Entries |
Document | Title | Date |
20080218932 | Embedded capacitor - An embedded capacitor method and system is provided for printed circuit boards. The capacitor structure is embedded within an insulator substrate, minimizes real-estate usage, provides a high capacitance, enhances capacitance density, and yet forms an advantageous planar surface topography. A cavity is defined within and contained by an insulator substrate layer, and a dielectric material at least partially fills the cavity. The dielectric material is connected to an electrical conductor, and vias are used for interconnections and traces. In an aspect, a plurality of stacked insulator substrate layers define a plurality of cavities filled with the dielectric material, providing even greater capacitance. In another aspect, an array of cavities is formed in the insulator substrate layer. The embedded capacitor can be employed within numerous systems that utilize capacitors including automotive electronics such as a pressure sensor, an engine control module, a transmission controller, and radio systems including satellite radio devices. | 09-11-2008 |
20080259521 | POWER INTEGRITY CIRCUITS WITH EMI BENEFITS - A stable power, low electromagnetic interference (EMI) apparatus and method for connecting electronic devices and circuit boards is disclosed. The apparatus involves a capacitor which includes a body member, a set of power terminals and a set of ground terminals connected to the top of the body member. The set of power terminals and the set of ground terminals alternate one with another. As a result of this configuration, a high inductance on the PCB side is achieved. The capacitor further includes a set of terminals connected to the bottom of the body member and includes metal planes within the body member. The metal planes are positioned to electrically connect either the set of power terminals or the set of ground terminals to the set of terminals. | 10-23-2008 |
20090231777 | NANOLITHOGRAPHIC METHOD OF MANUFACTURING AN EMBEDDED PASSIVE DEVICE FOR A MICROELECTRONIC APPLICATION, AND MICROELECTRONIC DEVICE CONTAINING SAME - A method of manufacturing an embedded passive device for a microelectronic application comprises steps of providing a substrate ( | 09-17-2009 |
20100118465 | Method of Manufacturing Silicon Topological Capacitors - In accordance with the present invention, a novel method to fabricate topological capacitors is provided. The fabrication method of the instant invention is based upon a reversed surface topology utilizing deep reactive ion etching to establish conductive capacitive elements and non-conductive capacitive element groups. | 05-13-2010 |
20100142115 | BURIED CAPACITOR, METHOD OF MANUFACTURING THE SAME, AND METHOD OF CHANGING CAPACITANCE THEREOF - Provided are a buried capacitor, a method of manufacturing the same, and a method of changing a capacitance thereof. The buried capacitor includes an upper electrode including at least one first hole, a lower electrode including at least one second hole, and a dielectric interposed between the upper electrode and the lower electrode. | 06-10-2010 |
20100246087 | SEMICONDUCTOR INTEGRATED CIRCUIT INCLUDING CIRCUIT FOR DRIVING ELECTROSTATIC ACTUATOR, MICRO-ELECTRO-MECHANICAL SYSTEMS, AND DRIVING METHOD OF ELECTROSTATIC ACTUATOR - A semiconductor integrated circuit comprises an electrostatic actuator, an estimation circuit, a storage circuit and a bias circuit. The electrostatic actuator has a top electrode, a bottom electrode, and an insulating film disposed between the top electrode and the bottom electrode. The estimation circuit estimates the amount of a charge accumulated in the insulating film of the electrostatic actuator. The storage circuit stores a result of the estimation of the charge amount by the estimation circuit. The bias circuit changes, on the basis of the estimation result stored in the storage circuit, a drive voltage to drive the electrostatic actuator. | 09-30-2010 |
20100284123 | SYSTEMS AND METHODS FOR FABRICATING HIGH-DENSITY CAPACITORS - The present invention describes systems and methods for fabricating high-density capacitors. An exemplary embodiment of the present invention provides a method for fabricating a high-density capacitor system including the steps of providing a substrate and depositing a nanoelectrode particulate paste layer onto the substrate. The method for fabricating a high-density capacitor system further includes sintering the nanoelectrode particulate paste layer to form a bottom electrode. Additionally, the method for fabricating a high-density capacitor system includes depositing a dielectric material onto the bottom electrode with an atomic layer deposition process. Furthermore, the method for fabricating a high-density capacitor system includes depositing a conductive material on the dielectric material to form a top electrode. | 11-11-2010 |
20110299219 | ENERGY STORAGE DEVICE PRODUCT - A compressible and deformable layer is densified and laminated to a layer of a material that is relatively resistant to stretching. The densification and bonding take place in a single step. As used in fabrication of electrodes, for example, electrodes for double layer capacitors, a deformable and compressible active electrode film is manufactured from activated carbon, conductive carbon, and a polymer. The electrode film may be bonded directly to a collector. Alternatively, a collector may be coated with a wet adhesive layer. The adhesive layer is subsequently dried onto the foil. The dried adhesive and foil combination may be manufactured as a product for later sale or use, and may be stored as such on a storage roll or other storage device. The active electrode film is overlayed on the metal foil, and processed in a laminating device, such as a calender. Lamination both densifies the active electrode film and bonds the film to the metal foil. Spreading of the active electrode film in the plane parallel to the plane of the metal foil is reduced or eliminated during lamination, because of the adhesion between the film and the foil. | 12-08-2011 |
20120243142 | CAPACITOR ASSEMBLY - A lower enclosure has a first recess. A first annular retainer is adapted for engaging a lower portion of a capacitor and the first recess. The first annular retainer has a plurality of tabs that extend radially outward from an outer diameter surface of the first annular retainer. Each of the tabs has a sloped surface or a peaked surface for compression of the first annular retainer against the capacitor. An upper enclosure has a plurality of second recesses. A second annular retainer is adapted for engaging an upper portion of the capacitor and the second recesses. The second annular retainer has a plurality of protrusions that extend upward from the second annular retainer. Each of the protrusions has a slit for receiving a wedge, such that if the protrusions engage the wedge the second annular retainer is compressed against the capacitor. | 09-27-2012 |
20120257321 | STACKABLE CAPACITOR STRUCTURE - A capacitor includes a main body, a first seat, and a second seat. The main body includes a first end surface and a second end surface opposite to the first end surface. Two first pins extend upward from the first end surface. Two second pins extend downward from the second end surface. The first pins electrically connect the second pins. The first seat includes a first substrate and two first pads, the first seat is positioned on the second end surface of the main body and the first pads are electrically connected to the second pins. The second seat includes a second substrate and two second pads, the second seat is positioned on the first end surface of the main body and the second pads are electrically connected to the first pins. | 10-11-2012 |
20120262835 | METHOD FOR FABRICATING A DRAM CAPACITOR - A method for fabricating a dynamic random access memory (DRAM) capacitor stack is disclosed wherein the stack includes a first electrode, a dielectric layer, and a second electrode. The first electrode is formed from a conductive binary metal compound and the conductive binary metal compound is annealed in a reducing atmosphere to promote the formation of a desired crystal structure. The binary metal compound may be a metal oxide. Annealing the metal oxide (i.e. molybdenum oxide) in a reducing atmosphere may result in the formation of a first electrode material (i.e. MoO | 10-18-2012 |
20130163142 | SURFACE MOUNT COMPONENT HAVING MAGNETIC LAYER THEREON AND METHOD OF FORMING SAME - A microelectronic assembly, a surface mount component and a method of providing the surface mount component. The assembly comprises: a substrate having bonding pads disposed on a mounting surface thereof, the bonding pads including a ferromagnetic material therein; solidified solder disposed on the bonding pads; and a surface mount component bonded to the substrate by way of the solidified solder and including a magnetic layer disposed on a substrate side thereof, the magnetic layer being adapted to cooperate with the ferromagnetic material in the bonding pads to establish a magnetic force of a sufficient magnitude to hold the surface mount component on the substrate before and during soldering. | 06-27-2013 |
20150062773 | FAST-MOUNTING CAPACITOR - A fast-mounting capacitor is composed of a capacitor ( | 03-05-2015 |