Class / Patent application number | Description | Number of patent applications / Date published |
365104000 | Transistors | 73 |
20080212356 | Random Access Memory Featuring Reduced Leakage Current, and Method for Writing the Same - The invention relates to a ROM memory cell comprising a first terminal connected to a word line, comprising a second terminal and comprising a third terminal, the second terminal being connected to a bit line and/or the third terminal being connected to a supply line for precharging the third terminal. The ROM memory cell according to the invention is distinguished by the fact that the same reference potential is in each case applied to the first terminal, the second terminal and/or the third terminal in a standby operating mode. The invention furthermore relates to a ROM memory component comprising such ROM memory cells, and to a method for reading from the ROM memory cell. | 09-04-2008 |
20080225568 | DENSE READ-ONLY MEMORY - In one embodiment, a read-only memory (ROM) is provided that includes: a plurality of word lines; a plurality of bit lines; a plurality of memory cell transistors arranged in rows corresponding to the word lines such that if a word line is asserted the corresponding memory cell transistors are conducting, the memory cell transistors also being arranged in columns corresponding to the bit lines; wherein each column of memory cell transistors is arranged into column groups, each column group including an access transistor coupled to the corresponding bit line, the remaining transistors in the column group being coupled in series from the access transistor to a last transistor in the column group, the last transistor in the column group being coupled to a voltage node. | 09-18-2008 |
20080239786 | LOGIC CODING IN AN INTEGRATED CIRCUIT - The programming of a read-only memory formed of MOS transistors, the programming being set by a mask for forming an insulating layer prior to the forming of contacts of active regions of the transistors. An interconnection structure and a read-only memory. | 10-02-2008 |
20080253162 | MULTIBIT ROM MEMORY - The invention concerns a ROM comprising a set of memory points arranged in rows and columns, each memory point capable of storing two bits of data and comprising a single switch controllable to connect together first and second terminals of said switch, each of said first and second terminals being connected to one of first, second and third conductive lines, wherein said switch is connected via said first and second terminals between said first and second lines to encode a first data value, between said first and third lines to encode a second data value, between said second and third lines to encode a third data value, and both of said first and second terminals being connected to the same one of said first, second and third lines to encode a fourth data value. | 10-16-2008 |
20080316791 | OPERATING METHOD OF ONE-TIME PROGRAMMABLE READ ONLY MEMORY - The present invention provides a method of operating a one-time programmable read only memory (OTPROM). The OTPROM includes at least a select transistor, an electrode and a dielectric layer disposed on a substrate, wherein the electrode is set up on the source region of the select transistor and the dielectric layer is set up between the electrode and the source region. The method of operating the one-time programmable read only memory includes performing a programming operation to write a digital data value of ‘1’ into the memory and performing a programming operation to write a digital data value of ‘0’ into the memory. | 12-25-2008 |
20090003029 | SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE - In a semiconductor integrated circuit device having a volatile memory therein, high-speed operation is enabled and the density of the memory can be enhanced. The volatile memory includes a word line, a complementary bit line having bit lines, a plurality of common source lines, and a memory cell that is coupled with the word line and the complementary bit lines. The memory cell includes transistors. The gate electrodes of the transistors are coupled with the word line, and the drain electrode of one of the transistors is coupled with one of the bit lines. The drain electrode of the other transistor is coupled with the other bit line. The respective source electrodes of the transistors are coupled with any one of the common source lines, or brought in a floating state, thereby storing storage information in the memory cell. | 01-01-2009 |
20090027942 | SEMICONDUCTOR MEMORY UNIT AND ARRAY - A memory unit comprising a gate electrode, a gate dielectric under said gate electrode, an active area and a metal-semiconductor compound layer is provided. The active area comprises a first source/drain region, a second source/drain region, a normal field channel region formed under said gate electrode, a fringing field channel region formed between said first source/drain region and said normal field channel region, a pocket implantation region formed under the fringing or normal field channel regions and an extension doping region formed between said second source/drain region and said normal field channel region. The metal-semiconductor compound layer is formed over said gate electrode, first source/drain region and second source/drain region. | 01-29-2009 |
20090034316 | MEMORY - A memory includes a plurality of word lines, a plurality of bit lines so arranged as to intersect with the plurality of word lines, a plurality of memory cells arranged on positions where the word lines and the bit lines intersect with each other respectively and selection circuits connected to the bit lines, wherein the current driving ability of the selection circuits is different depending on positions where the bit lines are arranged. | 02-05-2009 |
20090034317 | SEMICONDUCTOR STORAGE DEVICE AND METHOD OF FABRICATING THE SAME - A semiconductor storage device includes a memory cell array, a plurality of word lines, a plurality of bit lines, a first gate wiring element | 02-05-2009 |
20090323389 | MASKED MEMORY CELLS - An array of masked memory cells including a first memory cell in a first column and a second memory cell in a second different column, wherein the first memory cell is capable of being accessed, so as to output, dependent on a first binary mask signal, a first binary value at a first output and a second binary value at a second output or vice versa, wherein the second memory cell is capable of being accessed, so as to output, dependent on a second binary mask signal, a first binary value at a third output and a second binary value at a fourth output or vice versa, and wherein the second and the third outputs of the memory cells are connected to an identical bit line of the memory array. | 12-31-2009 |
20100073985 | METHOD FOR OPERATING ONE-TIME PROGRAMMABLE READ-ONLY MEMORY - A method for operating a one-time programmable read-only memory (OTP-ROM) is provided. The OTP-ROM comprises a first gate and a second gate respectively disposed on a gate dielectric layer between a first doped region and a second doped region on a substrate, wherein the first gate is adjacent to the first doped region and coupled to the first doped region, the second gate is adjacent to the second doped region, the first gate is electrically coupled grounded, and the OTP-ROM is programmed through a breakdown effect. The method comprises a step of programming the OTP-ROM under the conditions that a voltage of the second doped region is higher than a voltage of the first doped region, the voltage of the second gate is higher than a threshold voltage to pass the voltage of the second doped region, and the first doped region and the substrate are at a reference voltage. | 03-25-2010 |
20100080035 | SRAM BASED ONE-TIME-PROGRAMMABLE MEMORY - Disclosed is a method and device for providing fast-response One-Time-Programmable (OTP) memory based on SRAM memory technology and the inherent breakdown characteristics of a MOS transistor. Each memory cell of an SRAM memory cell circuit is connected to a programming circuit. The programming circuit is comprised of two groups of MOS transistors connected to the storage nodes (SN and SNB, where SNB is the complementary value of SN) of the two cross-coupled inverters of the SRAM memory circuit. A desired data set is loaded into the circuit and then is burned-in by applying and repeatedly cycling a “burn-in” voltage across the source and drain of the MOS transistors of the programming circuit that approaches the ON STATE trigger voltage of the characteristic bipolar junction transistor contained within the MOS transistors. Upon repeated cycling of the source-to-drain voltage, the targeted MOS transistor within the programming circuit breaks down and shorts across the gate, drain, and/or source of the transistor. When the system is returned to normal operation, the programming circuits will be connected to ground, Vdd or Vss and one of the two nodes of the SRAM cell circuit will be shorted through the programming circuit to ground, Vdd or Vss, thus, forcing a retention of the programmed data state. | 04-01-2010 |
20100097836 | Memory Bitcell and Method of Using the Same - A memory bitcell comprises first ( | 04-22-2010 |
20100157649 | TRANSISTOR BIT CELL ROM ARCHITECTURE - An apparatus and method for providing a read-only memory (ROM) bit cell having one each of a PMOS transistor and an NMOS transistor, which has reduced static and dynamic electric power losses, are described. In particular, the bit cell does not require a pre-charge transistor. The sense amplifier for determining the voltages on ROM bit lines may be a digital inverter, address decoding may be simplified since there are no timing requirements with respect to transistor pre-charge, and chips containing a plurality of ROM bit cell may be readily programmed. In one embodiment of the invention, each bit cell includes one PMOS transistor having its source in electrical connection with a voltage source, its drain connected or unconnected to a bit line, and its gate connected to an inverted version of the word line signal; and one NMOS transistor having its source connected to a lower voltage source, its drain connected or disconnected to the bit line, and its gate connected to the word line. The bit cell is programmed during the ROM generation by connecting the drain of either the PMOS (logic level 1) or the NMOS (logic level 0) to the bit line. | 06-24-2010 |
20100165700 | ONE TIME PROGRAMMABLE MEMORY DEVICE AND MANUFACTURING METHOD OF ONE TIME PROGRAMMABLE MEMORY DEVICE - Embodiments relate to a manufacturing method of a one time programmable (OTP) memory device including: forming a common source in a linear configuration on a semiconductor substrate; forming a gate dielectric layer on the semiconductor substrate at both sides of the source; forming a gate over the gate dielectric layer; forming a spacer between the gates and at both side walls of the gate; and forming a drain on the semiconductor substrate at both sides of the spacer. With embodiments, the OTP memory device can be formed together with the logic part using the logic process and can increase the storage capacity of the OTP memory device by improving density of memory arrays. | 07-01-2010 |
20100195367 | NONVOLATILE MEMORY AND WRITING METHOD THEREOF, AND SEMICONDUCTOR DEVICE - A write-once memory can be written only once to each memory cell; therefore, a defective bit cannot be detected by an actual inspection of writing. Accordingly, as described above, the measures, in which a redundant circuit is provided and the defective bit is modified before shipping, cannot be taken; thus, it is difficult to provide a memory with few defects. It is an object of the present invention to provide a write-once memory where the probability of a defect is reduced considerably. A nonvolatile memory that can be written only once includes a redundant memory cell, a first circuit which allocates an address to the redundant memory cell, a second circuit which outputs a determination signal that expresses whether writing is performed normally or not, and a third circuit, to which the determination signal is inputted, which controls the first circuit and the second circuit. | 08-05-2010 |
20100208506 | READ ONLY MEMORY AND METHOD OF READING SAME - A Read Only Memory (ROM) device includes a ROM array, a row address decoder, a column address decoder, a column multiplexer, and a control circuit. Data is stored in bit cells in the ROM array. The control circuit generates control signals for reading the ROM. The row address decoder selects a word line. The column address decoder enables a bit line. The data is sensed from a bit cell corresponding to the selected word line and the enabled bit line by a corresponding sense amplifier and delivered on a data output pin of the ROM. The control signals for enabling the bit line and the sense amplifier operate at a higher voltage than supply voltage of the ROM. This reduces the ROM read time. | 08-19-2010 |
20100265755 | ONE TIME PROGRAMMABLE READ ONLY MEMORY AND PROGRAMMING METHOD THEREOF - A one time programmable read only memory disposed on a substrate of a first conductive type is provided. A gate structure is disposed on the substrate. A first doped region and a second doped region are disposed in the substrate at respective sides of the gate structure, and the first doped region and the second doped region are of a second conductive type which is different from the first conductive type. A third doped region of the first conductive type is disposed in the substrate and is adjacent to the second doped region, and a junction is formed between the third doped region and the second doped region. A metal silicide layer is disposed on the substrate. An clearance is formed in the metal silicide layer, and the clearance at least exposes the junction. | 10-21-2010 |
20100284210 | One-time programmable memory cell - According to one exemplary embodiment, a one-time programmable memory cell includes an access transistor coupled to a cell transistor between a bitline and a ground, where the access transistor has a gate coupled to a wordline. The cell transistor has a source, a gate, and a body shorted together. A programming operation causes a punchthrough to occur between the source and a drain of the cell transistor in response to a programming voltage on the bitline and the wordline. A channel length of the cell transistor is substantially less than a channel length of the access transistor. In one embodiment, the access transistor is an NFET while the cell transistor is a PFET. In another embodiment, the access transistor is an NFET and the cell transistor is also an NFET. Various embodiments result in a reduction of the required programming voltage. | 11-11-2010 |
20100315856 | HIGH-DENSITY NON-VOLATILE READ-ONLY MEMORY ARRAYS AND RELATED METHODS - In an embodiment, a read-only memory array includes a plurality of word lines, a plurality of bit-lines including first and second bit-lines, and a plurality of memory cells configured to represent data values. Each memory cell can include a transistor having a control terminal coupled to one of the plurality of word lines, a drain terminal, and a source terminal. Connections associated with the drain and source terminals of a particular memory cell can determine a data value represented by the memory cell. The memory cells of the plurality of memory cells that are coupled to less than two bit-lines are configured to represent one values. | 12-16-2010 |
20110013443 | Novel high speed two transistor/two bit NOR read only memory - A mask programmable NOR ROM circuit includes serially connected ROM transistors. A drain of a topmost ROM transistor is connected to a bit line and a source of a bottommost ROM transistor is connected to a source line. A source of one ROM transistor is solely connected with a drain of an immediately adjacent ROM transistor. The ROM transistors are programmed by placing a resist mask having openings for selectively modifying a first threshold voltage level of chosen ROM transistors by implanting a threshold voltage modifying impurity. A selected ROM transistor is read by connecting the source line to a sense amplifier circuit and setting the bit line to a read biasing voltage level. The gate of the selected ROM transistor is set to a moderately high read voltage level. The gates of all unselected ROM transistor is set to a very high read voltage level. | 01-20-2011 |
20110013444 | LOW LEAKAGE ROM ARCHITECURE - A Read only memory (ROM) with minimum leakage includes a ROM array including a first transistor, wherein a drain, a source, a gate, and a bulk of the first transistor is electrically connected to a logic zero in the idle state for ensuring zero junction and sub-threshold leakage current. The drain of the first transistor is electrically connected to a main bit line through a second transistor. The second transistor includes a gate, electrically connected to a first decoding circuit, a drain, electrically connected to the main bit line. A first reference bit line is electrically connected to a drain of a third transistor, wherein gate of the third transistor is electrically connected to a second decoding circuit for generating a stop read signal. A second reference bit line, electrically connected to the first decoding circuit through a first sensing unit for generating a stop pre-charge signal. | 01-20-2011 |
20110019460 | MEMORY CIRCUITS, SYSTEMS, AND FABRICATION METHODS THEREOF - A memory circuit includes a plurality of bit lines. A first memory cell and a second memory cell are coupled in series. Each of the first memory cell and the second memory cell is capable of storing a first type datum. The first memory cell and the second memory cell share a first common source/drain (S/D) region. The first common S/D region is electrically isolated from all of the bit lines. | 01-27-2011 |
20110032742 | One-time programmable memory cell with shiftable threshold voltage transistor - According to one exemplary embodiment, a one-time programmable memory cell includes an access transistor coupled to a shiftable threshold voltage transistor between a bitline and a ground, where the access transistor has a gate coupled to a wordline. The shiftable threshold voltage transistor has a drain and a gate shorted together. A programming operation causes a permanent shift in a threshold voltage of the shiftable threshold voltage transistor to occur in response to a programming voltage on the bitline and the wordline. In one embodiment, the access transistor is an NFET while the shiftable threshold voltage transistor is a PFET. In another embodiment, the access transistor is an NFET and the shiftable threshold voltage transistor is also an NFET. The programming voltage can cause an absolute value of the threshold voltage to permanently increase by at least 50.0 millivolts. | 02-10-2011 |
20110069527 | ROM CELL AND ARRAY STRUCTURE - A semiconductor memory cell array includes an elongated continuous active region. First and second pass transistors are formed in the elongated continuous active region and form part of first and second adjacent memory cells, respectively, of a column of memory cells in the array. An isolation transistor is formed in the elongated continuous active region between the first and second pass transistors and biased in an off state. First and second word lines are coupled to the gates of the pass transistors for applying a reading voltage. The array includes a differential bit line pair including first and second bit lines, a first logic value being encoded into the memory cells by connecting the pass transistors to the first bit line and a second logic value being encoded into the memory cells by connecting the pass transistors to the second bit line. | 03-24-2011 |
20110134680 | SEMICONDUCTOR MEMORY DEVICE - To provide a semiconductor memory device including an oxide semiconductor that can deal with instability of a threshold characteristic, in which writing is possible by a simple method. The semiconductor memory device functions by utilizing a characteristic that a threshold shifts when a thin film transistor including an oxide semiconductor is irradiated with ultraviolet light. Readout can be performed by setting a readout voltage between the threshold before the ultraviolet light irradiation and the threshold after irradiation. The threshold characteristic of an initial characteristic can be controlled by providing a back gate or by using two thin film transistors. | 06-09-2011 |
20110205778 | CURRENT DETECTION CIRCUIT FOR DETECTING READ CURRENT FROM A MEMORY CELL - A current detection circuit that can normally perform a current detection operation to detect a current in a memory cell of a memory device even if an applied power supply voltage is a low voltage, includes a current detection means which comprises first and second MOS transistors of a same channel type and third to sixth MOS transistors of a channel type different from the channel type of the first and second MOS transistors, and a MOS gate control means which supplies, to a control electrode of each of the first and second MOS transistors, a voltage which is obtained by subtracting an absolute value of a threshold voltage of each of the first and second MOS transistors from the power supply voltage when the power supply voltage is equal to or lower than the absolute value of the threshold voltage. | 08-25-2011 |
20110211382 | HIGH DENSITY AND LOW VARIABILITY READ ONLY MEMORY - A read-only memory for storing two data values using a single transistor includes a word line, a pair of bit lines, a select line, and a transistor to store data corresponding to each bit lines in the pair of bit lines. The gate terminal of the transistor is connected to the word line, a first diffusion terminal of the transistor is connected to one of the first bit line and the select line based on the first data value and a second diffusion terminal of the transistor is connected to one of the second bit line and the select line based on the second data value. | 09-01-2011 |
20110235389 | SEMICONDUCTOR DEVICE - An object is reduction in power consumption of a semiconductor device including a memory circuit. In the semiconductor device including a memory circuit, the memory circuit includes a memory cell including a semiconductor element and a memory cell that does not include a semiconductor element in a region defined by a word line and a bit line which intersect with each other. A transistor formed using an oxide semiconductor so as to have extremely low off-state current is used as the semiconductor element, so that the reading precision is improved and thus low voltage operation can be performed. The memory cells store data high or data low. The memory cell comprising a semiconductor element stores minor data of high and low, and the memory cell that does not comprise the semiconductor element stores major data of high and low. | 09-29-2011 |
20110255327 | METHOD AND SYSTEM FOR SPLIT THRESHOLD VOLTAGE PROGRAMMABLE BITCELLS - Methods and systems for split threshold voltage programmable bitcells are disclosed and may include selectively programming bitcells in a memory device by applying a high voltage to a gate terminal of the bitcells, where the programming burns a conductive hole in an oxide layer above a higher threshold voltage layer in a memory device. The bitcells may comprise an oxide layer and a doped channel, which may comprise a plurality of different threshold voltage layers. The plurality of different threshold voltage layers may comprise at least one layer with a higher threshold voltage and at least one layer with a lower threshold voltage. The oxide may comprise a gate oxide. The bitcell may comprise an anti-fuse device. The layer with a higher threshold voltage may be separated from an output terminal of the bitcell by the at least one layer with a lower threshold voltage. | 10-20-2011 |
20110273919 | Read-Only Memory (ROM) Bitcell, Array, and Architecture - Embodiments provide improved memory bitcells, memory arrays, and memory architectures. In an embodiment, a memory cell comprises a transistor having drain, source, and gate terminals; and a plurality of program nodes, with each of the program nodes charged to a pre-determined voltage and coupled to a respective one of a plurality of bit lines. | 11-10-2011 |
20120014158 | MEMORY DEVICES - A memory device includes an array of transistors, a plurality of bit lines, and a plurality of source lines. The transistors include gate, drain and source terminals. The gate terminals are electrically coupled to word lines. The plurality of bit lines connect a power source to the drain terminals of the array of transistors and the plurality of source lines connect the power source to the source terminals of the array of transistors. The connections are made active during a standby mode, thereby limiting leakage current without entailing drawbacks associated with degraded memory access/cycle time. | 01-19-2012 |
20120039107 | Circuit and System of Aggregated Area Anti-Fuse in CMOS Processes - Gate oxide breakdown anti-fuse suffers notorious soft breakdown that reduces yield and reliability. This invention discloses circuit and system to enhance electrical field by blocking LDD so that the electrical field is higher and more focused near the drain junction, to make electrical field in the channel more uniform by creating slight conductive or conductive in part or all of the channel, or to neutralize excess carriers piled up in the oxide by applying alternative polarity pulses. The embodiments can be applied in part, all, or any combinations, depending on needs. This invention can be embodied as a 2 T anti-fuse cell having an access and a program MOS with drain area in the program MOS, or 1.5 T anti-fuse cell without any drain in the program MOS. Similarly this invention can also be embodied as a 1 T anti-fuse cell having a portion of the channel made conductive or slightly conductive to merge the access and program MOS into one device with drain area, or 0.5 T anti-fuse cell without any drain. | 02-16-2012 |
20120039108 | One-Time Programmable Memory Cell - According to one exemplary embodiment, a one-time programmable memory cell includes an access transistor coupled to a shiftable threshold voltage transistor between a bitline and a ground, where the access transistor has a gate coupled to a wordline. The shiftable threshold voltage transistor has a drain and a gate shorted together. A programming operation causes a permanent shift in a threshold voltage of the shiftable threshold voltage transistor to occur in response to a programming voltage on the bitline and the wordline. In one embodiment, the access transistor is an NFET while the shiftable threshold voltage transistor is a PFET. In another embodiment, the access transistor is an NFET and the shiftable threshold voltage transistor is also an NFET. The programming voltage can cause an absolute value of the threshold voltage to permanently increase by at least 50.0 millivolts. | 02-16-2012 |
20120092917 | ROM MEMORY DEVICE - A memory device includes a plurality of read only memory cells, a precharge circuit, and a sense amplifier. A read only memory (ROM) cell of the plurality of ROM cells is coupled to a word line and a bit line. The ROM cell comprises a transistor having a first current electrode coupled to receive a reference voltage, a second current electrode selectively coupled to the bit line based on the programmed state of the ROM cell, and a control electrode coupled to the word line. The precharge circuit is coupled to the bit line. The precharge circuit precharges the bit line to a precharge voltage, wherein the precharge voltage is less than the reference voltage. The sense amplifier is coupled to the bit line and to a power supply voltage terminal for receiving a power supply voltage, wherein the reference voltage is less than the power supply voltage. | 04-19-2012 |
20120120707 | SEMICONDUCTOR DEVICE WITH OTP MEMORY CELL - A semiconductor device with an OTP memory cell includes a first MOS transistor having a first gate terminal connected to a first line, and a first terminal connected to a first node, a second MOS transistor having a second gate terminal connected to a second line, and a first terminal connected to the first node, and a third MOS transistor having a gate terminal connected to a three line, and a first terminal of the third MOS transistor connected to the first node. | 05-17-2012 |
20120163063 | COMPLEMENTARY READ-ONLY MEMORY (ROM) CELL AND METHOD FOR MANUFACTURING THE SAME - A complementary read-only memory (ROM) cell includes a transistor; and a bit line and a complementary bit line adjacent to the transistor; wherein a drain terminal of the transistor is connected to one of the bit line and the complementary bit line based on data programmed in the ROM cell. | 06-28-2012 |
20120163064 | MEMORY DEVICE - A read only memory cell circuit is provided. The memory cell circuit includes at least one memory cell. A pair of bit lines associated with each memory cell is provided which form a complementary output. The at least one memory cell is configured to be coupled to first or second of the bit line pair. | 06-28-2012 |
20120195092 | ROM GENERATOR - According to one embodiment, a ROM generator includes a ROM-data acquiring unit that acquires ROM data; a cell-data storing unit that stores a plurality of cell data respectively having different connection places of a connection path with respect to same ROM data; a cell-data selecting unit that selects the cell data stored in the cell data storing unit with respect to the same ROM data acquired by the ROM-data acquiring unit; and a cell-data arranging unit that arranges the cell data selected by the cell-data selecting unit to correspond to cell regions. | 08-02-2012 |
20120212993 | ONE TIME PROGRAMMING BIT CELL - A one time programming (OTP) memory cell includes a first transistor and a second transistor. The first transistor has a first drain, a first source, a first gate, and a first normal operational voltage value higher that a second normal operational voltage value of the second transistor. The second transistor has a second drain, a second source, and a second gate. The first source is coupled to the second drain. The second source is configured to detect data stored in the OTP memory cell. | 08-23-2012 |
20120250389 | MOSFET FUSE AND ARRAY ELEMENT - An alternative electrical fuse structure, which may be similar to or identical with an insulated gate field effect transistor (“IGFET”) of advanced CMOS technology, can be very area efficient and programmable at relatively low voltages, e.g., programming voltages between 1.5 V and 2.5 V. A method is provided for programming an electrical fuse having the structure of an IGFET to permanently electrically isolate the drain of the IGFET from its source. In this way, the step of programming the IGFET fuse can increase a resistance between the source and the drain of the IGFET from a pre-programming value to a post-programming value by two or more orders of magnitude when any given gate-source voltage value and any given drain-source voltage value within normal operational ranges of the IGFET are applied thereto. | 10-04-2012 |
20120314475 | LOW VOLTAGE PROGRAMMABLE MOSFET ANTIFUSE WITH BODY CONTACT FOR DIFFUSION HEATING - An antifuse can include an insulated gate field effect transistor (“IGFET”) having an active semiconductor region including a body and first regions, i.e., at least one source region and at least one drain region separated from one another by the body. A gate may overlie the body and a body contact is electrically connected with the body. The first regions have opposite conductivity (i.e., n-type or p-type) from the body. The IGFET can be configured such that a programming current through at least one of the first regions and the body contact causes heating sufficient to drive dopant diffusion from the at least one first region into the body and cause an edge of the at least one first region to move closer to an adjacent edge of at least one other of the first regions. In such way, the programming current can permanently reduce electrical resistance by one or more orders of magnitude between the at least one first region and the at least one other first region. | 12-13-2012 |
20120327700 | LOW VOLTAGE METAL GATE ANTIFUSE WITH DEPLETION MODE MOSFET - An antifuse according to an embodiment of the invention herein can include a depletion mode metal oxide semiconductor field effect transistor (“MOSFET”) having a conduction channel and a metal gate overlying the conduction channel. A cathode and an anode of the antifuse can be electrically coupled to the gate and spaced apart from one another in a direction the gate extends, such that the antifuse is programmable by driving a programming current between the cathode and the anode to cause material of the metal gate to migrate away. The gate may be configured such that, under appropriate biasing conditions, when the antifuse is unprogrammed, the conduction channel is turned on unless a voltage above a first threshold voltage is applied to the gate to turn off the conduction channel. The gate can be configured such that when the antifuse has been programmed, the conduction channel remains turned on even if a voltage above the first threshold voltage is applied between the gate and a source region of the MOSFET. | 12-27-2012 |
20130028002 | DIFFERENTIAL ROM - A differential read only memory array includes a differential sense amplifier coupled to first and second bit lines. A first bit cell is coupled to a first word line and to the first and second bit lines. The at least one bit cell includes a first transistor having a gate coupled to the first word line, a drain coupled to the first bit line, and a source coupled to a first power supply line. A second transistor has a gate coupled to the first word line. A source and a drain of the second transistor are either both connected to the second bit line or both unconnected to the second bit line. | 01-31-2013 |
20130063999 | ELECTRONIC DEVICE INCLUDING A NONVOLATILE MEMORY STRUCTURE HAVING AN ANTIFUSE COMPONENT AND A PROCESS OF USING THE SAME - An electronic device can include a nonvolatile memory cell, wherein the nonvolatile memory cell can include an antifuse component, a switch, and a read transistor having a control electrode. Within the nonvolatile memory cell, the switch can be coupled to the antifuse component, and the control electrode of the read transistor can be coupled to the antifuse component. The nonvolatile memory cell can be programmed by flowing current through the antifuse component and the switch and bypassing the current away the read transistor. Thus, programming can be performed without flowing current through the read transistor decreasing the likelihood of the read transistor sustaining damage during programming. Further, the antifuse component may not be connected in series with the current electrodes of the read transistor, and thus, during read operations, read current differences between programmed and unprogrammed nonvolatile memory cells can be more readily determined. | 03-14-2013 |
20130077376 | SEMICONDUCTOR DEVICE WITH OTP MEMORY CELL - A semiconductor device with OTP memory cell includes a first switching unit for transferring a first bias voltage, a first MOS transistor having a first gate coupled to a first gate signal and a first terminal coupled to the first bias voltage by the first switching unit, and a second switching unit for coupling a second terminal of the first MOS transistor to a first bit line. | 03-28-2013 |
20130077377 | SEMICONDUCTOR DEVICE WITH OTP MEMORY CELL - A semiconductor device includes a one-time programmable (OTP) memory cell includes a first MOS transistor having a gate coupled to a bit line, a first switching device, coupled to one side of a source/drain of the first MOS transistor, configured to provide a current path for a current supplied to the gate of the first MOS transistor, and a second switching device configured to provide a bias voltage at the other side of the source/drain of the first MOS transistor. | 03-28-2013 |
20130170277 | Encoded Read-Only Memory (ROM) Bitcell, Array, and Architecture - Embodiments provide improved memory bitcells, memory arrays, and memory architectures. In an embodiment, a memory cell comprises a transistor having drain, source, and gate terminals; and a plurality of program nodes, with each of the program nodes charged to a pre-determined voltage and coupled to a respective one of a plurality of bit lines. | 07-04-2013 |
20130194856 | Reference and Read OTP Sensors - The present disclosure provides a reference one time programmable (OTP) cell, wherein the reference OTP cell can generate a reference bias current in at least a programmed-on configuration;a current mirror coupled to an output of the OTP cell, wherein the current mirror includes at least two gate-coupled field effect transistors (FETs); wherein a current gain of a second of the two FETS is a fraction less than one of a first of the at least two gate-coupled FETs; a programmable OTP memory bit element (OTPMBE) coupled to an input of the current mirror; and a comparator having an input coupled to a node between the OTPMBE and the current mirror. | 08-01-2013 |
20130201749 | Circuit and System for Using Junction Diode as Program Selector for One-Time Programmable Devices - Junction diodes fabricated in standard CMOS logic processes can be used as program selectors for One-Time Programmable (OTP) devices, such as electrical fuse, contact/via fuse, contact/via anti-fuse, or gate-oxide breakdown anti-fuse, etc. The OTP device has at least one OTP element coupled to at least one diode in a memory cell. The diode can be constructed by P+ and N+ active regions in a CMOS N well, or on an isolated active region as the P and N terminals of the diode. The isolation between P+ and the N+ active regions of the diode in a cell or between cells can be provided by dummy MOS gate, SBL, or STI/LOCOS isolations. The OTP element can be polysilicon, silicided polysilicon, silicide, metal, metal alloy, local interconnect, thermally isolated active region, CMOS gate, or combination thereof. | 08-08-2013 |
20130235645 | SEMICONDUCTOR MEMORY DEVICE - To provide a semiconductor memory device including an oxide semiconductor that can deal with instability of a threshold characteristic, in which writing is possible by a simple method. The semiconductor memory device functions by utilizing a characteristic that a threshold shifts when a thin film transistor including an oxide semiconductor is irradiated with ultraviolet light. Readout can be performed by setting a readout voltage between the threshold before the ultraviolet light irradiation and the threshold after irradiation. The threshold characteristic of an initial characteristic can be controlled by providing a back gate or by using two thin film transistors. | 09-12-2013 |
20130258749 | Apparatus for High Speed ROM Cells - A ROM cell comprises a first first-level contact formed on a first active region of a transistor of a memory cell, a second first-level contact formed on a second active region of the transistor of the memory cell, wherein the second first-level contact is coupled to a first VSS line and a second VSS line formed in a first interconnect layer, wherein the second VSS line is electrically coupled to the first VSS line, and wherein the second VSS line is of a direction orthogonal to a direction of the first VSS line. The ROM cell further comprises a first bit line formed in the first interconnect layer, wherein the first bit line is formed in parallel with the second VSS line and a second bit line formed in the first interconnect layer, wherein the second bit line is formed in parallel with the second VSS line. | 10-03-2013 |
20130322150 | MEMORY DEVICE INCLUDING PROGRAMMABLE ANTIFUSE MEMORY CELL ARRAY - A memory device includes a memory cell array, a column decoder, and a row decoder. The memory cell array includes a plurality of antifuse memory cells arranged in rows and columns, each of the antifuse memory cells connected to one of a plurality of word lines, one of a plurality of high-voltage lines, and one of a plurality of bit lines. The column decoder is arranged at a first side of the memory cell array and configured to select one bit line among the bit lines. The row decoder is arranged parallel to the column decoder in a first direction, and configured to select one word line among the word lines. | 12-05-2013 |
20140003121 | COMPLEMENTARY READ-ONLY MEMORY (ROM) CELL AND METHOD FOR MANUFACTURING THE SAME | 01-02-2014 |
20140050007 | FINFET Based One-Time Programmable Device - According to one embodiment, a one-time programmable (OTP) device comprises a memory FinFET in parallel with a sensing FinFET. The memory FinFET and the sensing FinFET share a common source region, a common drain region, and a common channel region. The memory FinFET is programmed by having a ruptured gate dielectric, resulting in the sensing FinFET having an altered threshold voltage and an altered drain current. A method for utilizing such an OTP device comprises applying a programming voltage for rupturing the gate dielectric of the memory FinFET thereby achieving a programmed state of the memory FinFET, and detecting by the sensing FinFET the altered threshold voltage and the altered drain current due to the programmed state of the memory FinFET. | 02-20-2014 |
20140056051 | ONE-BIT MEMORY CELL FOR NONVOLATILE MEMORY AND ASSOCIATED CONTROLLING METHOD - A one-bit memory cell for a nonvolatile memory includes a bit line and a plurality of serially-connected storage units. The bit line is connected to the serially-connected storage units. Each storage unit includes a first doped region, a second doped region and a third doped region, which are formed in a surface of a substrate. A first gate structure is disposed over a first channel region between the first doped region and the second doped region. The first gate structure is connected to a control signal line. A second gate structure is disposed over a second channel region between the second doped region and the third doped region. The second gate structure is connected to an anti-fuse signal line. | 02-27-2014 |
20140071731 | One-Time Programmable Memory Cell - A programmable memory cell including a thick oxide spacer transistor, a programmable thin oxide anti-fuse disposed adjacent to the thick oxide spacer transistor, and first and second thick oxide access transistors. The thick oxide spacer transistor and first and second thick oxide access transistors can include an oxide layer that is thicker than an oxide layer of the programmable thin oxide anti-fuse. The programmable thin oxide anti-fuse and the thick oxide spacer transistor can be natively doped. The first and second thick oxide access transistors can be doped so as to have standard threshold voltage characteristics. | 03-13-2014 |
20140140121 | High-Performance Scalable Read-Only-Memory Cell - A two-bit read-only-memory (ROM) cell and method of sensing its data state. Each ROM cell in an array includes a single n-channel metal-oxide-semiconductor (MOS) transistor with a source biased to a reference voltage, and its drain connected by a contact or via to one or none of first, second, and third bit lines associated with its column in the array. Each row in the array is associated with a word line serving as the transistor gates for the cells in that row. In response to a column address, a column select circuit selects one pair of the three bit lines to be applied to a sense line in wired-NOR fashion for sensing. | 05-22-2014 |
20140198554 | Semiconductor Device Having Features to Prevent Reverse Engineering - A ROM circuit includes a first N channel transistor having an output and having device geometry and device characteristics adapted to bias the output at a predetermined level when a P channel circuit is connected to the first N channel transistor; a pass transistor connected between the output and a data bus, the pass transistor connected to a word line, the word line adapted to turn ON the pass transistor when the word line is asserted; and the P channel circuit connected to the data bus and adapted to provide leakage current to charge a gate in the first N channel transistor when pass transistor is turned ON. | 07-17-2014 |
20140198555 | Methods and Apparatus for ROM Devices - Methods and apparatus for the encoding of an input sequence of digit data into a sequence of storage cells of a ROM device are disclosed. The input sequence is divided into a first kind of groups and a second kind of groups. A first kind of group comprises a plurality of consecutive first digits, two first kind of groups are separated by a second kind of group, the second kind of group comprises consecutive digits without any consecutive first digits, and the second kind of group has a starting digit which is the second digit. A starting storage cell is programmed to the active state to store the starting digit of the second kind of group. The rest digits of the second kind of group are programmed one digit at a time, based on a shared terminal which has been programmed for the proceeding storage cell. | 07-17-2014 |
20140268985 | READ ONLY MEMORY BITLINE LOAD-BALANCING - A Read Only Memory (ROM) bitline cell apparatus and programming method therefore. The programming methodology ensures a ROM structure having open state and/or breaks in the diffusion and/or dummy wordline rows to provide bitline load balancing. The ROM bitline cell apparatus and programming method exhibits improved load balancing for any combination of 1's or all 0's on the bitline. The programming methodology identifies groups of consecutive ‘1’s on the bitline and instead of connecting the ‘1’ devices between BL/BL or GND/GND, those ‘1’ devices can be connected between BL/OPEN, OPEN/BL, GND/OPEN, OPEN/GND or OPEN/OPEN. With little or no variation in bitline loading, timing can be optimized for that single case of bitline loading. | 09-18-2014 |
20140268986 | Read Only Memory Array Architecture and Methods of Operation - An encoded ROM array structure couples a first one of a first set of bitlines to a second one of a second set of bitlines through a transistor when the wordline connected to the gate terminal of that transistor is asserted. This encoded arrangement can be extended to any number of encoded bitlines, e.g., 2, 4, 8, 16, and so on. Each of the first plurality and second sets of bit lines are coupled to circuits for charging and discharging the bitlines. To read data from the first set of bit lines, the second set of bitlines is discharged, and vice versa. | 09-18-2014 |
20140340955 | ONE TIME PROGRAMABLE MEMORY CELL AND METHOD FOR PROGRAMING AND READING A MEMORY ARRAY COMPRISING THE SAME - The present invention provides a one time programmable (OTP) memory cell including a select gate transistor, a following gate transistor, and an antifuse varactor. The select gate transistor has a first gate terminal, a first drain terminal, a first source terminal, and two first source/drain extension areas respectively coupled to the first drain terminal and the first source terminal. The following gate transistor has a second gate terminal, a second drain terminal, a second source terminal coupled to the first drain terminal, and two second source/drain extension areas respectively coupled to the second drain terminal and the second source terminal. The antifuse varactor has a third gate terminal, a third drain terminal, a third source terminal coupled to the second drain terminal, and a third source/drain extension area coupled with the third drain terminal and the third source terminal for shorting the third drain terminal and the third source terminal. | 11-20-2014 |
20150029778 | MASK-PROGRAMMED READ ONLY MEMORY WITH ENHANCED SECURITY - A mask-programmed read-only memory (MROM) has a plurality of column line pairs, each having a bit line and a complement bit line. The MROM includes a plurality of memory cells corresponding to a plurality of intersections between the column line pairs and a plurality of word liens. Each memory cell includes a high Vt transistor and a low Vt transistor. | 01-29-2015 |
20150138867 | WORDLINE DECODER CIRCUITS FOR EMBEDDED CHARGE TRAP MULTI-TIME-PROGRAMMABLE-READ-ONLY-MEMORY - Wordline decoder circuits for an embedded Multi-Time-Read-Only-Memory that includes a plurality of NMOS memory cells coupled to a plurality of wordlines in each row. The wordline decoder circuits control the charge trap behavior of the target NMOS memory array by the mode-dependent wordline high voltage (VWLH) and wordline low voltage (VWLL) trapping the charge in a programming mode by applying an elevated wordline voltage (EWLH) to one of the plurality of WLs, while de-trapping the charge in a reset mode by applying a negative wordline voltage (NWLL) to the entire array. The mode dependent voltage control is realized by switching to couple EWLH to VWLH in a programming mode, otherwise VDD to VWLH, while coupling NWLL to VWLL in a reset mode, otherwise, GND to VWLL. The switch includes plural gated diodes from VWLH with the wordline high protection voltage of VWLH_PR generated by lowering VWLH determined by gated diodes times threshold voltage. The switch includes a series of gated diodes from VWLL with a wordline low protection voltage of VWLL_PR generated by raising VWLL determined by the gated diodes by the threshold voltage, resulting in controlling the WL swing using thin-oxide devices. | 05-21-2015 |
20150138868 | BITLINE CIRCUITS FOR EMBEDDED CHARGE TRAP MULTI-TIME-PROGRAMMABLE-READ-ONLY-MEMORY - A bitline circuit for embedded Multi-Time-Read-Only-Memory including a plurality of NMOS memory cells coupled to a plurality of wordlines in each row, bitlines in each column, and a source-line. More specifically, the bitline circuit controls a charge trap behavior of the target NMOS memory array by mode-dependent bitline pull-down circuit, thereby discharging the bitline strongly to GND to trap the charge effectively in a Programming mode, and discharge the bitline weakly to GND to develop a bitline voltage to detect the charge trap state. The mode dependent circuit is realized by using at least two NMOS to switch the device strength, using a pulsed gate control in a Read mode, or using analog voltage to limit the bitline current. The proposed method further includes a protection device, allowing all bitline control circuit using thin oxide devices. The bitline circuits having mode and bank access dependent bitline circuit further enables a single device memory array, by using two arrays, wherein said one of the array is used for reference to the other array using an open bitline architecture. | 05-21-2015 |
20150138869 | NON-VOLATILE MEMORY - A non-volatile memory includes a memory unit. The memory unit includes a first word line, a second word line, a control line, a logic circuit, a bit line, a first cell, and a second cell. The logic circuit has a first input terminal connected to the first word line, a second input terminal connected to the second word line, and an output terminal connected to the control line. The first cell has a control terminal connected to the first word line, a first terminal connected to the control line, and a second terminal selectively connected to the bit line. The second cell has a control terminal connected to the second word line, a first terminal connected to the control line, and a second terminal selectively connected to the bit line. | 05-21-2015 |
20150138870 | ONE-TIME PROGRAMMABLE MEMORY AND SYSTEM-ON CHIP INCLUDING ONE-TIME PROGRAMMABLE MEMORY - A one-time programmable (OTP) memory includes an OTP cell array including a plurality of OTP cells that each include a programming transistor configured to change irreversibly when programmed; a temperature compensation reference voltage generating unit configured to sense a temperature of the OTP cell memory and generate a reference voltage such that as the sensed temperature changes, the reference voltage generated by the temperature compensation reference voltage generating unit changes in a manner that is inversely proportional the change in the sensed temperature; and a temperature compensation operating voltage generating unit configured to receive the reference voltage to generate an operating voltage that is proportional to the reference voltage and is applied to the OTP cell array. | 05-21-2015 |
20150340101 | SYSTEM AND METHOD OF PROGRAMMING A MEMORY CELL - A method includes applying a programming voltage to a drain of an access transistor, where a source of the access transistor is coupled to a drain region of a one-time programmable (OTP) device. The method also includes applying a first voltage to a gate of the OTP device and a second voltage to a terminal of the OTP device to bias a channel region of the OTP device, where the first voltage and the second voltage are substantially equal. | 11-26-2015 |
20160005492 | OTP READ SENSOR ARCHITECTURE WITH IMPROVED RELIABILITY - Circuits and methods for reading an OTP memory cell with improved reliability. To read a first OTP memory cell, a first current amount generated by a second, programmed, OTP memory cell is received. A second current amount generated by a third, unprogrammed, OTP memory cell is received. Current generated by the first OTP memory cell is sunk. The amount of current sunk from the first OTP memory cell is equal to a sum of a third current amount that is proportional to the first current amount plus a fourth current amount that is proportional to the second current amount. While sinking said current from the first OTP memory cell a voltage at a current output of the first OTP memory cell is compared to a threshold voltage. | 01-07-2016 |
20160086677 | SEMICONDUCTOR DEVICE AND CONTROL METHOD THEREOF - In an OTP memory storing a one-bit of the data by two gate insulating film destruction type nonvolatile memory cells where a same bit line is connected and different word lines are connected, writings and readings of the data for selected two nonvolatile memory cells constituting one-bit are performed by simultaneously selecting the selected two nonvolatile memory cells, and verifications for the selected two nonvolatile memory cells are performed by individually selecting one and the other of the selected two nonvolatile memory cells one by one. | 03-24-2016 |
20160104541 | NOVEL OTPROM FOR POST-PROCESS PROGRAMMING USING SELECTIVE BREAKDOWN - At least one method, apparatus and system disclosed involves hard-coding data into an integrated circuit device. An integrated circuit device provided. Data for hard-wiring information into a portion of the integrated circuit device is received. A stress voltage signal is provided to a portion of a transistor of the integrated circuit device for causing a dielectric breakdown of the portion of the transistor for hard-wiring the data. | 04-14-2016 |
20170236596 | SEMICONDUCTOR DEVICE | 08-17-2017 |