indexes of the clad and core, covering the sides of the core orthogonal to the major surface of the substrate. The high-index layer reduces light loss. | 01-05-2012 |
20130148926 | Optical Star Coupler for Plastic Optical Fibers - A method and apparatus for assembling an optical coupler system. A first plurality of optical fibers is connected to a first receptacle using an alignment system to align the first plurality of optical fibers in the first receptacle. A second plurality of optical fibers is connected to a second receptacle using the alignment system to align the second plurality of optical fibers in the second receptacle. The first receptacle is connected to a star coupler. The first plurality of optical fibers is optically connected to a mixing channel in the star coupler. The second receptacle is connected to the star coupler. The second plurality of optical fibers is optically connected to the mixing channel in the star coupler. | 06-13-2013 |