Class / Patent application number | Description | Number of patent applications / Date published |
385040000 | Electrodes on or near the coupling region | 11 |
20090110353 | Method of Producing an Optical Connecting Component, and Optical Connecting Component - A method of producing an optical connecting component in which three-dimensional electric wiring can be easily and accurately performed, and the optical connecting component are provided. | 04-30-2009 |
20090175579 | OPTICAL TRANSMISSION MODULE, CONNECTING PART, AND ELECTRONIC DEVICE HAVING OPTICAL TRANSMISSION MODULE - A connection member electrically connects an optical element configured to convert an electric signal to an optical signal or to convert an optical signal to an electric signal, a first substrate including an incident/releasing port of an optical transmission path for an optical signal at least one end portion thereof, and a second substrate to each other. The optical transmission path is optically coupled with the optical element to transmit the optical the connection. The connection member includes a connection unit connected to the second substrate and a holding unit having elasticity and holding the first substrate. The holding unit is provided with an electrode at a connecting position to the first substrate, and the holding unit holds the first substrate by connecting the first substrate to the electrode. | 07-09-2009 |
20090324171 | Electronic Apparatus and Photoelectric Conversion Module - There is provided an electronic apparatus connectable to a receptacle of an external electric device. The electronic apparatus includes: a substrate; an electronic component mounted on the substrate; an electric connector which is provided on one longitudinal end of the substrate, electrically connected with the electronic component, and is insertable into the receptacle of the external electric device; first and second spacers respectively provided on the opposite surfaces of the substrate; a metal case for covering the substrate, the electronic component, the electric connector, and the first and second spacers; and a resin protective cover for covering the metal case. The metal case is provided in such a manner that an electrical connection portion thereof required for electrical connection with the receptacle is left exposed. The metal case is in contact with and supported by the first and second spacers. | 12-31-2009 |
20130294729 | OPTICAL ANTENNAS WITH ENHANCED FIELDS AND ELECTRON EMISSION - An electromagnetic energy collecting and sensing device is described. The device uses enhanced fields to emit electrons for energy collection. The device is configured to collect energy from visible light, infrared radiation and ultraviolet electromagnetic radiation. The device includes a waveguide with a geometry selected to enhance the electric field along a conductor to create a high, localized electric field, which causes electron emission across a gap to an electron return plane. | 11-07-2013 |
20140023321 | ELECTRO-OPTICAL WAVEGUIDE APPARATUSES AND METHODS THEREOF - An apparatus with either a graphene sheet or an epsilon-near-zero layer sandwiched in a waveguide structure and a tuning device. The tuning device is configured to selectively control application of at least first and second gate voltages across the waveguide structure. The graphene sheet has a first dielectric constant which is zero and the waveguide structure operates at a first abosrpotion state and a first propagation distance with application of the first voltage by the tuning device and has a second dielectric constant and the waveguide structure operates at a second absorption state and a second propagation distance with application of the second voltage. The second dielectric constant is larger than the first dielectric constant, the second absorption state is smaller than the first absorption state, the second propagation distance is longer than the first propagation distance, and the second voltage which is zero or smaller than the first voltage. | 01-23-2014 |
20140119692 | OPTICAL FIBER AND METHOD FOR MANUFACTURING SAME - A method for manufacturing an optical fiber includes melting an end of a crystal material and drawing the molten end of the crystal material to form a crystal filament. Conductive paint is coated on two surface sections of the crystal filament to form internal positive and negative electrodes not electrically connected to each other. The crystal filament is placed into a heat resistant tube that is heated until an outer layer of the crystal filament melts and adheres to an inner periphery of the heat resistant tube, with a center of the crystal filament remaining as a solid core. Conductive paint is adhered to two ends of the crystal filament to form external positive and negative electrodes electrically connected to the internal positive and negative electrodes, respectively. The optical fiber thus formed can serve as a photoelectric optical fiber for transmission of current signals. | 05-01-2014 |
20150301283 | METHOD AND APPARATUS PROVIDING COMPENSATION FOR WAVELENGTH DRIFT IN PHOTONIC STRUCTURES - A method and apparatus are described which provide for wavelength drift compensation in a photonic waveguide by application of an electric field to a waveguide having a strained waveguide core. | 10-22-2015 |
20160077291 | DEVICE FOR COUPLING AND/OR DECOUPLING OPTICAL SIGNALS - A device for coupling optical signals into at least one waveguide, wherein the device comprises at least one send-site circuit, which based on incoming signals from send-site terminal contacts actuates at least one electro-optical converter, which sends out the optical signals in the direction of the axis of the waveguide, in such a way that the manufacturing expenses are low. The electro-optical converter is incorporated, in particular embedded, in at least one send-site receptacle/alignment module, the send-site receptacle/alignment module comprises at least one groove- or trough-shaped depression for aligning the waveguide in relation to the electro-optical converter, and the send-site receptacle/alignment module is, in an essentially form-fit and/or force-fit manner, incorporated, in particular fitted, in a recess provided in a send-site substrate. The corresponding is true for a device for decoupling optical signals from at least one waveguide. | 03-17-2016 |
20190146247 | MULTI-WIDTH TRANSMISSION LINE | 05-16-2019 |
385041000 | Directional coupler | 2 |
20080317408 | Fibre or Filament - A fibre or filament comprising an electro-optically active layer; a first electrode; a second electrode; the electro-optically active layer being positioned at least partially between the first and second electrodes; the fibre or filament further comprising control means for controllably varying the optical state of a predetermined region of the fibre or filament, such that the length of the predetermined region may be controlled. | 12-25-2008 |
20160085136 | VOLTAGE CONTROLLED OPTICAL DIRECTIONAL COUPLER - A voltage controlled optical directional coupler (VCODC) having a coupling ratio that can be adjusted to any desired value through voltage tuning is disclosed. The VCODC may include a first optical hybrid coupler and a second optical hybrid coupler, which may be coupled with each other via one or more voltage controlled optical elements having a variable transparency depending on a voltage applied to the one or more voltage controlled optical elements. The VCODC may be configured to divert a portion of optical power received to a trunk input of the VCODC to a tap output of the VCODC based on the variable coupling ratio of the VCODC, which may be dependent on the variable transparency of the one or more voltage controlled optical elements. | 03-24-2016 |