Class / Patent application number | Description | Number of patent applications / Date published |
361306300 | For multilayer capacitor | 74 |
20080204971 | Integrated multilayer chip capacitor module and integrated circuit apparatus having the same - An integrated multilayer chip capacitor module including: plurality of multilayer chip capacitors arranged close to one another and co-planar with one another; and a capacitor support accommodating the multilayer chip capacitors, wherein each of the multilayer chip capacitors includes a rectangular parallelepiped capacitor body and a plurality of first and second external electrodes formed on at least two sides of the capacitor body, and the external electrodes on adjacent sides of adjacent ones of the multilayer chip capacitor in the capacitor support are electrically connected to each other by a conductive adhesive material. | 08-28-2008 |
20080225462 | MULTILAYER ELECTRONIC DEVICE AND METHOD FOR MANUFACTURING THE SAME - A multilayer electronic device includes a laminate and an external electrode that is formed on an end surface of the laminate after a plurality of conductive particles having a particle diameter of about 1 μm or more is adhered to the end surface of the laminate, for example, by a sandblast method or a brush polishing method. The external electrode is defined by a plating film that is formed by electroplating or electroless plating. | 09-18-2008 |
20080225463 | LAYERED CAPACITOR AND MOUNTING STRUCTURE - A layered capacitor includes a capacitor body that is divided into two first capacitor sections and a second capacitor section. The first capacitor sections are disposed at ends in a layer-stacking direction such that the second capacitor section is interposed between the first capacitor sections in the layer-stacking direction. The resonant frequency of the first capacitor sections is greater than that of the second capacitor section. The total number of third internal electrodes and fourth internal electrodes provided per dielectric layer included in the second capacitor section is less than the total number of first via conductors and second via conductors per dielectric layer included in the first capacitor sections. The ESR per dielectric layer included in the second capacitor section is greater than that per dielectric layer included in the first capacitor sections. | 09-18-2008 |
20080232025 | MIM CAPACITOR AND METHOD OF MAKING SAME - A MIM capacitor device and method of making the device. The device includes an upper plate comprising one or more electrically conductive layers, a dielectric block comprising one or more dielectric layers, a lower plate comprising one or more electrically conductive layer; and a spreader plate comprising one or more electrically conductive layers. | 09-25-2008 |
20080239623 | MULTILAYER CAPACITOR ARRAY - A multilayer capacitor array comprises a capacitor body having rectangular first and second main faces opposing each other. In the capacitor body having a dielectric characteristic, a first electrode group including first and second inner electrodes and a second electrode group including third and fourth inner electrodes are arranged in a row. The first and third inner electrodes are arranged in contact with a reference plane parallel to the opposing direction of the first and second main faces between the first electrode group and second electrode group. The second and fourth inner electrodes are arranged such as to be separated from the reference plane by a predetermined distance. | 10-02-2008 |
20080239624 | Multilayer Feedthrough Capacitor - A capacitor body of a multilayer feedthrough capacitor is arranged with grounding inner electrodes and signal inner electrodes. The grounding inner electrodes include first and second grounding main electrode portions, grounding connection electrode portions having no areas opposing the signal inner electrodes, and first and second grounding lead electrode portions. The signal inner electrodes include first and second signal main electrode portions, signal connection electrode portions having no areas opposing the grounding inner electrodes, and first and second signal lead electrode portions. | 10-02-2008 |
20080239625 | ELECTRONIC COMPONENT MANUFACTURING METHOD - A method for manufacturing an electronic component on a semiconductor substrate, including forming at least one opening in the substrate; forming in the bottom and on the walls of the opening and on the substrate an alternated succession of layers of a first material and of a second material, the second material being selectively etchable with respect to the first material and the substrate; trimming the layer portions of the first material and of the second material which are not located in the opening; selectively etching a portion of the first material to obtain trenches; and filling the trenches with at least one third material. | 10-02-2008 |
20080273289 | Film capacitor and method of manufacturing same - A film capacitor suited to car-mount application, excellent in heat cycle tolerance and humidity resistance, and high in productivity, while maintaining low heat generation and low inductance characteristic is provided. The film capacitor comprises a film capacitor element, a bus bar as metal terminal connected to electrode of this film capacitor element, and a case for containing them, in which the film capacitor element and bus bar are packed within the case by plural layers of epoxy resin compositions, and the plural layers of epoxy resin compositions are composed so that the coefficient of linear expansion is smallest in the composition disposed in the uppermost layer. | 11-06-2008 |
20080291602 | STACKED MULTILAYER CAPACITOR - A capacitor device, which is mountable on a substrate, has an electrically conductive bottom lead frame with a bottom plate mountable substantially parallel to, and in contact with, the substrate and an electrically conductive top lead frame having a top plate spaced apart from the bottom plate and a first transition portion having a first end connected to the top plate and a second end, opposite the first end, electrically connectable to the substrate. Multilayer capacitors are mounted between the top plate and the bottom plate. The capacitors have opposed end terminations electrically connected to the top and bottom plates, such that internal electrode plates are substantially nonparallel to the substrate. | 11-27-2008 |
20080297976 | MULTILAYER CAPACITOR - A first terminal electrode has a first electrode portion disposed on a first face and connected to a first internal electrode, and a second electrode portion disposed on a third face and connected to the first electrode portion. A second terminal electrode has a first electrode portion disposed on a second face and connected to a second internal electrode, and a second electrode portion disposed on the third face and connected to the first electrode portion. Each of the second electrode portions of the first and second terminal electrodes, when viewed along a third direction perpendicular to the third face, is arranged with a gap in the second direction so as to sandwich at least a portion of an end in the first direction of an element body region sandwiched between the first internal electrode and the second internal electrode, at an end in the first direction of the second electrode portion. | 12-04-2008 |
20080297977 | MULTILAYER CAPACITOR - A first terminal electrode has a first electrode portion disposed on a first face and connected to a first internal electrode, and a second electrode portion disposed on a third face and connected to the first electrode portion. A second terminal electrode has a first electrode portion disposed on a second face and connected to a second internal electrode, and a second electrode portion disposed on the third face and connected to the first electrode portion. Each of the second electrode portions of the first and second terminal electrodes, when viewed along a second direction perpendicular to the third face, is arranged with a gap in a third direction perpendicular to the second directions so as to sandwich at least a portion of an end in the first direction of an element body region sandwiched between the first internal electrode and the second internal electrode, at an end in the first direction of the second electrode portion. | 12-04-2008 |
20080310077 | MONOLITHIC CERAMIC CAPACITOR - In a monolithic ceramic capacitor, the size of end surfaces of a capacitor body in a two-dimensional surface in which ceramic layers extend is greater than the size of side surfaces in the two-dimensional surface in which the ceramic layers extend. External terminal electrodes include a resistive component. In each of first to fourth internal electrodes, a width-direction size of a lead-out portion is less than a width-direction size of a capacitance portion. The lead-out portions of the first and third internal electrodes and the lead-out portions of the second and fourth internal electrodes are arranged so as to partially overlap each other or not to overlap each other. | 12-18-2008 |
20080310078 | Method of implementing low ESL and controlled ESR of multilayer capacitor - Disclosed is a method of implementing controlled equivalent series resistance (ESR) having low equivalent series inductance (ESL) of a multi-layer chip capacitor which includes a plurality of internal electrodes each having first polarity or second polarity which is opposite to the first polarity, and dielectric layers each disposed between the internal electrodes of the first polarity and the second polarity, wherein the internal electrodes having the first polarity and the internal electrodes having the second polarity are alternated at least once to form one or more blocks being stacked. | 12-18-2008 |
20090015985 | MULTILAYER CAPACITOR - A multilayer capacitor has a capacitor element body, first and second terminal electrodes, and a connection conductor. The capacitor element body has a plurality of insulator layers laminated, and a plurality of first internal electrodes and second internal electrodes arranged as opposed with at least one of the insulator layers in between. The first and second terminal electrodes are disposed on one external surface extending in a direction parallel to a laminating direction of the insulator layers, among external surfaces of the capacitor element body. The connection conductor is disposed on an exterior surface extending in the direction parallel to the laminating direction of the insulator layers, among the external surfaces of the capacitor element body. The first internal electrodes include two types of internal electrodes, a type of internal electrode connected to the first terminal electrode and the connection conductor and a type of internal electrode connected to the connection conductor only. The second internal electrodes are connected to the second terminal electrode. | 01-15-2009 |
20090034155 | STACKED MULTILAYER CAPACITOR - A capacitor device, which is mountable on a substrate, has an electrically conductive bottom lead frame with a bottom plate mountable substantially parallel to, and in contact with, the substrate and an electrically conductive top lead frame having a top plate spaced apart from the bottom plate and a first transition portion having a first end connected to the top plate and a second end, opposite the first end, electrically connectable to the substrate. Multilayer capacitors are mounted between the top plate and the bottom plate. The capacitors have opposed end terminations electrically connected to the top and bottom plates, such that internal electrode plates are substantially nonparallel to the substrate. | 02-05-2009 |
20090040686 | ENERGY CONDITIONER STRUCTURES - Disclosed are energy conditioner structures, method of making and using them wherein the structure comprises a sequence of conductive layers including a first A layer, a G layer, and a first B layer; wherein said first A layer, said G layer, and said first B layer are each conductive, and are conductively isolated from one another in said energy conditioner structure; wherein said first A layer includes a first A layer main body and a first A layer tab, said first B layer includes a first B layer main body and a first B layer tab, and said G layer includes a G layer main body and a G layer first tab; wherein said G layer is in a plane between a plane containing said first A layer and a plane containing said first B layer; where the main body of at least one of said first A layer and said first B layer opposes a portion of said G layer main body; wherein two of said first A layer tab, said first B layer tab, and said G layer first tab are on a first side of said energy conditioner, and the remaining one of said first A layer tab, said first B layer tab, and said G layer first tab is on a second side of said energy conditioner, and said second side is opposite from said first side; and said method comprising applying electrical energy to one of said first A layer, said G layer, and said first B layer. | 02-12-2009 |
20090052113 | MULTILAYER CAPACITOR - A multilayer capacitor comprises a capacitor body having rectangular first and second main faces opposing each other, first and second end faces extending in a shorter side direction of the first and second main faces so as to connect the first and second main faces to each other, and first and second side faces extending in a longer side direction of the first and second main faces so as to connect the first and second main faces to each other. First and second terminal electrodes are arranged on the first and second side faces of the capacitor body, respectively. A first inner electrode connected to the first terminal electrode, a second inner electrode connected to the second terminal electrode, and first and second intermediate electrodes connected to none of the first and second terminal electrodes are arranged within the capacitor body. The first intermediate electrode and first inner electrode form a combined capacitance different from that formed by the second intermediate electrode and second inner electrode. | 02-26-2009 |
20090052114 | MULTILAYER ELECTRONIC COMPONENT AND METHOD FOR MANUFACTURING THE SAME - A multilayer electronic component includes a base body, internal electrodes disposed inside the base body and extending to exterior surfaces thereof, and terminal electrodes provided on the exterior surfaces of the base body and connected to the internal electrodes. The terminal electrodes include first electrode layers defined by plating layers, and preferably electroplating layer, and second electrode layers made of a conductive resin and provided on the first electrode layers. | 02-26-2009 |
20090086405 | MULTILAYERED CHIP CAPACITOR AND CAPACITANCE TUNNING METHOD OF THE SAME - There is provided a multilayer chip capacitor capable of tuning capacitance, including: a capacitor body where a plurality of dielectric layers are laminated; a plurality of pairs of first and second internal electrodes arranged alternately, while interposing a corresponding one of the dielectric layers; and a plurality of pairs of first and second external electrodes connected to the first and second internal electrodes, wherein the first and second internal electrodes include a plurality of groups each including at least one pair of the first and second internal electrodes, and the first and second internal electrodes of each of the groups are connected to different pairs of the first and second external electrodes, respectively, wherein a corresponding one of the pairs of the first and second external electrodes is selectively connected to power lines so that the multilayer chip capacitor has at least two different capacitances. | 04-02-2009 |
20090086406 | MULTILAYER CAPACITOR - There is provided a multilayer capacitor including: a capacitor body where a plurality of dielectric layers are laminated, the capacitor body including first and second surfaces opposing each other in a laminated direction, wherein the first surface provides a mounting surface; a plurality of first and second inner electrodes; an inner connecting conductor; and a plurality of first and second outer electrodes formed on an outer surface of the body, wherein a corresponding one of the outer electrodes having identical polarity to the inner connecting conductor includes at least one outer terminal formed on the first surface of the body to connect to the inner connecting conductor, and at least one outer connecting conductor formed on the second surface of the body to connect a corresponding one of the inner electrodes of identical polarity to the inner connecting conductor. | 04-02-2009 |
20090097186 | DENSITY-CONFORMING VERTICAL PLATE CAPACITORS EXHIBITING ENHANCED CAPACITANCE AND METHODS OF FABRICATING THE SAME - Density-conforming vertical plate capacitors exhibiting enhanced capacitance and methods for fabricating density-conforming vertical plate capacitors exhibiting enhanced capacitance are provided. An embodiment of the density-conforming vertical plate capacitor comprises a first conductive interconnect and a second conductive interconnect. The second conductive interconnect overlies the first conductive interconnect and is substantially aligned with the first conductive interconnect. A via bar electrically couples the first conductive interconnect and the second conductive interconnect. The via bar has a width and a length that is larger than the width and contributes to the capacitance of the vertical plate capacitor. | 04-16-2009 |
20090109597 | Metal-insulator-metal capacitors - An interdigitated Metal-Insulator-Metal (MIM) capacitor provides self-shielding and accurate capacitance ratios with small capacitance values. The MIM capacitor includes two terminals that extend to a plurality of interdigitated fingers separated by an insulator. Metal plates occupy layers above and below the fingers and connect to fingers of one terminal. As a result, the MIM capacitor provides self-shielding to one terminal. Additional shielding may be employed by a series of additional shielding layers that are isolated from the capacitor. The self-shielding and additional shielding may also be implemented at an array of MIM capacitors. | 04-30-2009 |
20090116168 | Electric multilayer component and method for the production of a multilayer component - An electrical multiple-layer component is described herein. The component includes a base body having dielectric layers and internal electrodes. The internal electrodes are of connected to each other electrically between the dielectric layers via at least one external electrode on side surfaces of the base body. The component also includes an electrical connection between the external electrode and a contact surface on a surface of the base body and insulated relative to an outer side of the component. | 05-07-2009 |
20090147439 | MULTILAYER CAPACITOR ARRAY - At least one of a plurality of first internal electrodes and a second internal electrode are arranged as opposed with at least one of the dielectric layers in between. Third and fourth internal electrodes are arranged as opposed with at least one of the dielectric layers in between. The first internal electrodes are electrically connected to a first external connecting conductor through lead conductors. The second, third, and fourth internal electrodes are electrically connected to second, third, and fourth terminal conductors, respectively, through lead conductors. At last one but not all of the first internal electrodes are electrically connected to the first terminal conductor through a lead conductor. | 06-11-2009 |
20090147440 | LOW INDUCTANCE, HIGH RATING CAPACITOR DEVICES - Methodologies and structures are disclosed for providing multilayer electronic devices having low inductance and high ratings, such as for capacitor devices for uses involving faster pulsing and higher currents. Plural layer devices are constructed for relatively lowered inductance by relatively altering typical orientation of capacitors such that their electrodes are placed into a vertical position relative to an associated circuit board. Optionally, individual leads may be formed so that the resulting structure can be used as an array. Internal electrodes may be arranged for reducing current loops for associated circuits on a circuit board, to correspondingly reduce the associated inductance of the circuit board mounted device. Leads associated with such devices may have added tab-like structures which serve to more precisely place the lead, to improve the lead to capacitor strength, and to promote lower resistance and inductance. Disclosed designs for reducing associated inductance may be practiced in conjunction with various electric devices, including capacitors, resistors, inductors, or varistors. | 06-11-2009 |
20090168298 | THROUGH-TYPE MULTILAYER CAPACITOR ARRAY - A through-type multilayer capacitor array comprises a capacitor body, and two first signal terminal electrodes, two second signal terminal electrodes, two grounding terminal electrodes, a first outer connecting conductor, and a second outer connecting conductor. The capacitor body includes a grounding inner electrode, and first to fourth signal inner electrodes. The grounding inner electrode is arranged to oppose the first or second signal inner electrode with an insulator layer in between and oppose the third or fourth signal inner electrode with an insulator layer in between while being connected to the grounding terminal electrodes. The first signal inner electrode is connected to the first signal terminal electrodes and first outer connecting conductor. The third signal inner electrode is connected to the second signal terminal electrodes and the second outer connecting conductor. The second and fourth signal inner electrodes are respectively connected to the first and second outer connecting conductor. | 07-02-2009 |
20090201626 | GAP CAPACITORS FOR MONITORING STRESS IN SOLDER BALLS IN FLIP CHIP TECHNOLOGY - A semiconductor structure and a method for forming the same. The structure includes (i) a dielectric layer, (ii) a bottom capacitor plate and an electrically conductive line on the dielectric layer, (iii) a top capacitor plate on top of the bottom capacitor plate, (iv) a gap region, and (v) a solder ball on the dielectric layer. The dielectric layer includes a top surface that defines a reference direction perpendicular to the top surface. The top capacitor plate overlaps the bottom capacitor plate in the reference direction. The gap region is sandwiched between the bottom capacitor plate and the top capacitor plate. The gap region does not include any liquid or solid material. The solder ball is electrically connected to the electrically conductive line. The top capacitor plate is disposed between the dielectric layer and the solder ball. | 08-13-2009 |
20090201627 | MULTILAYER CAPACITOR ARRAY - A multilayer capacitor array achieves a high ESR because terminal conductors to which internal electrodes in capacitance sections are connected in parallel are connected in series through internal electrodes in ESR control sections to external electrodes. Since in the multilayer capacitor array the internal electrodes extend as far as a boundary between capacitor element portions, electrostriction occurs in an entire laminate including a region near the boundary between the capacitor element portions, with application of a voltage from the outside. Therefore, concentration of stress due to electrostriction is avoided, so as to suppress occurrence of cracking or the like. | 08-13-2009 |
20090207553 | MULTILAYER CAPACITOR - A first internal conductor has a first portion. A second internal conductor has a lead portion and a main electrode portion. The second internal conductor is arranged in the same layer as the first internal conductor. A third internal conductor has a lead portion and a main electrode portion. The third internal conductor is arranged so as to be adjacent to the second internal conductor in a laminate direction. A fourth internal conductor has a lead portion and a main electrode portion. The fourth internal conductor is arranged so as to be adjacent to the third internal conductor in the laminate direction. When the laminate body is viewed from the laminate direction, the main electrode portion of the third internal conductor overlaps with the main electrode portions of the second and fourth internal conductors. A width of the first portion is smaller than a width of the main electrode portion of the second internal conductor in the longitudinal direction of the laminate body and a width of the main electrode portion of the second internal conductor in the transverse direction of the laminate body, | 08-20-2009 |
20090219669 | CAPACITOR - A capacitor includes a first terminal having a first polarity, a second terminal having a second polarity opposed to the first polarity, and a plurality of columnar portions for connecting the first terminal to the second terminal. Each of the plurality of columnar portions includes a first conductor bar electrically connected to the first terminal, a second conductor bar electrically connected to the second terminal, and a dielectric layer between the first and second conductor bars. | 09-03-2009 |
20090268372 | CERAMIC ELECTRONIC COMPONENT AND METHOD FOR MANUFACTURING THE SAME - When external electrodes of a multilayer ceramic capacitor are formed by performing direct plating on surfaces at which internal electrodes are exposed without forming paste electrode layers, bonding forces of plating layers are relatively weak, and in addition, when glass particles are included in the plating layers, blisters are often generated. To overcome these problems, a multilayer ceramic capacitor is formed by performing electrolytic plating using a plating bath including glass particles, electrolytic plating layers including glass particles dispersed therein are formed as the external electrodes. | 10-29-2009 |
20090268373 | METHOD OF MANUFACTURING CAPACITOR FOR INCORPORATION IN WIRING BOARD, CAPACITOR FOR INCORPORATION IN WIRING BOARD, AND WIRING BOARD - A capacitor comprising: a plurality of laminated dielectric layers; a plurality of inner electrode layers each disposed between mutually adjacent ones of the dielectric layers; and dummy electrode layers respectively disposed between the dielectric layers, disposed on sides closer to outer peripheral sides of the dielectric layers than to the inner electrode layers and disposed apart from the inner electrode layers. | 10-29-2009 |
20090296311 | CERAMIC ELECTRONIC COMPONENT AND METHOD FOR MANUFACTURING THE SAME - A ceramic electronic component has a ceramic element assembly, external electrodes, and metal terminals. The external electrodes are arranged on the surface of the ceramic element assembly. The external electrodes contain a sintered metal. The metal terminals are electrically connected to the external electrodes, respectively. The external electrode and the metal terminal are directly diffusion-bonded by diffusion of metal in the metal terminals into the external electrodes. The above arrangement provides a ceramic electronic component having highly reliable metal particle bonding and a method for manufacturing the same. | 12-03-2009 |
20090296312 | CHIP-TYPE ELECTRONIC COMPONENT - A chip-type electronic component has: a ceramic element body; a plurality of first and second internal electrodes arranged in the ceramic element body so as to be opposed at least in part to each other; a first external connection conductor to which the plurality of first internal electrodes are connected; a second external connection conductor to which the plurality of second internal electrodes are connected; first and second terminal electrodes; a first internal connection conductor arranged in the ceramic element body and connecting the first external connection conductor and the first terminal electrode; and a second internal connection conductor arranged in the ceramic element body and connecting the second external connection conductor and the second terminal electrode. The number of the first internal connection conductor is set to be smaller than the number of the first internal electrodes and the number of the second internal connection conductor is set to be smaller than the number of the second internal electrodes. | 12-03-2009 |
20090310277 | MULTILAYER CERAMIC ELECTRONIC COMPONENT AND METHOD FOR MAKING THE SAME - A multilayer ceramic electronic component includes a ceramic body including a plurality of ceramic layers, the ceramic body having a first main surface and a second main surface and a plurality of side surfaces that connect the first main surface to the second main surface, an internal conductor including nickel, the internal conductor being disposed in the ceramic body and having an exposed portion exposed at least one of the side surfaces, and an external terminal electrode disposed on at least one of the side surfaces of the ceramic body, the external terminal electrode being electrically connected to the internal conductor. The external terminal electrode includes a first conductive layer including a Sn—Cu—Ni intermetallic compound, the first conductive layer covering the exposed portion of the internal conductor at least one of the side surfaces of the ceramic body. | 12-17-2009 |
20090310278 | MULTILAYER ELECTRONIC COMPONENT AND METHOD FOR MANUFACTURING THE SAME - A multilayer electronic component includes a ceramic body including ceramic layers that are laminated to one another and internal conductors having exposed portions at side surfaces of the ceramic body. Substantially linear connection portions extend in the lamination direction of the ceramic layers so as to connect the exposed portions to one another. External terminal electrodes cover the exposed portions of the internal conductors and the connection portions and include base plating films directly disposed on the side surfaces by plating. The connection portions are formed by polishing the side surfaces in which the internal conductors are exposed using, for example, a brush so as to elongate the exposed portions of the internal conductors. | 12-17-2009 |
20090316330 | MULTILAYER CERAMIC ELECTRONIC COMPONENT AND MANUFACTURING METHOD THEREOF - A multilayer ceramic electronic component includes dummy conductor patterns on a ceramic green sheet laminated in an earlier stage of the lamination and sheet-by-sheet crimping process that have widths that are less than the widths of dummy conductor patterns on a ceramic green sheet laminated in a later stage of the lamination and sheet-by-sheet crimping process. | 12-24-2009 |
20100027189 | MULTILAYER CAPACITOR - An element body has a major capacitance forming portion to form a first capacitance, and a minor capacitance forming portion to form a plurality of second capacitances smaller than the first capacitance. The major capacitance forming portion includes a first internal electrode connected to a first terminal electrode, and a second internal electrode opposed to the first internal electrode and connected to a second terminal electrode. The minor capacitance forming portion includes a third internal electrode connected to the first terminal electrode, a fourth internal electrode arranged as separated from the third internal electrode in an identical layer and connected to the second terminal electrode, a fifth internal electrode opposed to the third and fourth internal electrodes and connected to the first terminal electrode, and a sixth internal electrode opposed to the third and fourth internal electrodes and opposed to the fifth internal electrode through a region between the third and fourth internal electrodes, and connected to the second terminal electrode. | 02-04-2010 |
20100027190 | Multilayer Capacitor and Method for Adjusting Equivalent Series Impedance of Same - A multilayer capacitor operable to allow adjustment of its equivalent series resistance substantially independent of its equivalent series inductance is disclosed. The multilayer capacitor can be used in decoupling circuits such as power supply decoupling circuits. The equivalent series resistance of the multilayer capacitor can be increased while suppressing an increase in the equivalent series inductance resulting in improved noise grounding. | 02-04-2010 |
20100033894 | HIGH VOLTAGE CAPACITORS - A multilayer ceramic capacitor component includes a ceramic capacitor body having opposite ends and comprised of a plurality of electrode layers and dielectric layers, first and second external terminals attached to the ceramic capacitor body. The plurality of electrode layers include a plurality of alternating layers of active electrodes extending inwardly from alternating ends of the ceramic capacitor body. The capacitor may include a plurality of side shields disposed within the plurality of alternating layers of active electrodes to provide shielding with the alternating layers of active electrodes having a pattern to increase overlap area to provide higher capacitance without decreasing separation between the alternative layers of active electrodes. The capacitor may have a voltage breakdown of 3500 volts DC or more in air. The capacitor may have a coating. The capacitor provides improved resistance to arc-over, high voltage breakdown in air, and allows for small case size. | 02-11-2010 |
20100053842 | STACKED MULTILAYER CAPACITOR - A capacitor device mountable on a plane of a substrate includes an electrically conductive bottom plate adapted to be mounted substantially parallel to, and in electrical contact at the plane of the substrate and a first multilayer capacitor having substantially parallel first and second electrode plates oriented substantially perpendicular to the bottom plate with the first electrode plates being electrically connected to the bottom plate. An electrically conductive top lead frame overlaps with, and is electrically isolated from, the bottom plate. The top lead frame electrically connected to the second electrode plates and adapted to be electrically connected at the plane of the substrate. The bottom lead frame may have a corrugated shape, where the corrugated shape provides compliance between the first multilayer capacitor and the substrate. A portion of the top lead frame may contact at least a portion of a side of the first multilayer capacitor. | 03-04-2010 |
20100067170 | CERAMIC ELECTRONIC COMPONENT AND METHOD FOR MANUFACTURING THE SAME - A ceramic electronic component that is hardly influenced by a stress generated when an external electrode containing a metal sintered compact is formed at the end of the ceramic component body, and a method for manufacturing the same are provided. A laminated ceramic capacitor includes a ceramic component body and first electrodes to be connected to internal electrodes that are led to the end surfaces are formed. The first external electrodes are arranged so that the ends are spaced apart from the side surfaces of the ceramic component body. Second external electrodes containing a conductive resin are arranged so as to entirely cover the first electrodes and first and second metal layers and are formed thereon. The first external electrodes are formed by supplying a conductive paste containing conductive metal powder and glass frit having a softening point higher than the sintering starting temperature of the conductive metal powder, and heating the same. | 03-18-2010 |
20100079925 | MULTILAYER CAPACITOR - A multilayer capacitor which can inhibit impedance from decreasing near a resonance frequency is provided. | 04-01-2010 |
20100091427 | MULTILAYER CHIP CAPACITOR - A multilayer chip capacitor includes: a capacitor body having a plurality of dielectric layers laminated therein and comprising first and second capacitor units; and first to fourth external electrodes formed on an outer surface of the capacitor body, wherein the first capacitor unit comprises first and second internal electrodes facing each other with the dielectric layer interposed therebetween, connected to the first and second external electrodes, and having different polarities, each pair of first and second internal electrodes being laminated one or more times to discriminate a plurality of capacitors with a certain capacitance, the second capacitor unit comprises third and fourth internal electrodes facing each other with the dielectric layer interposed therebetween, connected to the third and fourth external electrodes, and having the same polarities as those of the first and second internal electrodes, each pair of third and fourth internal electrodes being laminated one or more times to discriminate one or more capacitors each with a certain capacitance, and at least three capacitors included in the first and second capacitor units have different capacitances or resonance frequencies. | 04-15-2010 |
20100118467 | LAMINATED CERAMIC ELECTRONIC COMPONENT - In a laminated ceramic electronic component, external terminal electrodes include plating films directly covering exposed portions of internal electrodes on end surfaces of a ceramic element assembly. On the boundaries between the end surfaces and principal surfaces of the ceramic element assembly, substantially rounded corners are provided, and the plating films are arranged such that the ends of the plating films stop at the corners and do not project from the principal surfaces. | 05-13-2010 |
20100123994 | CERAMIC ELECTRONIC COMPONENT - In a ceramic electronic component having a thin structure, the occurrence of cracks due to stress applied when the ceramic component is being mounted or in a mounted state are prevented. Each of first and second external terminal electrodes has a substantially rectangular region on a principal surface of a ceramic element body, the principal surface being directed to the mounting surface side. An end of the first external terminal electrode, which is arranged in contact with a gap region, and an end of the second external terminal electrode, which is positioned in contact with the gap region, each preferably have a concave-convex shape on the principal surface. | 05-20-2010 |
20100128412 | LAMINATED CERAMIC ELECTRONIC COMPONENT AND MANUFACTURING METHOD THEREOF - In a laminated ceramic electronic component in which, by directly carrying out a plating process on an outer surface of a component main body, an external electrode is formed thereon, an attempt is made to improve the adhesion strength between a plated film forming the external electrode and the component main body. A brazing material containing Ti is applied to at least one portion of a surface on which external electrodes of a component main body is formed, and by baking this brazing material, a metal layer containing Ti is formed. Moreover, the external electrodes are formed by a plating process so as to coat at least the metal layer, and a heating process is then carried out so as to cause counter diffusion between the metal layer and the plated film that is to form the external electrodes. | 05-27-2010 |
20100128413 | MULTILAYER CAPACITOR - In a capacitor body, a single second capacitor unit is interposed between two first capacitor units. The width direction dimension of each of extended portions of first and second internal electrodes included in the first capacitor unit is larger than the width direction dimension of each of extended portions of third and fourth internal electrodes included in the second capacitor unit. The area of each of the respective portions of a first opposed portion of the first internal electrode and a second opposed portion of the second internal electrode, the respective portions being opposed to each other, is smaller than the area of each of respective portions of opposed portions of the third and fourth internal electrodes, the respective portions being opposed to each other. Thus, a multilayer capacitor has a characteristic that is a combination of a low-ESL characteristic of the first capacitor unit and a high-ESR characteristic of the second capacitor. | 05-27-2010 |
20100157507 | ELECTRONIC COMPONENT AND PRODUCING METHOD THEREOF - A region where a plating film constituting an external electrode is formed can be accurately controlled in an electronic component in which the external electrode is formed by directly plating a particular region in a surface of a component body. In a component body, a bump is provided in a position in which a region where an external electrode should be formed is partitioned. In a plating process, growth of the plating film constituting the external electrode is substantially stopped or delayed in the bump. As a result, a termination point of the growth of the plating film constituting the external electrode can be accurately controlled in the position of the bump. | 06-24-2010 |
20100188798 | MULTILAYER CAPACITOR AND METHOD OF MANUFACTURING SAME - A multilayer capacitor which can prevent chattering noises from occurring and improve the packaging density and packaging yield, and a method of manufacturing a multilayer capacitor are provided. | 07-29-2010 |
20100188799 | CONTROLLED ESR LOW INDUCTANCE CAPACITOR - Multilayer capacitors incorporate both low inductance (ESL) and controlled Equivalent Series Resistance (ESR) features into a cost-effective unitary device. Internal electrode patterns generally include one or more pairs of mother electrodes adapted for external connection (e.g., to a circuit, another electrical component, circuit board, or other mounting environment), and multiple pairs of daughter electrodes adapted only for internal connection to other electrodes (e.g., other daughter electrodes and/or selected mother electrodes) without direct connection to an external circuit. Mother and daughter electrodes are interdigitated with electrode tab features, where daughter electrodes have internal-connection tabs, and mother electrodes have both internal-connection tabs and circuit-connection tabs, all of which are connected to respective internal-connection or circuit-connection terminals. ESR is increased by the parallel connection between mother and daughter electrodes as well as other optional features such as but not limited to resistive terminations, resistive connectors, serpentine terminations and increased current path lengths. | 07-29-2010 |
20100220426 | MULTILAYER CERAMIC ELECTRONIC COMPONENT - A multilayer ceramic capacitor includes first internal electrodes extending to a first end surface of a ceramic element assembly, a plurality of second internal electrodes extending to a second end surface, floating internal electrodes arranged so as to overlap the first and second internal electrodes with ceramic layers disposed therebetween to define first and second effective regions, inner conductors that are elongated from the first end surface beyond a region that overlaps the first effective region in the direction of layering, and a relationship X109-02-2010 | |
20100238605 | MULTILAYER CHIP CAPACITOR AND METHOD OF FABRICATING THE SAME - A multilayer chip capacitor includes: a capacitor main body; a plurality of first and second inner electrodes; and m (m≧3) number of first and second outer electrodes. The plurality of first and second inner electrodes are connected with two outer electrodes positioned on both opposing surfaces and having the same polarity as that of the first and second inner electrodes, and classified into a plurality of groups depending on the locations of the outer electrodes connected to the first and second inner electrodes. At least one of two outer electrodes connected with inner electrodes of each group is different from an outer electrode connected with inner electrodes of a different group having the same polarity, and inner electrodes of one group are connected to outer electrodes connected with at least another one group so that all the inner electrodes belonging to the same polarity can be electrically connected. | 09-23-2010 |
20100254070 | MULTILAYER CHIP CAPACITOR - A multilayer chip capacitor includes: a capacitor body having first and second side surfaces and a bottom surface; a plurality of first and second internal electrodes in the capacitor body; first and second external electrodes having a first polarity and formed on the first and second side surfaces, respectively, to cover a respective lower edge of the side surfaces and to partially extend to the bottom surface; and a third external electrode having a second polarity and formed on the bottom surface. The internal electrodes are disposed in perpendicular to the bottom surface. Each of the first internal electrodes has a first lead drawn to the first side and bottom surfaces and a second lead drawn to the second side and bottom surfaces. Each of the second internal electrodes has a third lead drawn to the bottom surface. | 10-07-2010 |
20100302704 | LAMINATED ELECTRONIC COMPONENT AND MANUFACTURING METHOD THEREFOR - A method for manufacturing a laminated electronic component includes the steps of preparing a component main body having a laminated structure, the component main body including a plurality of internal electrodes formed therein, and each of the internal electrodes being partially exposed on an external surface of the component main body, and forming an external terminal electrode on the external surface of the component main body such that the external terminal electrode is electrically connected to the internal electrodes. The step of forming the external terminal electrode includes the steps of forming a metal layer on exposed surfaces of the internal electrodes of the component main body, applying a water repellant on at least a surface of the metal layer and on a section of the external surface of the component main body at which an end edge of the metal layer is located, and then forming a conductive resin layer on the metal layer having the water repellant applied thereon. | 12-02-2010 |
20100309605 | THREE-TERMINAL METAL-OXIDE-METAL CAPACITOR - An MOM capacitor includes a first metal plate; a second metal plate in close proximity to the first metal plate; a third metal plate in close proximity to the first metal plate, and at least one oxide layer interposed between the first, second and three vertical metal plates. The first, second and third metal plate are connected to three different terminals of an integrated circuit. | 12-09-2010 |
20100309606 | Capacitor Arrangement And Method For Making Same - One or more embodiments relate to a semiconductor chip including a capacitor arrangement, the capacitor arrangement comprising: a first capacitor; and a second capacitor stacked above the first capacitor, the first capacitor and the second capacitor coupled in series between a first metallization level and a second metallization level adjacent the first metallization level. | 12-09-2010 |
20110002082 | HIGH CAPACITANCE MULTILAYER WITH HIGH VOLTAGE CAPABILITY - New designs for multilayer ceramic capacitors are described with high voltage capability without the need of coating the part to resist surface arc-over. One design combines a high overlap area for higher capacitance whilst retaining a high voltage capability. A variation of this design has increased voltage capability over this design as well as another described in the prior art although overlap area and subsequently capacitance is lowered in this case. These designs are compared to the prior art in examples below. | 01-06-2011 |
20110096463 | MULTILAYER CAPACITOR - Disclosed is a multilayer capacitor capable of improving reliability and further reducing ESL. In a width direction, a second principal-surface electrode portion is greater than a first principal-surface electrode portion, and a fifth principal-surface electrode portion is greater than a fourth principal-surface electrode portion. When viewed from a lamination direction, an outer edge of the second principal-surface electrode portion at the other end side is arranged near the other end side more than outer edge of the fifth principal-surface electrode portion at one end side. First lead portions are connected to the second principal-surface electrode portion, and second lead portions are connected to the fifth principal-surface electrode portion. Thus, portions of the second principal-surface electrode portion greater than the first principal-surface electrode portion and portions of the fifth principal-surface electrode portion greater than the fourth principal-surface electrode portion function as current paths between the first lead portions and the second lead portions. Therefore, the current paths are shortened. | 04-28-2011 |
20110096464 | MULTILAYER CAPACITOR - Disclosed is a multilayer capacitor capable of improving adhesiveness of layers of an element body and improving reliability. Outer edge | 04-28-2011 |
20110102969 | MULTILAYER CAPACITOR, MOUNTING STRUCTURE THEREOF, AND METHOD OF MANUFACTURING SAME - A multilayer capacitor | 05-05-2011 |
20110149468 | THREE-DIMENSIONAL CAPACITOR AND TOPOLOGICAL DESIGN METHOD FOR SUCH A CAPACITOR - A three-dimensional capacitor is formed from a multilayer of superposed electrodes. The electrodes are formed within respective metallization levels of an integrated circuit. At least two additional superposed electrodes are formed on top of the multilayer. Each additional electrode is formed from a branched rectilinear structure including at least one bar aligned in a first direction and a plurality of branches extending from that at least one bar in a second direction. | 06-23-2011 |
20110273815 | ELECTRONIC COMPONENT - In an electronic component, a first capacitor conductor includes a first exposed portion exposed between insulating layers at a surface of a laminate including a first shorter side and two longer sides. A second capacitor conductor includes a second exposed portion exposed between the insulating layers at a surface of the laminate including a second shorter side and the two longer sides. First and second external electrodes are arranged on the laminate so as to cover the first and the second exposed portions, respectively. A first width of the first capacitor conductor in a region located between the second shorter side and a first straight line obtained by connecting two edges of the second external electrode is greater than a width of the first capacitor conductor in a region located between the first straight line and a straight line obtained by connecting two edges of the first external electrode. | 11-10-2011 |
20120092806 | PROTECTION STRUCTURE FOR METAL-OXIDE-METAL CAPACITOR - A capacitor structure includes first and second sets of electrodes and a plurality of line plugs. The first set of electrodes has a first electrode and a second electrode formed in a first metallization layer among a plurality of metallization layers, wherein the first electrode and the second electrode are separated by an insulation material. The second set of electrodes has a third electrode and a fourth electrode formed in a second metallization layer among the plurality of metallization layers, wherein the third electrode and the fourth electrode are separated by the insulation material. The line plugs connect the second set of electrodes to the first set of electrodes. | 04-19-2012 |
20120314338 | MULTILAYER CAPACITOR AND METHOD OF MANUFACTURING SAME - In a multilayer capacitor | 12-13-2012 |
20130088810 | MULTILAYER CERAMIC CAPACITOR AND METHOD FOR MANUFACTURING THE SAME - Disclosed herein are a multilayer ceramic capacitor and a method for manufacturing the same. The multilayer ceramic capacitor includes: a capacitor main body having dielectric layers and inner electrodes laminated therein; external electrodes and plating layers formed on a surface of the capacitor main body; and electroless plating layers formed between the external electrodes and the plating layers. | 04-11-2013 |
20130314843 | MULTILAYER CERAMIC ELECTRONIC PART AND METHOD OF MANUFACTURING THE SAME - There is provided a multilayer ceramic electronic part, including: a ceramic element having a plurality of dielectric layers laminated therein; a plurality of first and second internal electrodes each formed on at least one surface of each of the plurality of dielectric layers within the ceramic element, the first and second internal electrodes respectively including first and second lead parts extended therefrom to be exposed through one surface of the ceramic element; and first and second external electrodes formed on one surface of the ceramic element, and electrically connected to the first and second internal electrodes through exposed portions of the first and second lead parts, respectively, wherein a ratio of a width of the first or second lead part to a width of the first or second external electrode is | 11-28-2013 |
20140071587 | Capacitors in Integrated Circuits and Methods of Fabrication Thereof - In one embodiment, a capacitor includes a first via level having first metal bars and first vias, such that the first metal bars are coupled to a first potential node. The first metal bars are longer than the first vias. Second metal bars and second vias are disposed in a second via level, the second metal bars are coupled to the first potential node. The second metal bars are longer than the second vias. The second via level is above the first via level and the first metal bars are parallel to the second metal bars. Each of the first metal bars has a first end, an opposite second end, and a middle portion between the first and the second ends. Each of the middle portions of the first metal bars and the second ends of the first metal bars do not contact any metal line. | 03-13-2014 |
20140078643 | ELECTRONIC COMPONENT AND METHOD FOR PRODUCING SAME - An electronic component comprises: a laminate having a plurality of rectangular insulator layers and a mounting surface formed by a series of sides of the insulator layers. A plurality of first lead-out conductors are exposed between the insulator layers at the mounting surface. A first external electrode covers the first lead-out conductors at the mounting surface. The first external electrode is located at a first formation area at the mounting surface. The first formation area, when viewed in a plan view in an extending direction in which the sides of the insulator layers that constitute the mounting surface extend, is curved so as to bulge at a center of the formation area relative to opposite ends thereof. | 03-20-2014 |
20140104750 | MULTI-LAYERED CERAMIC CAPACITOR - There is provided a multi-layered ceramic capacitor including: a ceramic body formed by multi-layering a plurality of dielectric layers; a plurality of first and second internal electrodes including at least one side exposed through edges of the dielectric layer; upper and lower cover layers formed at upper and lower portions of the ceramic body, respectively; first and second external electrodes formed to be spaced apart from each other at a lower surface of the lower cover layer; first and second connecting electrodes contacting outer peripheral surfaces of a plurality of second and first margin to connect exposed portions of the plurality of first and second internal electrodes, respectively; and an insulating side part formed so as to cover lateral surfaces at which the first and second internal electrodes are exposed. | 04-17-2014 |
20140355175 | MULTILAYER CERAMIC ELECTRONIC COMPONENT AND BOARD FOR MOUNTING THE SAME - A multilayer ceramic electronic component includes a hexahedral ceramic body including dielectric layers and having first and second main surfaces opposing each other in a thickness direction, first and second end surfaces opposing each other in a length direction, and first and second side surfaces opposing each other in a width direction; first and second internal electrodes stacked to have the dielectric layer interposed therebetween within the ceramic body and alternately exposed through the first and second end surfaces; and first and second external electrodes electrically connected to the first and second internal electrodes, respectively, and including first and second head parts formed on the first and second end surfaces, wherein width of the first and second head parts is less than width of the ceramic body, and when length, width and thickness of the ceramic body are defined as L, W, and T, respectively, T/W>1.0 is satisfied. | 12-04-2014 |
20140355176 | MULTILAYER CERAMIC ELECTRONIC COMPONENT AND MOUNTING BOARD THEREFOR - There is provided a multilayer ceramic electronic component including a ceramic body including dielectric layers, and first and second internal electrodes formed within the ceramic body and disposed to face each other having the respective dielectric layers interposed therebetween, wherein in a cross-section of the ceramic body in a length-thickness (L-T) direction, when an area of non-electrode regions in cover part internal electrodes among the first and second internal electrodes is defined as A | 12-04-2014 |
20160203913 | MULTI-LAYERED CERAMIC ELECTRONIC DEVICE, METHOD FOR MAKING SAME | 07-14-2016 |
20190148073 | MULTILAYER CAPACITOR | 05-16-2019 |