Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Insulated gate devices

Subclass of:

365 - Static information storage and retrieval

365129000 - SYSTEMS USING PARTICULAR ELEMENT

365174000 - Semiconductive

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
365184000 Variable threshold 46
365183000 Charge coupled 1
20140104942RECESS GATE TRANSISTORS AND DEVICES INCLUDING THE SAME - A recess gate transistor includes: a drain region and a source region in a semiconductor substrate and doped with first-type impurities; a recess region recessed in the semiconductor substrate between the drain region and the source region; a gate insulation layer on the recess region, a gate electrode on the gate insulation layer filling the recess region; and a charge pocket region below the recess region and doped with second-type impurities. A semiconductor chip includes a plurality of recess gate transistors, and an image sensor includes a semiconductor chip including a plurality of recess gate transistors.04-17-2014
Entries
DocumentTitleDate
20080205132Memory Element and Semiconductor Device, and Method for Manufacturing the Same - It is an object to solve inhibition of miniaturization of an element and complexity of a manufacturing process thereof. It is another object to provide a nonvolatile memory device and a semiconductor device having the memory device, in which data can be additionally written at a time besides the manufacturing time and in which forgery caused by rewriting of data can be prevented. It is further another object to provide an inexpensive nonvolatile memory device and semiconductor device. A memory element is manufactured in which a first conductive layer, a second conductive layer that is beside the first conductive layer, and conductive fine particles of each surface which is covered with an organic film are deposited over an insulating film. The conductive fine particles are deposited between the first conductive layer and the second conductive layer.08-28-2008
20080212366SEMICONDUCTOR MEMORY DEVICE - This disclosure concerns a semiconductor memory device comprising Fin semiconductors extending in a first direction; source layers provided in the Fin semiconductors; drain layers provided in the Fin semiconductors; floating bodies provided in the Fin semiconductors between the source layers and the drain layers, the floating bodies being in an electrically floating state and accumulating or discharging carries so as to store data; first gate electrodes provided in first grooves located between the Fin semiconductors adjacent to each other; second gate electrodes provided in second grooves adjacent to the first grooves and located between the Fin semiconductors adjacent to each other; bit lines connected to the drain layers, and extending in a first direction; word lines connected to the first gate electrodes, and extending in a second direction orthogonal to the first direction; and source lines connected to the source layers, and extending in the second direction.09-04-2008
20080225587Integrated Circuits, Methods for Manufacturing Integrated Circuits, Integrated Memory Arrays - The present invention relates generally to integrated circuits, to methods for manufacturing integrated circuits, and to integrated memory arrays.09-18-2008
20080225588Capacitorless DRAM and method of manufacturing and operating the same - Provided are a capacitorless dynamic random access memory (DRAM) and a method of manufacturing and operating the capacitorless DRAM. The capacitorless DRAM includes a substrate having a first dopant region formed on the upper part thereof, a first protrusion unit formed on the substrate, a first gate and a second gate formed on the substrate on both sides of the first protrusion unit, having a height lower than the first protrusion unit, and an insulating material layer interposed between the substrate and the first and second gates and between the first protrusion unit and the first and second gates, wherein a second dopant region is formed on the upper part of the first protrusion unit.09-18-2008
20080304315Semiconductor memory device, method of writing data therein, and method of reading data therefrom - A semiconductor memory device (12-11-2008
200803102203-D SRAM ARRAY TO IMPROVE STABILITY AND PERFORMANCE - A three-dimensional memory circuit provides reduction in memory cell instability due to half-select operation by reduction of the number of memory cells sharing a sense amplifier and, potentially, avoidance of half-select operation by placing some or all peripheral circuits including local evaluation circuits functioning as a type of sense amplifier on an additional chips or chips overlying the memory array. Freedom of placement of such peripheral circuits is provided with minimal increase in connection length since word line decoders may be placed is general registration with ant location along the word lines while local evaluation circuits and/or sense amplifiers can be placed at any location generally in registration with the bit line(s) to which they correspond.12-18-2008
20090010053COMBO MEMORY CELL - A combo memory cell comprising a SRAM cell and a mask-ROM code programmer. The SRAM cell comprises first and second inverters. The first inverter comprises a first PMOS transistor and a first NMOS transistor. Gates of the first PMOS and NMOS transistors are commonly connected to a first input node and drains thereof commonly connected to a first output node. The second inverter comprises a second PMOS transistor and a second NMOS transistor. Gates of the second PMOS and NMOS transistors are commonly connected to a second input node and drains thereof commonly connected to a second output node. The first input node and the second output node are connected, as are the second input node and the first output node. The mask-ROM code programmer is coupled to the sources of the first and second PMOS transistors or the first and second NMOS transistors.01-08-2009
20090010054SEMICONDUCTOR MEMORY DEVICE WITH FERROELECTRIC DEVICE - A semiconductor memory device includes a one-transistor (1-T) field effect transistor (FET) type memory cell connected between a pair of bit lines, and controlled by a word line, where a different channel resistance is induced to a channel region depending on a polarity state of a ferroelectric layer. The device comprises a plurality of word lines arranged in a row direction, a plurality of bit lines arranged in a column direction, a pair of clamp dummy lines arranged in the column direction, a pair of reference dummy lines arranged in the column direction, a cell array including the memory cell and formed in a region where the word line and the bit line are crossed, a dummy cell array including the memory cell and formed where the word line, the pair of claim dummy lines and the pair of reference dummy lines are crossed, and a sense amplifier and a write driving unit connected to the bit line and configured to receive a clamp voltage and a reference voltage.01-08-2009
20090010055One-transistor type DRAM - A one-transistor type DRAM comprises a floating body storage element configured to store data in a floating body in a SOI wafer, a plurality of access transistors each connected between a bit line and one end of the floating body storage element, a word line configured to control the floating body storage element, and a plurality of port word lines each configured to select one of the plurality of access transistors.01-08-2009
20090046504DRAM TUNNELING ACCESS TRANSISTOR - In one embodiment, a first transistor is comprised of a first p+ source region doped in an n-well in the substrate and a first n+ drain region doped on one side at the top of the pillar. A second transistor is comprised of a second p+ source region doped into the second side of the top of the pillar and serially coupled to the top drain region for the first transistor. A second n+ drain region is doped into the substrate adjacent the pillar. Ultra-thin body layer run along each pillar sidewall between their respective active regions. A gate structure is formed along the pillar sidewalls and over the body layers. The transistors operate by electron tunneling from the source valence band to the gate bias-induced n-type channels, along the ultra-thin silicon bodies, thus resulting in a drain current.02-19-2009
20090080244Refreshing Data of Memory Cells with Electrically Floating Body Transistors - A semiconductor device along with circuits including the same and methods of operating the same are described. The device comprises a memory cell including one transistor. The transistor comprises a gate, an electrically floating body region, and a source region and a drain region adjacent the body region. Data stored in memory cells of the device can be refreshed within a single clock cycle.03-26-2009
20090316477NONVOLATILE SEMICONDUCTOR MEMORY CIRCUIT UTILIZING A MIS TRANSISTOR AS A MEMORY CELL - A memory circuit includes a latch having a first node and a second node to store data such that a logic level of the first node is an inverse of a logic level of the second node, a MIS transistor having a gate node, a first source/drain node, and a second source/drain node, the first source/drain node coupled to the first node of the latch, and a control circuit configured to control the gate node and second source/drain node of the MIS transistor in a first operation such that a lingering change is created in transistor characteristics of the MIS transistor in response to the data stored in the latch, wherein the MIS transistor includes a highly-doped substrate layer, a lightly-doped substrate layer disposed on the highly-doped substrate layer, diffusion regions formed in the lightly-doped substrate layer, a gate electrode, sidewalls, and an insulating film.12-24-2009
20100054035SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device with low power consumption and improved transfer rate of an input/output buffer at reduced manufacturing cost is provided. Thick-film transistors are used for a memory cell array 03-04-2010
20100085806TECHNIQUES FOR REDUCING A VOLTAGE SWING - Techniques for reducing a voltage swing are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for reducing a voltage swing comprising: a plurality of dynamic random access memory cells arranged in arrays of rows and columns, each dynamic random access memory cell including one or more memory transistors. The one or more memory transistors of the apparatus for reducing a voltage swing may comprise: a first region coupled to a source line, a second region coupled to a bit line, a first body region disposed between the first region and the second region, wherein the first body region may be electrically floating, and a first gate coupled to a word line spaced apart from, and capacitively coupled to, the first body region. The apparatus for reducing a voltage swing may also comprise a first voltage supply coupled to the source line configured to supply a first voltage and a second voltage to the source line, wherein a difference between the first voltage and the second voltage may be less than 3.5V.04-08-2010
20100254186METHODS, DEVICES, AND SYSTEMS RELATING TO MEMORY CELLS HAVING A FLOATING BODY - Methods, devices, and systems are disclosed relating to a memory cell having a floating body. A memory cell includes a transistor comprising a drain and a source each formed in silicon and a gate positioned between the drain and the source. The memory cell may further include a bias gate recessed into the silicon and positioned between an isolation region and the transistor. In addition, the bias gate may be configured to be operably coupled to a bias voltage. The memory cell may also include a floating body within the silicon. The floating body may include a first portion adjacent the source and the drain and vertically offset from the bias gate and a second portion coupled to the first portion. Moreover, the bias gate may be formed adjacent to the second portion.10-07-2010
20110019469SEMICONDUCTOR MEMORY - A semiconductor memory includes a memory cell array area having a memory cell, a word line contact area adjacent to the memory cell array area, a word line arranged straddling the memory cell array area and the word line contact area, a contact hole provided on the word line in the word line contact area, and a word line driver connected to the word line via the contact hole. A size of the contact hole is larger than a width of the word line, and the lowest parts of the contact hole exist on a position lower than a top surface of the word line and higher than a bottom surface of the word line.01-27-2011
20110032756Compact Semiconductor Memory Device Having Reduced Number of Contacts, Methods of Operating and Methods of Making - An integrated circuit including a link or string of semiconductor memory cells, wherein each memory cell includes a floating body region for storing data. The link or siring includes at least one contact configured to electrically connect the memory cells to at least one control line, and the number of contacts in the string or link is the same as or less than the number of memory cells in the string or link.02-10-2011
20110038201SEMICONDUCTOR INTEGRATED CIRCUIT - There is provided a semiconductor integrated circuit including a state detection enhancement circuit which includes an input terminal and an output terminal and has a function of generating an electric potential of a magnitude capable of performing nonvolatile memory writing into a nonvolatile memory circuit based on an electric potential input to the input terminal and outputting the electric potential of the magnitude to the output terminal, and the nonvolatile memory circuit has a nonvolatile memory function and an input terminal of the nonvolatile memory circuit is connected to the output of the state detection enhancement circuit. The state detection enhancement circuit is a positive or negative logical state detection enhancement circuit which includes a control signal terminal and a switch circuit which is turned on or off by a control signal applied to the control signal terminal, and has a function of either applying an output potential of the same logical state as or an inverse logical state of an input potential applied to the input terminal to the output terminal or completely breaking off a correlation between the input potential and the output potential when the switch circuit is in an OFF state, and has a function of applying an output potential which has the same logical state as or an inverse logical state of the input potential and has a larger highest-lowest potential range including a possible highest-lowest potential range of the input potential to the output terminal when the switch is in an ON state.02-17-2011
20110096596SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes: a memory cell array provided with a plurality of memory cells in a matrix; and a power supply circuit configured to supply an intermediate voltage between a power supply voltage and a ground voltage to each of the plurality of memory cells. The power supply circuit includes: a first intermediate voltage generating circuit configured to generate a first intermediate voltage between the power supply voltage and the ground voltage; a second intermediate voltage generating circuit configured to generate a second intermediate voltage between the power supply voltage and the ground voltage; a first output node to which the first intermediate voltage is supplied; a second output node to which the second intermediate voltage is supplied; and a connection control circuit provided between the first output node and the second output node. The first intermediate voltage generating circuit supplies the first intermediate voltage in response to a first control signal, and the second intermediate voltage generating circuit stops its operation in response to the first control signal. The connection control circuit connects the first output node and the second output node when the second intermediate voltage generating circuit stops its operation.04-28-2011
20110116310SEMICONDUCTOR DEVICE AND DRIVING METHOD THEREOF - A semiconductor device includes: a source line; a bit line; a word line; a memory cell connected to the bit line and the word line; a driver circuit which drives a plurality of second signal lines and a plurality of word lines so as to select the memory cell specified by an address signal; a potential generating circuit which generates a writing potential and a plurality of reading potentials to supply to a writing circuit and a reading circuit; and a control circuit which selects one of a plurality of voltages for correction on a basis of results of the reading circuit comparing a potential of the bit line with the plurality of reading potentials.05-19-2011
20110128781SEMICONDUCTOR MEMORY CIRCUIT - A semiconductor memory circuit includes a memory cell array having a plurality of memory cells arranged in a row direction and a column direction; a row selecting unit for selecting the memory cells of the memory cell array aligned in the row direction; a column selecting unit for selecting the memory cells of the memory cell array aligned in the column direction; a plurality of main bit lines for outputting data of the memory cells; a data reading unit for reading data of one of the memory cells selected with the row selecting unit and the column selecting unit; a first multiplexer for connecting one of the main bit lines connected to the memory cell to the data reading unit; and a second multiplexer for connecting an adjacent main bit line situated adjacently outside the main bit line to a charging/discharging voltage source for setting at a specific voltage.06-02-2011
20110170344SEMICONDUCTOR DEVICE INCLUDING SUB WORD LINE DRIVER - A semiconductor device includes a sub word line driver. A first sub word line and a second sub word line transmit an operation signal to a memory cell. A main word line optionally sends the operation signal to the first sub word line and the second sub word line. A switching transistor is disposed between the first sub word line and the second sub word line. A gate of the switching transistor is connected the main word line.07-14-2011
20110317485STRUCTURE AND METHOD FOR SRAM CELL CIRCUIT - The present disclosure provides a static random access memory (SRAM) cell. The SRAM cell includes a first and a second pull-up devices; a first and a second pull-down devices configured with the first and second pull-up devices to form two cross-coupled inverters for data storage; and a first and second pass-gate devices configured with the two cross-coupled inverters to form a port for data access, wherein the first and second pull-down devices each includes a first channel doping feature of a first doping concentration, and the first and second pass-gate devices each includes a second channel doping feature of a second doping concentration greater than the first doping concentration.12-29-2011
20110317486Methods for Operating a Semiconductor Device - Multi-gate metal-oxide-semiconductor (MOS) transistors and methods of operating such multi-gate MOS transistors are disclosed. In one embodiment, the multi-gate MOS transistor comprises a first gate associated with a first body factor and comprising a first gate electrode for applying a first gate voltage, and a second gate associated with a second body factor greater than or equal to the first body factor and comprising a second gate electrode for applying a second gate voltage. The multi-gate MOS transistor further comprises a body of semiconductor material between the first dielectric layer and the second dielectric layer, where the semiconductor body comprises a first channel region located close to the first dielectric layer and a second channel region located close to the second dielectric layer. The multi-gate MOS transistor still further comprises a source region and a drain region each having a conductivity type different from a conductivity type of the body.12-29-2011
20120002467SINGLE TRANSISTOR MEMORY CELL - A semiconductor device along with circuits including same and methods of operating same are disclosed. In one particular embodiment, the device may comprise a memory cell including a transistor. The transistor may comprise a gate, an electrically floating body region, and a source region and a drain region adjacent the body region. Data stored in memory cells of the device may be refreshed during hold operations.01-05-2012
20120014178NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND METHOD OF REUSING SAME - A nonvolatile semiconductor memory device and a method of reusing the same that allow a good use of the semiconductor device without degrading characteristics even when reused. The semiconductor memory device comprises information holding means for holding information that indicates an operation mode of said memory cell array, a decoder for generating, to said memory cell array, a selection signal to designate at least a read address of said memory cell array in accordance with an address signal that comprises plural bits; and mode setting means for fixing a logical value of at least one bit of said plural bits of said address signal in accordance with the information held by said information holding means, and supplying said address signal, on which fixing of the logical value is effected, to said decoder.01-19-2012
20120092925VERTICAL CAPACITOR-LESS DRAM CELL, DRAM ARRAY AND OPERATION OF THE SAME - A vertical capacitor-less DRAM cell is described, including: a source layer having a first conductivity type, a storage layer disposed on the source layer and having a second conductivity type, an active layer disposed on the storage layer and having the first conductivity type, a drain layer disposed on the active layer and having the second conductivity type, an address gate disposed beside the active layer and separated from the same by a first gate dielectric layer, and a storage gate disposed beside the storage layer and separated from the same by a second gate dielectric layer. The DRAM cell can be written by turning on the MOSFET formed by the storage layer, the active layer, the drain layer, the first gate dielectric layer and the address gate to inject carriers into the storage layer from the active layer.04-19-2012
20120113712METHOD OF OPERATING SEMICONDUCTOR MEMORY DEVICE WITH FLOATING BODY TRANSISTOR USING SILICON CONTROLLED RECTIFIER PRINCIPLE - A method of maintaining the data state of a semiconductor dynamic random access memory cell is provided, wherein the memory cell comprises a substrate being made of a material having a first conductivity type selected from p-type conductivity type and n-type conductivity type; a first region having a second conductivity type selected from the p-type and n-type conductivity types, the second conductivity type being different from the first conductivity type; a second region having the second conductivity type, the second region being spaced apart from the first region; a buried layer in the substrate below the first and second regions, spaced apart from the first and second regions and having the second conductivity type; a body region having the first conductivity type; and a gate positioned between the first and second regions and adjacent the body region.05-10-2012
20120134205OPERATING METHOD FOR MEMORY UNIT - An operating method for a memory unit is provided, wherein the memory unit includes a well region, a select gate, a first gate, a second gate, an oxide nitride spacer, a first diffusion region, and a second diffusion region. The operating method for the memory unit comprises the following steps. During a programming operation, a breakdown voltage is coupled to the second diffusion region through a first channel region formed under the select gate. A programming voltage is sequentially or simultaneously applied to the first gate and the second gate to rupture a first oxide layer and a second oxide layer, wherein the first oxide layer is disposed between the first gate and the well region, and the second oxide layer is disposed between the second gate and the well region.05-31-2012
20120163072NON-VOLATILE SEMICONDUCTOR MEMORY CELL WITH DUAL FUNCTIONS - A non-volatile semiconductor memory cell with dual functions includes a substrate, a first gate, a second gate, a third gate, a charge storage layer, a first diffusion region, a second diffusion region, and a third diffusion region. The second gate and the third gate are used for receiving a first voltage corresponding to a one-time programming function of the dual function and a second voltage corresponding to a multi-time programming function of the dual function. The first diffusion region is used for receiving a third voltage corresponding to the one-time programming function and a fourth voltage corresponding to the multi-time programming function. The second diffusion region is used for receiving a fifth voltage corresponding to the multi-time programming function.06-28-2012
20120195115SEMICONDUCTOR DEVICE - A first field-effect transistor provided over a substrate in which an insulating region is provided over a first semiconductor region and a second semiconductor region is provided over the insulating region; an insulating layer provided over the substrate; a second field-effect transistor that is provided one flat surface of the insulating layer and includes an oxide semiconductor layer; and a control terminal are provided. The control terminal is formed in the same step as a source and a drain of the second field-effect transistor, and a voltage for controlling a threshold voltage of the first field-effect transistor is supplied to the control terminal.08-02-2012
20120224419SEMICONDUCTOR STORAGE DEVICE - A semiconductor storage device according to an embodiment includes wells in a semiconductor substrate, fins formed on the wells, gate electrodes provided on one side and another opposite side of each fin via a gate insulating film to form a channel region in the fin, impurity-diffused layers that each form a potential barrier that confines holes in a body region within the channel region, and source/drain layers each formed at the fin such that the channel region is sandwiched between the source layer and the drain layer. At the time of writing of data ‘1’, a gate voltage is set to a negative potential, a well bias voltage is set to a positive potential, and a drain voltage is set to a positive potential.09-06-2012
20120236634MEMORY DEVICE AND ELECTRONIC DEVICE - A selection operation is performed for individual memory cells. A device includes a first memory cell and a second memory cell provided in the same row as the first memory cell, each of which includes a field-effect transistor having a first gate and a second gate. The field-effect transistor controls at least data writing and data holding in the memory cell by being turned on or off. The device further includes a row selection line electrically connected to the first gates of the field-effect transistors included in the first memory cell and the second memory cell, a first column selection line electrically connected to the second gate of the field-effect transistor included in the first memory cell, and a second column selection line electrically connected to the second gate of the field-effect transistor included in the second memory cell.09-20-2012
20120243309NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE - When performing a data erase operation, the control circuit generates positive holes at least at any one of the drain side select transistor and the source side select transistor, and supply the positive holes to a body of the memory string to raise a voltage of the body of the memory string to a first voltage. Then, it applies a voltage smaller than the first voltage to a first word line among the plurality of the word lines during a first time period. In addition, it applies a voltage smaller than the first voltage to a second word line different from the first word line during a second time period. The second time period is different from the first time period.09-27-2012
20120250407MEMORY CIRCUIT, MEMORY UNIT, AND SIGNAL PROCESSING CIRCUIT - A memory circuit includes a transistor having a channel in an oxide semiconductor layer, a capacitor, a first arithmetic circuit, a second arithmetic circuit, a third arithmetic circuit, and a switch. An output terminal of the first arithmetic circuit is electrically connected to an input terminal of the second arithmetic circuit. The input terminal of the second arithmetic circuit is electrically connected to an output terminal of the third arithmetic circuit via the switch. An output terminal of the second arithmetic circuit is electrically connected to an input terminal of the first arithmetic circuit. An input terminal of the first arithmetic circuit is electrically connected to one of a source and a drain of the transistor. The other of the source and the drain of the transistor is electrically connected to one of a pair of electrodes of the capacitor and to an input terminal of the third arithmetic circuit.10-04-2012
20120281469SEMICONDUCTOR DEVICE - Noise generated on a word line is reduced without increasing a load on the word line. A semiconductor device is provided in which a plurality of storage elements each including at least one switching element are provided in matrix; each of the plurality of storage elements is electrically connected to a word line and a bit line; the word line is connected to a gate (or a source and a drain) of a transistor in which minority carriers do not exist substantially; and capacitance of the transistor in which minority carriers do not exist substantially can be controlled by controlling a potential of a source and a drain (or a gate) the transistor in which minority carriers do not exist substantially. The transistor in which minority carriers do not exist substantially may include a wide band gap semiconductor.11-08-2012
20120294080MEMORY DEVICE AND METHOD FOR DRIVING MEMORY DEVICE - A memory device according to the invention can be operated with a single potential, by which the use of a voltage converter can be excluded, leading to the reduction of power consumption. Such an operation can be achieved by utilizing capacitive coupling of a capacitor connected to a gate of a transistor for data writing. That is, the capacitive coupling is induced by inputting a signal, which is supplied by a delay circuit configured to delay a write signal having a potential equal to the power supply potential, to the capacitor. Increase in the potential of the gate by the capacitive coupling allows the transistor to be turned on in association with the power supply potential applied to the gate from a power supply. Data is written by inputting a signal having a potential equal to the power supply potential or a grounded potential to a node through the transistor.11-22-2012
20120294081SEMICONDUCTOR DEVICE - In a sense circuit for DRAM memory cell a switch is provided between the bit line BL and local bit line LBL connected to the memory cells for isolation and coupling of these bit lines. The bit line BL is precharged to the voltage of VDL/2, while the local bit line LBL is precharged to the voltage of VDL. VDL is the maximum amplitude voltage of the bit line BL. A sense amplifier SA comprises a first circuit including a differential MOS pair having the gate connected to the bit line BL and a second circuit connected to the local bit line LBL for full amplitude amplification and for holding the data. When the bit line BL and local bit line LBL are capacitance-coupled via a capacitor, it is recommended to use a latch type sense amplifier SA connected to the local bit line LBL.11-22-2012
20120294082Semiconductor Device - A semiconductor device comprises a transistor comprising a gate, a source, a drain, and a gate insulating layer, and an auxiliary line formed over the drain and electrically insulated from the drain. During a turn-off operation of the transistor, voltage to increase a resistance of the drain is supplied to the auxiliary line.11-22-2012
20130003452Method and Structure for Integrating Capacitor-less Memory Cell with Logic - Methods for fabricating integrated circuits include fabricating a logic device on a substrate, forming an intermediate semiconductor substrate on a surface of the logic device, and fabricating a capacitor-less memory cell on the intermediate semiconductor substrate. Integrated circuits with capacitor-less memory cells formed on a surface of a logic device are also disclosed, as are multi-core microprocessors including such integrated circuits.01-03-2013
20130010534Memory Element and Semiconductor Device and Method for Manufacturing the Same - It is an object to solve inhibition of miniaturization of an element and complexity of a manufacturing process thereof. It is another object to provide a nonvolatile memory device and a semiconductor device having the memory device, in which data can be additionally written at a time besides the manufacturing time and in which forgery caused by rewriting of data can be prevented. It is further another object to provide an inexpensive nonvolatile memory device and semiconductor device. A memory element is manufactured in which a first conductive layer, a second conductive layer that is beside the first conductive layer, and conductive fine particles of each surface which is covered with an organic film are deposited over an insulating film. The conductive fine particles are deposited between the first conductive layer and the second conductive layer.01-10-2013
20130064012SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - A semiconductor device includes a first transistor, formed in a substrate, that includes a first gate insulating film, a source and a drain region, a first gate electrode, and a first sidewall, and a second transistor that includes a second gate insulating film, a second gate electrode, a source and a drain region, and a second sidewall. The first transistor includes a portion of a logic circuit. The second transistor includes a transistor included in a memory cell of a DRAM, or includes a portion of a peripheral circuit that performs writing and erasing with respect to the DRAM. The first gate insulating film has a same thickness as that of the second gate insulating film. The first gate electrode has the same thickness as that of the second gate electrode. A layer structure of the first sidewall is a same as a layer structure of the second sidewall.03-14-2013
20130121070Memory Device - A memory device includes first and second inverters cross-coupled between first and second nodes. The first inverter is configured to be supplied by a first supply voltage via a first transistor and the second inverter is configured to be supplied by the first supply voltage via a second transistor. A first control circuit is configured to control a gate node of the first transistor based on the voltage at the second node and at a gate node of the second transistor. A second control circuit is configured to control the gate node of the second transistor based on the voltage at the first node and at the gate node of the first transistor.05-16-2013
20130242651NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE - A first capacitor includes a plurality of first conductive layers and second conductive layers. The first conductive layers function as a first electrode of the first capacitor, the second conductive layers function as a second electrode of the first capacitor. The first conductive layers and the second conductive layers are arranged alternately in the direction substantially perpendicular to a semiconductor substrate. A control circuit is configured to control a voltage applied to each of first conductive layers and the second conductive layers according to voltages of gates of a plurality of memory transistors, thereby changing a capacitance of the first capacitor.09-19-2013
20130250674REFRESHING DATA OF MEMORY CELLS WITH ELECTRICALLY FLOATING BODY TRANSISTORS - A semiconductor device along with circuits including the same and methods of operating the same are described. The device comprises a memory cell including one transistor. The transistor comprises a gate, an electrically floating body region, and a source region and a drain region adjacent the body region. Data stored in memory cells of the device can be refreshed within a single clock cycle.09-26-2013
20130308379SEMICONDUCTOR DEVICE WITH ELECTRICALLY FLOATING BODY - A semiconductor device along with circuits including the same and methods of operating the same are described. The device includes an electrically floating body region, and a gate is disposed over a first portion of the body region. The device includes a source region adjoining a second portion of the body region, the second portion adjacent the first portion and separating the source region from the first portion. The device includes a drain region adjoining a third portion of the body region, the third portion adjacent the first portion and separating the drain region from the first portion.11-21-2013
20130343121SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - A semiconductor device includes an interlayer insulating film formed on a substrate, a plurality of contacts formed in the interlayer insulating film, and an impurity-doped region formed around the contacts in the interlayer insulating film and along a lengthwise direction of the contacts.12-26-2013
20140010007ELECTRONIC DEVICE AND METHOD FOR FORMING THE SAME - An electronic device includes a device isolation film formed to define an active region in a substrate, a first gate buried to traverse the active region and the device isolation film in a first direction, and a second gate coupled to the first gate buried in the device isolation film, and extended in a second direction.01-09-2014
20140036584CAPACITOR-LESS MEMORY CELL, DEVICE, SYSTEM AND METHOD OF MAKING SAME - A capacitor-less memory cell, memory device, system and process of forming the capacitor-less memory cell includes forming the memory cell in an active area of a substantially physically isolated portion of the bulk semiconductor substrate. A pass transistor is formed on the active area for coupling with a word line. The capacitor-less memory cell further includes a read/write enable transistor vertically configured along at least one vertical side of the active area and operable during a reading of a logic state with the logic state being stored as charge in a floating body area of the active area, causing different determinable threshold voltages for the pass transistor.02-06-2014
20140056063SEMICONDUCTOR DEVICE HAVING CURRENT CHANGE MEMORY CELL - A method includes performing a read operation on a memory cell of a device including a sensing line, a bit line coupled to the memory cell, a first transistor having a source-drain path coupled between the sensing line and the bit line, and a second transistor having a gate coupled to sense the sensing line, the performing including providing a gate of the first transistor with a first voltage, providing the sensing line with a second voltage, and providing the bit line with a third voltage, the third voltage being independent from the second voltage.02-27-2014
20140063934SEMICONDUCTOR DEVICE HAVING BURIED GATE, METHOD OF FABRICATING THE SAME, AND MODULE AND SYSTEM HAVING THE SAME - A semiconductor device includes junction regions formed in upper portions of both sidewalls of a trench formed in a semiconductor substrate, a first gate electrode buried in the trench and having a stepped upper surface, and a second gate electrode formed on the first gate electrode to overlap a junction region.03-06-2014
20140092680MULTIPLE WELL BIAS MEMORY - A multiple well bias memory device that includes a semiconductor substrate; a first well of a first conductivity type formed in the semiconductor substrate and having a memory cell formed therein; and a second well of the first conductivity type formed in the semiconductor substrate and having formed therein a sense amplifier configured to sense and amplify data from the memory cell. The first and second wells have different doping concentrations and are biased to first and second voltages, respectively. The first voltage being lower than the second voltage.04-03-2014
20140092681SEMICONDUCTOR DEVICE AND DRIVING METHOD THEREOF - A semiconductor device includes: a source line; a bit line; a word line; a memory cell connected to the bit line and the word line; a driver circuit which drives a plurality of second signal lines and a plurality of word lines so as to select the memory cell specified by an address signal; a potential generating circuit which generates a writing potential and a plurality of reading potentials to supply to a writing circuit and a reading circuit; and a control circuit which selects one of a plurality of voltages for correction on a basis of results of the reading circuit comparing a potential of the bit line with the plurality of reading potentials.04-03-2014
20140160840MEMORY DEVICE AND DRIVING METHOD THEREOF - A memory device includes a memory array, an array gap, a voltage provider, and a voltage divider. The voltage provider is disposed in the array gap and coupled to a column of memory cells of the memory array for providing a first voltage to the column of memory cells when a memory cell of the column is selected at a write cycle. The voltage provider is coupled to the voltage provider and the column of memory cells for providing a second voltage lower than the first voltage to the column of memory cells when the memory of the column is half selected at the write cycle.06-12-2014
20140177331SEMICONDUCTOR DEVICE AND METHOD FOR FORMING THE SAME - In order to fabricate a semiconductor device, a semiconductor substrate in a peripheral region is etched to form a plurality of holes. A gap-filling material is buried in the holes of the semiconductor substrate in the peripheral region, and first and second device isolation films are formed in the semiconductor device. A fin structure is formed by recessing the gap-filling material, and a gate is formed over a surface including the fin structure. As a result, operation characteristics of transistors formed in the peripheral region are improved and the short channel effects are also reduced.06-26-2014
20140211559PROGRAMMING A SPLIT GATE BIT CELL - A method of programming a split gate memory applies voltages differently to the terminals of the selected cells and the deselected cells. For cells being programming by being coupled to a selected row and a selected column, coupling the control gate to a first voltage, coupling the select gate to a second voltage, programming is achieved by coupling the drain terminal to a current sink that causes the split gate memory cell to be conductive, and coupling the source terminal to a third voltage. For cells not being programmed by not being coupled to a selected row, non-programming is maintained by coupling the control gate to the first voltage, coupling the select gate to a fourth voltage which is greater than a voltage applied to the select gate during a read in which the split gate memory cells are deselected but sufficiently low to prevent programming.07-31-2014
20140219015SYSTEM AND METHOD OF PROGRAMMING A MEMORY CELL - A method includes creating a breakdown condition at a semiconductor transistor structure that includes an overlap region and a channel region. The breakdown condition is created by causing a first voltage difference between a gate of the semiconductor transistor structure and the overlap region to exceed a breakdown voltage of the semiconductor transistor structure while maintaining a second voltage difference between the gate and the channel region at less than the breakdown voltage.08-07-2014
20140219016SYSTEM AND METHOD OF PROGRAMMING A MEMORY CELL - A method includes selectively creating a first breakdown condition and a second breakdown condition at a semiconductor transistor structure. The first breakdown condition is between a source overlap region of the semiconductor transistor structure and a gate of the semiconductor transistor structure. The second breakdown condition is between ad rain overlap region of the semiconductor transistor structure and the gate.08-07-2014
20140219017CAPACITOR-LESS MEMORY CELL, DEVICE, SYSTEM AND METHOD OF MAKING SAME - A capacitor-less memory cell, memory device, system and process of forming the capacitor-less memory cell include forming the capacitor-less memory cell in an active area of a substantially physically isolated portion of a bulk semiconductor substrate. A pass transistor is formed on the active area for coupling with a word line. The capacitor-less memory cell further includes a read/write enable transistor vertically configured along at least one vertical side of the active area and operable during a reading of a logic state with the logic state being stored as charge in a floating body area of the active area, causing different determinable threshold voltages for the pass transistor.08-07-2014
20140241052CARBON NANOTUBE MEMORY CELL WITH ENHANCED CURRENT CONTROL - A desired current through a carbon nano tube (CNT) element of a CNT memory device can be controlled by a wordline voltage, and a voltage on the CNT common node can be held constant. The common node can be constant at a source voltage if a p-channel metal-oxide-semiconductor field-effect transistor (MOSFET) is used in the CNT memory device, or the common node can be constant at a supply voltage if an n-channel MOSFET is used in the CNT memory device08-28-2014
20140241053TRENCH ISOLATION IMPLANTATION - Embodiments of the disclosure include a shallow trench isolation structure having a dielectric material with energetic species implanted to a predetermined depth of the dielectric material. Embodiments further include methods of fabricating the trench structures with the implant of energetic species to the predetermined depth. In various embodiments the implant of energetic species is used to densify the dielectric material to provide a uniform wet etch rate across the surface of the dielectric material. Embodiments also include memory devices, integrated circuits, and electronic systems that include shallow trench isolation structures having the dielectric material with the high flux of energetic species implanted to the predetermined depth of the dielectric material.08-28-2014
20140254259Dual-Port Semiconductor Memory and First In First Out (FIFO) Memory Having Electrically Floating Body Transistor - Multi-port semiconductor memory cells including a common floating body region configured to be charged to a level indicative of a memory state of the memory cell. The multi-port semiconductor memory cells include a plurality of gates and conductive regions interfacing with said floating body region. Arrays of memory cells and method of operating said memory arrays are disclosed for making a memory device.09-11-2014
20140313821FIN-TYPE DEVICE SYSTEM AND METHOD - A fin-type device system and method is disclosed. In a particular embodiment, a transistor is disclosed and includes forming a gate of a transistor within a substrate having a surface and a buried oxide (BOX) layer within the substrate and adjacent to the gate at a first BOX layer face. The method also includes a raised source-drain channel (“fin”), where at least a portion of the fin extends from the surface of the substrate, and where the fin has a first fin face adjacent to a second BOX layer face of the BOX layer.10-23-2014
20140328122REDUCED STRESS HIGH VOLTAGE WORD LINE DRIVER - Exemplary embodiments of the present invention disclose a method and system for asserting a voltage transition from a low voltage to a high voltage with a voltage difference between the low and high voltages on a word line with a word line driver logic that is composed of thin-oxide MOS transistors, wherein the thin-oxide MOS transistors experience less than the voltage difference on the word line between any two of a source, a drain, and a gate. In a step, charging the word line from the low voltage to an intermediate voltage level. In another step, charging the word line to the high voltage from the intermediate voltage level.11-06-2014
20140355339DRIVING METHOD OF SEMICONDUCTOR DEVICE - In a memory cell including first to third transistors, the potential of a bit line is set to VDD or GND when data is written through the first transistor. In a standby period, the potential of the bit line is set to GND. In reading operation, the bit line is brought into a floating state at GND, and a source line is set to a potential VDD−α, consequently, the third transistor is turned on. Then, the potential of the source line is output according to the potential of a gate of the second transistor. Note that α is set so that the second transistor is surely off even when the potential of the gate of the second transistor becomes lower from VDD by ΔV in the standby period. That is, Vth+ΔV<α is satisfied where Vth is the threshold value of the second transistor.12-04-2014
20140369115SEMICONDUCTOR DEVICE, METHOD FOR FABRICATING THE SAME, AND MEMORY SYSTEM INCLUDING THE SEMICONDUCTOR DEVICE - Semiconductor device, method for fabricating the same and electronic devices including the semiconductor device are provided. The semiconductor device comprises an interlayer insulating layer formed on a substrate and including a trench, a gate electrode formed in the trench, a first gate spacer formed on a side wall of the gate electrode to have an L shape, a second gate spacer formed on the first gate spacer to have an L shape and having a dielectric constant lower than that of silicon nitride, and a third spacer formed on the second gate spacer.12-18-2014
20150098270SYSTEM AND METHOD OF PROGRAMMING A MEMORY CELL - An apparatus includes a semiconductor transistor structure. The semiconductor transistor structure includes dielectric material, a channel region, a gate, a source overlap region, and a drain overlap region. The source overlap region is biasable to cause a first voltage difference between the source overlap region and the gate to exceed a breakdown voltage of the dielectric material. The drain overlap region is biasable to cause a second voltage difference between the drain overlap region and the gate to exceed the breakdown voltage. The apparatus includes a well line coupled to a body of the semiconductor transistor. The apparatus includes circuitry configured to apply a voltage to the well line to prevent a breakdown condition between the channel region and the gate.04-09-2015
20150333072ADVANCED METAL-NITRIDE-OXIDE-SILICON MULTIPLE-TIME PROGRAMMABLE MEMORY - An advanced metal-nitride-oxide-silicon (MNOS) multiple time programmable (MTP) memory is provided. In an example, an apparatus includes a two field effect transistor (2T field FET) metal-nitride-oxide-silicon (MNOS) MTP memory. The 2T field FET MNOS MTP memory can include an interlayer dielectric (ILD) oxide region that is formed on a well and separates respective gates of first and second transistors from the well. A control gate is located between the respective gates of the first and second transistors, and a silicon-nitride-oxide (SiN) region is located between a metal portion of the control gate and a portion of the ILD oxide region.11-19-2015

Patent applications in class Insulated gate devices

Patent applications in all subclasses Insulated gate devices

Website © 2025 Advameg, Inc.