Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Contour or profile

Subclass of:

356 - Optics: measuring and testing

356450000 - BY LIGHT INTERFERENCE (E.G., INTERFEROMETER)

356496000 - For dimensional measurement

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
356512000 By wavefront detection 58
356516000 Step height (differential, between points) 2
20100220337OPTICAL SURFACE MEASURING APPARATUS AND METHOD - Disclosed herein is an apparatus and method which is capable of accurately measuring surface status, such as a minute variation in height (the height difference), a protrusion, a depression, surface damage and/or surface roughness, at each point on the surface of the object to be measured in an optical manner. In particular, the present invention provides an optical surface measuring apparatus and method which is capable of accurately measuring the minute surface status of the object to be measured using both a signal from an interferometer and an FE signal from a Position Sensitive Detector (PSD) in order to overcome the 2π-ambiguity of the conventional interferometers and the limitation of the FE signal.09-02-2010
20120274946METHOD AND SYSTEM FOR EVALUATING A HEIGHT OF STRUCTURES - A method and system for interference based detection of height (H) of a microscopic structure. Wherein N*(Ws/2)>H>(N−1)*(Ws/2); wherein N is a positive integer, w11-01-2012
Entries
DocumentTitleDate
20080259348Multiple Channel Interferometric Surface Contour Measurement System - Described are a multiple channel interferometric surface contour measurement system and methods of determining surface contour data for the same. The measurement system includes a multiple channel interferometer projector, a digital camera and a processor. Fringe patterns generated by spatially separate channels in the projector are projected onto an object surface to be measured. The digital camera acquires images of the fringe patterns and the processor determines surface contour data from the fringe patterns. More specifically, fringe numbers arc determined for points on the object surface based on image data. The fringe numbers are modified according to collinear adjustment values so that the modified fringe numbers correspond to a common, collinear axis for the interferometer projector. After unwrapping the modified fringe numbers, the unwrapped values are modified by the collinear adjustment values to obtain accurate fringe numbers for the pixels in each interferometer channel.10-23-2008
20080266574INTERFEROMETER AND METHOD FOR MEASURING CHARACTERISTICS OF OPTICALLY UNRESOLVED SURFACE FEATURES - Disclosed is an interferometry analysis method that includes comparing information derivable from multiple interferometry signals corresponding to different surface locations of a test object to information corresponding to multiple models of the test object, wherein the multiple models are parametrized by a series of characteristics that relate to one or more under-resolved lateral features of the test object; and outputting information about the under-resolved surface feature based on the comparison.10-30-2008
20080285052SHAPE MEASURING APPARATUS, EXPOSURE APPARATUS, AND COMPUTER - A shape measuring apparatus for measuring the shape of a measurement target surface includes an interferometer and computer. The interferometer senses interference light formed by measurement light from the measurement target surface and reference light by a photoelectric converter, while changing the light path length of the measurement light or the reference light. The computer Fourier-transforms a first interference signal sensed by the photoelectric converter to obtain a phase distribution and an amplitude distribution, shapes the amplitude distribution, inversely Fourier-transforms the phase distribution and the shaped amplitude distribution to obtain a second interference signal, and determines the shape of the measurement target surface based on the second interference signal.11-20-2008
20080285053MEASURING THE SHAPE, THICKNESS VARIATION, AND MATERIAL INHOMOGENEITY OF A WAFER - In one embodiment, an interferometer system comprises an unequal path interferometer assemble comprising; a first reference flat having a first length L11-20-2008
20090002716LASER SCANNING INTERFEROMETRIC SURFACE METROLOGY - An apparatus for assessing topology of a surface of a target. The apparatus includes an optical source for generating a probe laser beam. The apparatus also includes means for scanning the probe laser beam across at least a portion of the surface of the target. The apparatus further includes a beamsplitter for redirecting a return signal toward means for detecting the return signal in a substantially quadrature condition, the return signal resulting from reflection of the probe laser beam off the surface of the target. A quadrature interferometric method for determining the presence or absence of a target analyte in a sample. The method comprises generating a laser probe beam having a wavelength λ and a waist w01-01-2009
20090009773METHOD FOR MEASURING SURFACE PROFILE, AND APPARATUS USING THE SAME - A reference plane is arranged in a posture obliquely tilted at an optional angle relative to a traveling direction of a light-beam, so that an interference fringe is generated from the reflected light-beams which are reflected from a target plane and the reference plane and, then, return on a single optical path. An image of the interference fringe is taken by a CCD camera to acquire intensity value data of each pixel. A phase of an interference fringe waveform is obtained for each pixel by a CPU by fitting the intensity value data to a model equation expressing the interference fringe waveform, where the intensity value data contain that of each pixel and those of the pixels in the vicinity of the relevant pixel, on assumption that DC components, AC amplitudes and phases of the interference fringe waveforms are respectively constant in the vicinity of the relevant pixel. The obtained phase is converted into a height to measure a surface profile.01-08-2009
20090015844Interferometry Method for Ellipsometry, Reflectometry, and Scatterometry Measurements, Including Characterization of Thin Film Structures - A method including: imaging test light emerging from a test object over a range of angles to interfere with reference light on a detector, wherein the test and reference light are derived from a common source; for each of the angles, simultaneously varying an optical path length difference from the source to the detector between interfering portions of the test and reference light at a rate that depends on the angle at which the test light emerges from the test object; and determining an angle-dependence of an optical property of the test object based on the interference between the test and reference light as the optical path length difference is varied for each of the angles.01-15-2009
20090027689METHOD AND APPARATUS FOR PERFORMING OPTICAL IMAGING USING FREQUENCY-DOMAIN INTERFEROMETRY - An apparatus and method are provided. In particular, at least one first electro-magnetic radiation may be provided to a sample and at least one second electro-magnetic radiation can be provided to a non-reflective reference. A frequency of the first and/or second radiations varies over time. An interference is detected between at least one third radiation associated with the first radiation and at least one fourth radiation associated with the second radiation. Alternatively, the first electro-magnetic radiation and/or second electro-magnetic radiation have a spectrum which changes over time. The spectrum may contain multiple frequencies at a particular time. In addition, it is possible to detect the interference signal between the third radiation and the fourth radiation in a first polarization state. Further, it may be preferable to detect a further interference signal between the third and fourth radiations in a second polarization state which is different from the first polarization state. The first and/or second electro-magnetic radiations may have a spectrum whose mean frequency changes substantially continuously over time at a tuning speed that is greater than 100 Tera Hertz per millisecond.01-29-2009
20090051926MULTIPLE FREQUENCY OPTICAL MIXER AND DEMULTIPLEXER AND APPARATUS FOR REMOTE SENSING - A pulsed laser system includes a modulator module configured to provide pulsed electrical signals and a plurality of solid-state seed sources coupled to the modulator module and configured to operate, responsive to the pulsed electrical signals, in a pulse mode. Each of the plurality of solid-state seed sources is tuned to a different frequency channel separated from any adjacent frequency channel by a frequency offset. The pulsed laser system also includes a combiner that combines outputs from each of the solid state seed sources into a single optical path and an optical doubler and demultiplexer coupled to the single optical path and providing each doubled seed frequency on a separate output path.02-26-2009
20090086216Partially Coherent Illumination For Inverse Scattering Full-Field Interferometric Synthetic Aperture Microscopy - Methods and apparatus for three-dimensional imaging of a sample. A source is provided of a beam of light characterized by partial spatial coherence. The beam is focused onto a sample and scattered light from the sample is superposed with a reference beam derived from the source onto a focal plane detector array to provide an interference signal. A forward scattering model is derived relating measurement data to structure of an object to allow solutions of an inverse scattering problem, based upon the interference signal so that a three-dimensional structure of the same may be inferred. The partial spatial coherence of the source, which may be fixed or variable, may advantageously provide for rejection of multiple scattering artifacts and thus improve image quality.04-02-2009
20090097037Method for Measuring Volume by an Optical Surface Profilometer in a Micromechanical Device and a System for Carrying Out Said Measurement - The invention relates to a method of measuring a volume in a fluid flow micromechanical device (04-16-2009
20090109444METHODS AND SYSTEMS FOR WHITE LIGHT INTERFEROMETRY AND CHARACTERIZATION OF FILMS - Methods are provided for estimating a surface profile of a sample in an interferometer having a broad bandwidth light source. The interferometer detects interference pattern intensity data over a series of frames of a relative scan between the sample and a reference surface. Particular methods comprise, for each location (x,y) of interest on the sample: determining an envelope of the detected interference pattern intensity data corresponding the location (x,y) of interest based on amplitudes of the detected interference pattern intensity data; determining a rough estimate z04-30-2009
20090135431Ultra Precision Profile Measuring Method - To provide a method for measuring a plane mirror or a curved surface mirror close to plane mirror for condensing hard X-rays or soft X-rays used in a radiation light facility, especially an elliptical or tubular object having a steep profile exceeding 1×1005-28-2009
20090147268INTERFEROMETRIC ANALYSIS OF UNDER-RESOLVED FEATURES - In certain aspects, disclosed methods include directing test light reflected from an object to form an image of the object on a detector, where the object includes a diffractive structure. The test light at the detector includes both specularly and non-specularly reflected light from the diffractive structure, and the diffractive structure is under-resolved in the image. The method further includes directing reference light to interfere with the test light at the detector where the reference and test light being derived from a common source, varying an optical path length difference between the test and reference light, acquiring an interference signal from the detector while varying the optical path length difference, and determining information about the diffractive structure based on the interference signal and on predetermined information derived from a mathematical model of light reflection from a model diffractive structure.06-11-2009
20090153875COORDINATE MEASURING MACHINE WITH TEMPERATURE ADAPTING STATION - The invention relates to a coordinate measuring machine (06-18-2009
20090168075MEASUREMENT METHOD, A MEASUREMENT APPARATUS, AND A COMPUTER-READABLE RECORDING MEDIUM - A measurement method for measuring a shape of a target using an interference pattern includes the steps of converting a first interference pattern into a first shape of the target (S07-02-2009
20090195788Apparatus for profile irregularity measurement and surface imperfection observation; method of profile irregularity measurement and surface imperfection observation; and inspection method of profile irregularity and surface imperfection - An apparatus for performing surface measurement of an inspection-object surface and profile irregularity measurement and surface defect observation of an inspection-object lens using a Fizeau interferometric optical system. The apparatus is provided with a beam control device that has a first beam control plate configured to allow for confirmation of a position of the inspection-object lens in a positional adjustment of the inspection-object lens, a second beam control plate having an aperture region at a center thereof and a shading region around the aperture region, and a third beam control plate having a shading region at a center thereof and an aperture region around the shading region, and that is configured so that a desired one of these beam control plates is insertable and removable on an imaginary plane in which a light convergence point of reflected light from the reference surface of the interferometric optical system lies and which is perpendicular to an optical axis of the interferometric optical system.08-06-2009
20090201511Interferometric system having a reference surface including a mirrored zone - An interferometric system having an illumination arm, including a light source and an illuminating optical system, for forming an illuminating beam; an object arm, including a reference element for measuring an object having an object surface to be measured, for forming an image-rays path, the object to be measured having an object surface inaccessible to direct illumination; a reference arm including a reference element; a detector arm including a detector; and a beam splitter, the reference element having one or more mirrored zones. Consequently, component parts which have undercut surfaces in the illumination direction can be measured in a single measuring operation.08-13-2009
20090237675DIMENSION MEASURING APPARATUS - A dimension measuring apparatus includes a light beam splitting element for splitting light emitted from a white light source into measuring light flux and reference light flux, a reference light scanning optics for varying optical path length of the reference light flux, a detector for detecting interference signal produced by the light fluxes, and a controller for determining the surface height of the object from the optical path length of the reference light flux corresponding to maximum value of the interference signal. The reference light scanning optics includes a rotary member, first and second reflective elements disposed to be symmetrical with respect to the rotation axis of the rotary member, and light beam deflecting members that direct the reference light flux to be incident on the first reflective element along the direction parallel and opposite to the incident direction of the reference light flux on the second reflective element.09-24-2009
20090244547OPTICAL TOMOGRAPHIC IMAGING SYSTEM, TOMOGRAPHIC IMAGE ACQUIRING METHOD, AND OPTICAL TOMOGRAPHIC IMAGE FORMING METHOD - This optical tomographic imaging system comprises an optical path length adjustor configured to set a first reference position of a measurement depth direction to an inner edge of a measurement range by adjusting an optical path length of a reference light, and an optical path length switching unit having a preset optical path length that provides a second reference position differing in measurement depth from the first reference position by a predetermined amount and configured to change the optical path length of the reference light or the optical path length of the reflected light adjusted by the optical path length adjustor so as to switch between the first reference position and the second reference position. This system is capable of measuring a measurement region of interest at high resolution, regardless of the position (depth) of the measurement region of interest, in an SS-OCT employing a wavelength-swept light source.10-01-2009
20090262363CONTOUR SENSOR INCORPORATING MEMS MIRRORS - A structured light sensor system for measuring contour of a surface includes an imaging lens system, an image capturing device, a first set of micro electromechanical system (MEMS) mirrors, and a control module. The imaging lens system focuses light reflected from the surface, wherein the imaging lens system has a corresponding lens plane. The image capturing device captures the focused light and generates data corresponding to the captured light, wherein the image capturing device has a corresponding image plane that is not parallel to the lens plane. The first set of MEMS mirrors direct the focused light to the image capturing device. The control module receives the data, determines a quality of focus of the captured light based on the received data, and controls the first set of MEMS mirrors based on the quality of focus to maintain a Scheimpflug tilt condition between the lens plane and the image plane.10-22-2009
20090268212MOIRE SHAPE MEASUREMENT APPARATUS USING LIQUID CRYSTAL DISPLAY PANEL - Disclosed herein is a moiré shape measurement apparatus using a Liquid Crystal Display (LCD) panel. The moiré shape measurement apparatus includes a light source, a variable grating, a viewing lens, a light receiving unit, a computation unit, and a driving device. The light source emits light. The variable grating passes the emitted light therethrough, and creates a projection grating pattern. The viewing lens focuses a reflected grating pattern that is obtained when the projection grating pattern is reflected from the object. The light receiving unit receives the light of the reflected grating pattern passed through the viewing lens. The computation unit previously stores the viewing grating pattern, forms the moiré pattern by overlaying the reflected grating pattern, received from the light receiving unit, on the stored viewing grating pattern, and computes the shape of the object using the moiré pattern. The driving device adjusts a direction and a pitch in order to form a grating of the variable grating.10-29-2009
20090273791INTERFEROMETRIC CONFOCAL MICROSCOPE - The invention concerns a confocal microscope for imaging a sample comprising at least a light source, said microscope comprising at least an objective and a tube lens with an image focus, said microscope comprising interference means constructed to generate interference figures from said light source, characterized in that said interference means comprising first image generation means constructed to generate a first image of said light source, second image generation means constructed to generate a second image of said light source symmetrical to the first image relative to the image focus, image interference means constructed to make said first image and said second image interfere.11-05-2009
20090303493INTERFEROMETRY FOR LATERAL METROLOGY - A method is disclosed which includes: using a scanning interferometry system, generating a sequence of phase-shifted interferometry images at different scan positions of an object comprising a buried surface, identifying a scan position corresponding to a position of best focus for the buried surface based on the sequence of phase-shifted interferometry images of the object, and generating a final image based on the phase-shifted interferometry images and the scan position, where the interferometric fringes in the final image are reduced relative to the interferometric fringes in the phase-shifted interferometry images.12-10-2009
20090323080OPTICAL TOMOGRAPHIC IMAGING APPARATUS AND OPTICAL TOMOGRAPHIC IMAGING METHOD - In an optical tomographic imaging apparatus, a wavelength of a light beam emitted from the light source is selected by a light source section filter, and the light beam emitted from the light source is split into a measurement light beam and a reference light beam. The measurement light beam is reflected from a measurement subject when the measurement light beam is irradiated, is amplified. A specific wavelength from the amplified reflected light beam is selected by an amplifying section filtering mechanism having a filter characteristic identical to a time variation characteristic of the light source section filter, and then the reflected light beam is multiplexed with the reference light beam. A tomographic image of the measurement subject is acquired from detection result of an interference light beam between the reflected light beam and the reference light beam which have been multiplexed.12-31-2009
20100007895Calibrating jig, profile measuring device, and method of offset calculation - A calibrating jig comprises a reference sphere, and a reflecting plate configured to support the reference sphere from a lower side thereof and mirror-reflect light in a case that the reference sphere is illuminated from an upper side thereof.01-14-2010
20100033733VIBRATION-RESISTANT INTERFEROMETRIC SCANNING SYSTEM AND METHOD THEREOF - A vibration-resistant interferometric scanning system and method are provided in the present invention. In the present invention, the brightness distribution in a high-coherence interference pattern is analyzed so as to perform a compensation action to lock the brightness distribution of a high-coherence interference pattern and consequently locking the fringe distribution of a low-coherence interference pattern or to perform a scanning operation composed of plural shifting actions with specified scanning distances in sequence and plural compensation actions to lock the fringe distribution in a low-coherence interference pattern corresponding to the surface profile of a measured object. Consequently, with the system and method of the present invention, the surface profile of a measured object disturbed by external or internal vibrations can be measured accurately and precisely.02-11-2010
20100060900Laser Digitizer System for Dental Applications - An intra-oral laser digitizer system provides a three-dimensional visual image of a real-world object such as a dental item through a laser digitization. The laser digitizer captures an image of the object by scanning multiple portions of the object in an exposure period. The intra-oral digitizer may be inserted into an oral cavity (in vivo) to capture an image of a dental item such as a tooth, multiple teeth or dentition. The captured image is processed to generate the three-dimension visual image.03-11-2010
20100091298Method and System for the Optical Measurement of Large Radii of Curvature of Optical Functional Surfaces - The system and the method of the present invention differ from the prior art in that radii of curvature of any length of spherical and cylindrical test surfaces can be optically measured, with only a supplementary dual-focus lens being required in addition to an interferometer or an autocollimator. The supplementary dual-focus lens has a first focal plane, into which the surface vertex of the test surface is positioned, which establishes the cat's eye position (P(cat)), and a second focal plane into which the center of curvature of the test surface is moved, which establishes the autocollimation position (P(aut)) for the test surface. The radius of curvature of the test surface is determined from the distance between the focal planes (D(foc)) and the path of movement which can be reduced to zero.04-15-2010
20100091299OPTICAL WAVE INTERFERENCE MEASURING APPARATUS - The relative position of a test surface is sequentially changed from a reference position where a surface central axis is aligned with a measurement optical axis such that the measurement optical axis is sequentially moved to a plurality of annular regions obtained by dividing the test surface in a diametric direction. The test surface is rotated on a rotation axis whenever the relative position is changed. Measurement light composed of a plane wave is radiated to the rotating test surface, and a one-dimensional image sensor captures interference fringes at each of a plurality of rotational positions. The shape information of each annular region is calculated on the basis of the captured interference fringes at each rotational position, and the shape information is connected to calculate the shape information of the entire measurement region.04-15-2010
20100097619OPTICAL WAVE INTERFERENCE MEASURING APPARATUS - The relative position of a test surface is sequentially changed from a reference position where a surface central axis is aligned with a measurement optical axis such that the measurement optical axis is sequentially moved to a plurality of annular regions obtained by dividing the test surface in a diametric direction. The test surface is rotated on a rotation axis whenever the relative position is changed. Measurement light that travels while being converged by a Mirau objective interference optical system is radiated to the rotating test surface, and a one-dimensional image sensor captures interference fringes at each of a plurality of rotational positions. The shape information of each annular region is calculated on the basis of the captured interference fringes at each rotational position, and the shape information is connected to calculate the shape information of the entire measurement region.04-22-2010
20100118313PHASE-SHIFTING INTERFEROMETRY IN THE PRESENCE OF VIBRATION - A phase-shifting interferometry (PSI) method and corresponding system including: (i) recording an interferogram for each phase in a sequence of phases between test light reflected from a test surface and reference light reflected from a reference surface, the test and reference light being derived from a common source, each interferogram corresponding to an intensity pattern produced by interfering the reflected test light with the reflected reference light, the interferograms defining an interferometry signal for each of different transverse locations of a cavity defined by the test and reference surfaces, each interferometry signal including a series of intensity values corresponding to the sequence of phases, with the difference between each pair of phases in the sequence defining a corresponding phase shift increment; (ii) calculating an initial phase map for the cavity based on at least some of the recorded interferograms; (iii) calculating an estimate for each of at least some of the phase shift increments based on the initial phase map and at least some of the recorded interferograms; and (iv) calculating an improved phase map based on the calculated estimates for the phase shift increments and at least some of the recorded interferograms.05-13-2010
20100128283INTERFEROMETRIC SYSTEMS AND METHODS FEATURING SPECTRAL ANALYSIS OF UNEVENLY SAMPLED DATA - In certain aspects, interferometry methods are disclosed that include providing one or more interferometry signals for a test object, wherein the interferometry signals correspond to a sequence of optical path difference (OPD) values which are not all equally spaced from one another because of noise, providing information about the unequal spacing of the sequence of OPD values, decomposing each of the interferometry signals into a contribution from a plurality of basis functions each corresponding to a different frequency and sampled at the unequally spaced OPD values, and using information about the contribution from each of the multiple basis functions to each of the interferometry signals to determine information about the test object.05-27-2010
20100141958SHAPE CALCULATION METHOD - A method for calculating a shape includes dividing an aspherical test surface into a plurality of measurement regions configured to overlap with one another, receiving, at a light receiving unit, interference fringes which occur due to interference light generated by light reflected on a reference surface serving as a reference for calculating a shape of the test surface and light reflected by each of the measurement regions, and calculating surface shapes of the measurement regions, and calculating a shape of the test surface by joining the calculated surface shapes, wherein the calculation of surface shapes includes adjusting relative positions of the test surface and the reference surface and adjusting a position of the light receiving unit so that the test surface and the light receiving unit have a conjugate relationship with each other in a state in which the position of the test surface is adjusted.06-10-2010
20100149546Optical object measurement apparatus - An optical object measurement apparatus includes a light source for generating a low-coherent light beam, which is swept via an array of pinholes on a Nipkow disk that rotates about an axis. A beam splitter splits the swept light beam into a probe light beam toward an object to be measured and a reference light beam toward a reference optical path. The probe light beam from the object and the reference light that has traveled along the reference optical path are combined in the beam splitter to produce interference light. A two-dimensional image-capturing device detects the interference light and produces a video signal to provide reflection intensity information of the interior of the object. This allows an interference optical system to be readily realized and tomographic images of an object to be observed at high levels of resolution and contrast.06-17-2010
20100157312METHOD OF RECONSTRUCTING A SURFACE TOPOLOGY OF AN OBJECT - The invention relates to a method of reconstructing a surface topology of a surface (06-24-2010
20100177319OPTICAL IMAGING OF PHYSICAL OBJECTS - A method for combining shape data from multiple views in a common co-ordinate system to define the 3-D shape and/or colour of an object, the method comprising: projecting one or more optical datum(s)/markers onto the object surface; projecting light over an area of the object surface; capturing light reflected from the surface; using the optical datum(s)/markers as reference points in multiple views of the object, and using the multiple views and the reference points to determine the shape of the object.07-15-2010
20100182612OPTICAL TOMOGRAPHIC IMAGING APPARATUS - Provided is an optical tomographic imaging apparatus which enables simplification and cost reduction without reducing accuracy when moving part of an object is moved in an optical axis direction of measuring beam. The apparatus using return beam of measuring beam reflected or scattered by an object and reference beam reflected by a reference mirror to image the tomographic image, includes: a reflecting position controlling device for controlling the reflecting position of the reference mirror; a detecting device for a position in a moving part having an optical system for observing the moving part illuminated by an optical system imaging the same on an area sensor based on the Scheimpflug principle and detects position information that the moving part is moved in the direction; and a device for driving the reflecting position controlling device to control the optical path length of the reference beam based on the position information.07-22-2010
20100195113MEASUREMENT OF MULTIPLE SURFACE TEST OBJECTS WITH FREQUENCY SCANNING INTERFEROMETER - A frequency scanning interferometer is arranged for simultaneously measuring multiple surfaces of a test object through a wide range of expected offsets. Knowledge of the expected locations of the test surfaces is compared with a sequence of ambiguity intervals based on a synthetic measurement wavelength to center the test surfaces within the ambiguity intervals.08-05-2010
20100201991Methods, Systems and Computer Program Products for Characterizing Structures Based on Interferometric Phase Data - Structure profiles from optical interferometric data can be identified by obtaining a plurality of broadband interferometric optical profiles of a structure as a function of structure depth in an axial direction. Each of the plurality of interferometric optical profiles include a reference signal propagated through a reference path and a sample signal reflected from a sample reflector in the axial direction. An axial position corresponding to at least a portion of the structure is selected. Phase variations of the plurality of interferometric optical profiles are determined at the selected axial position. A physical displacement of the structure is identified based on the phase variations at the selected axial position.08-12-2010
20100201992LIGHTWAVE INTERFERENCE MEASUREMENT DEVICE - A test surface is rotatable around a rotation axis and an interferometer main unit is movable with respect to a test surface so that an observation area is moved on the test surface which is rotating. While the observation area is moved within the test surface, an interfering light beam is successively captured by a one-dimensional image sensor, straight belt form observation-position-specific interference fringes formed by the interfering light beam are successively imaged, and the shape information of the test surface is obtained based on the imaged observation-position-specific interference fringes.08-12-2010
20100214570ORTHOGONAL-POLARIZATION MIRAU INTERFEROMETRY AND BEAM-SPLITTING MODULE AND INTERFEROMETRIC SYSTEM USING THE SAME - An orthogonal-polarization Mirau interferometric system is provided, wherein an incident light is split into a reference light and an inspection light with the polarizations thereof being orthogonal to each other by using a beam-splitting module, while projecting the inspection light on a measured object to form an object light, and then the object light and the reference light are combined to form a combined light, and thereafter, an analyzer is utilized to modulate the polarizations and the intensities of the two lights for making the two lights interfere with each other and thus create an interference pattern. The polarization of the object light and that of the reference light can be adjusted by using an analyzer to become orthogonal to each other, and the intensities of the object light and the reference light can be adjusted to about the same for producing an interference pattern with high contrast.08-26-2010
20100220336INTERFEROMETER - There is disclosed an interferometer for measuring a surface shape of an examined object or a transmitted wavefront through the examined object. The interferometer includes an area light source having a low spatial coherence property, and a light-guiding optical system configured to arrange the area light source and the examined object in an optically conjugate relation with each other.09-02-2010
20100225926Optical Distance Sensor - In a optical sensor (09-09-2010
20100225927OPTICAL FIBER-BASED THREE-DIMENSIONAL IMAGING SYSTEM - Described are an imaging device and method for determining three-dimensional position information of a surface of an object. The device includes a pair of optical fibers, a phase shifter, a detector array and a processor. The phase shifter is coupled to one of the optical fibers and is used to change a phase of optical radiation emitted from the optical fiber relative to a phase of optical radiation emitted from the other optical fiber. The detector array receives optical radiation scattered by the surface of the object. The processor communicates with the detector array and the phase shifter. Signals generated by the detector array are received by the processor and three-dimensional position information for the surface is calculated in response to the received optical radiation scattered by the surface of the object and the change in the relative phase of optical radiation emitted by the optical fibers.09-09-2010
20100231923THREE-DIMENSIONAL SHAPE MEASURING METHOD AND DEVICE - A process of measuring a shape while changing the relative posture of an microscopic interferometer to a sample lens which is rotated about a rotation axis is divided into a process of measuring a top surface in a state where the sample lens is supported from a back surface and a process of measuring a back surface in a state where the sample lens is supported from the top surface. By combining first shape information of a flange side surface acquired by the process of measuring the top surface and second shape information of the flange side surface acquired by the process of measuring the back surface, the relative positional relation between the sample top surface and the sample back surface is calculated.09-16-2010
20100259762VIBRATION-INSENSITIVE INTERFEROMETER USING HIGH-SPEED CAMERA AND CONTINUOUS PHASE SCANNING METHOD - The present invention relates to a vibration-insensitive interferometer using a high-speed camera and a continuous phase scanning method. The interferometer measures a measurement target by completely isolating influences of externally occurring vibrations from a frequency domain. The interferometer includes a light source unit for emitting light. A light transmission unit radiates the light emitted from the light source unit to the measurement target, splits light reflected from the measurement target into reference light and measurement light, and allows the reference light and the measurement light to interfere with each other, thus generating an interference fringe. A continuous phase scanning unit for radiates the reference light split by the light transmission unit through continuous phase scanning. A high-speed camera acquires an interference fringe generated by both the measurement light radiated through the light transmission unit and the reference light radiated through the continuous phase scanning unit.10-14-2010
20100265516INTERFEROMETER AND METHOD FOR MEASURING CHARACTERISTICS OF OPTICALLY UNRESOLVED SURFACE FEATURES - Disclosed is an interferometry analysis method that includes comparing information derivable from multiple interferometry signals corresponding to different surface locations of a test object to information corresponding to multiple models of the test object, wherein the multiple models are parametrized by a series of characteristics that relate to one or more under-resolved lateral features of the test object; and outputting information about the under-resolved surface feature based on the comparison.10-21-2010
20100265517THREE-DIMENSIONAL SHAPE MEASURING APPARATUS - The three-dimensional shape measuring apparatus includes a light source; a beam splitter to split illumination light from the light source; a target object to be measured, having a height difference between the highest point and the lowest point; a reference mirror, on which another beam emitted from the beam splitter is irradiated; a light detecting element to detect an interference pattern generated by the interference of an object beam reflected by the surface of the target object and a reference beam reflected by the surface of the reference mirror; and a control computer to process an image detected by the light detecting element, wherein a subsidiary reference beam generating unit to change the optical path of the beam from the beam splitter to generate a subsidiary reference beam is provided between the beam splitter and the reference mirror.10-21-2010
20100284023DEVICE AND METHOD FOR MEASURING THE SHAPE OF FREEFORM SURFACES - A device for measuring the shape of freeform surfaces of objects includes a point-measuring optical and or interferometric scanning arm which is displaceable along a predefined path line, which device generates a measurement beam focused on the freeform surface to be measured. With reference to the scanning point, the scanning arm is able to rotate in at least one plane, in such a way that the measuring beam impinges upon the freeform surface to be measured in a perpendicular manner or within an acceptance angle of the scanning arm.11-11-2010
20100290061SCANNING MICROSCOPE USING AN I/Q-INTERFEROMETER - The present invention relates to a scanning microscope using an I/Q-interferometer. The scanning microscope includes an I/Q-interferometer which demodulates the phase change and amplitude change induced on the probe beam to provide the I- and Q-signals, an XY scanner, a scanner driver, a precision motion stage controlling the displacement of the sample along the direction parallel to the direction of the probe beam, a motion stage driver, a focusing/collimating device, and a computer. The computer transfers control commends to the scanner driver for scanning the XY scanner, receives I- and Q-signal provided from the I/Q-interferometer, processes the I- and Q-signal to obtain the corresponding phase and amplitude values at each scanning point, calculates error signal for maintaining constant phase during the scanning, and transfers commends to the motion stage driver for the precision motion stage to compensate for phase changes caused by surface morphology during the scanning. The scanning microscope performs a multilayer scanning or a constant phase scanning to extract information for the surface or inside of the sample.11-18-2010
20110026036PHASE-SHIFTING INTERFEROMETRY IN THE PRESENCE OF VIBRATION - A phase-shifting interferometry (PSI) method and corresponding system including: (i) recording an interferogram for each phase in a sequence of phases between test light reflected from a test surface and reference light reflected from a reference surface, the test and reference light being derived from a common source, each interferogram corresponding to an intensity pattern produced by interfering the reflected test light with the reflected reference light, the interferograms defining an interferometry signal for each of different transverse locations of a cavity defined by the test and reference surfaces, each interferometry signal including a series of intensity values corresponding to the sequence of phases, with the difference between each pair of phases in the sequence defining a corresponding phase shift increment; (ii) calculating an initial phase map for the cavity based on at least some of the recorded interferograms; (iii) calculating an estimate for each of at least some of the phase shift increments based on the initial phase map and at least some of the recorded interferograms; and (iv) calculating an improved phase map based on the calculated estimates for the phase shift increments and at least some of the recorded interferograms.02-03-2011
20110032535INTERFEROMETER FOR DETERMINING OVERLAY ERRORS - Systems are disclosed that include an interferometer configured to direct test light to an overlay test pad and subsequently combine it with reference light, the test and reference light being derived from a common source, one or more optics configured to direct at least a portion of the combined light to a multi-element detector so that different regions of the detector correspond to different illumination angles of the overlay test pad by the test light, the detector being configured to produce an interference signal based on the combined light, and an electronic processor in communication with the multi-element detector. The overlay test pad comprises a first patterned structure and a second patterned structure and the electronic processor is configured to determine information about the relative alignment between the first and second patterned structures based on the interference signal.02-10-2011
20110080592SURFACE SHAPE MEASUREMENT APPARATUS - An apparatus for measuring a shape of a surface, comprises a measurement head which measures a distance between a reference point and the surface by detecting interference between test light obtained when light that passes through the reference point is emitted, is reflected by the surface, and returns to the reference point, and reference light, a scanning mechanism which scans the measurement head, and a processor which calculates the shape of the surface based on the distance measured using the measurement head and coordinates of the reference point.04-07-2011
20110090510INTERFEROMETER - An interferometer that measures a shape of a surface of an inspection object includes an interference optical system that splits light from a light source into inspection light and reference light and causes the inspection light reflected by the surface of the inspection object and the reference light to interfere with each other, and a photoelectric conversion element that detects interference fringes produced by interference between the inspection light and the reference light. The interference optical system includes a first optical element that transmits and reflects the inspection light, a second optical element that reflects the inspection light, and a moving unit configured to move the second optical element. The inspection light passes through the first optical element, is reflected by the second optical element, is reflected by the first optical element, and is then incident on the surface of the inspection object.04-21-2011
20110090511METHOD AND APPARATUS FOR DETERMINING THE HEIGHT OF A NUMBER OF SPATIAL POSITIONS ON A SAMPLE DEFINING A PROFILE OF A SURFACE THROUGH WHITE LIGHT INTERFEROMETRY - The invention relates to a method and an apparatus for determining the height of a number of spatial positions on the sample, defining a height map of a surface through interferometry with a broadband light source. The method can involve for each spatial position: obtaining a correlogram during scanning of the surface plane of the objective and estimating the point of the correlogram where an amplitude of the correlogram is at its maximum, thus determining an approximation of the height of the spatial position on the sample. The estimation of the value where the correlogram has its maximum can involve subjecting the correlogram to a Fourier transform, subjecting the Fourier transformed signal to a filter, subjecting the filtered signal to an inverse Fourier transform, and calculating the location of the centre of mass of the inversed filtered Fourier transformed signal.04-21-2011
20110102806IMPROVED INTERFEROMETRIC METHODS AND APPARATUS FOR SEISMIC EXPLORATION - A interferometer apparatus for studying the surface of an object, the apparatus comprising a source producing an object beam of coherent light, a source producing a reference beam which is coherent with the object beam, and a detector or a plurality of detectors arranged in a line or array, wherein the apparatus is arranged such that the object beam is diverging or substantially collimated, and wherein, in use the diverging or substantially collimated object beam is directed towards the surface of the object to produce a reflected object beam reflected from the surface of the object, the detector(s) is/are focused to a point beneath the surface of the object, and the reflected object beam is combined with the reference beam and detected by the detector(s). Also provided is a corresponding method for conducting an interferometric study of the surface of an object. The surface of the object may be a sea floor, and the interferometer apparatus may be for studying the movement of particles on the sea floor in response to a seismic event.05-05-2011
20110141481ACOUSTIC CONFOCAL INTERFEROMETRY MICROSCOPE - An Acoustic Confocal Interferometry microscope for use with a suitably selected acoustic emitter and acoustic detector for providing three-dimensional information on the state of an object is presented. The microscope has a coherent wavelength source for producing a coherent beam, scanning means for moving said coherent beam in a suitably selected pattern, and means for producing and focusing an object beam and an interference beam to an object focal point and an interference focal point, respectively. The object beam has a transmission path of essentially the same length of the transmission path of the interference beam. The object beam intercepts an object at the object focal point while the interference beam passes by the object. There are also means for defining the object beam and the interference beam based on the position of the object focal point and the geometry of the convergence angles and means for producing an interference pattern between the object focal point and the interference focal point.06-16-2011
20110141482SURFACE PROFILE MEASURING APPARATUS, METHOD OF MEASURING SURFACE PROFILE, AND METHOD OF MANUFACTURING OPTICAL ELEMENT - A surface profile measuring apparatus includes a first image pickup device that obtains an interference pattern, an optical system that guides a measuring beam and a reference beam to the first image pickup device, a second image pickup device with which a distribution of light quantity of a beam from a light source traveling thereto avoiding the optical system is measured, and an arithmetic unit that calculates a profile of a target surface from the interference pattern. A distribution of light quantity of a beam from the light source transmitted through the optical system is measured with the first image pickup device. The profile of the target surface calculated by the arithmetic unit is corrected on the basis of the distributions of light quantity measured with the first and second image pickup devices.06-16-2011
20110141483OPTICAL PROFILOMETRY - A method for imaging an object using a microscope includes obtaining axial response data, the axial response data representative of a relationship between a separation between a top surface of the object and an objective lens of the microscope and an intensity of light reflected by the top surface of the object; positioning the object at a distance from the objective lens that is within a linear region of the axial response data; sequentially illuminating the object with a plurality of periodic patterns; obtaining a plurality of images of the object, each image resulting from the illumination of the object with a corresponding one of the plurality of periodic patterns; determining a reconstructed image of the object based on the plurality of images of the object; and, based on variations in the intensity of the reconstructed image, determining a topographic profile of the top surface of the object.06-16-2011
20110157601ANALYSIS OF TRANSPARENT BIOLOGICAL OBJECTS - The present invention relates to an observation vessel for digital holo-graphic microscopy of at least one transparent biological object, an observation vessel lid for digital holographic microscopy of at least one transparent biological object as well as a method for analyzing a sample comprising at least one transparent biological object and at least one medium by means of digital holographic microscopy.06-30-2011
20110181890IMAGING AND MEASURING APPARATUS FOR SURFACE AND INTERNAL INTERFACE OF OBJECT - The present invention provides an imaging and measuring apparatus for the surface and the internal interface of an object, which comprises a broadband wave source, a wave-splitting structure, a wave-delaying device, a reflecting component, and a sensor. The broadband wave source transmits a broadband incident wave. The wave-splitting structure splits the broadband incident wave into a first incident beam, a second incident beam, and a third incident beam. The first incident beam is illuminated on an object under test, which reflects a measuring beam. The wave-delaying device receives the second incident beam and reflects a reference beam. The reflecting component receives the third incident beam and reflects a calibration beam. The sensor receives a first interference signal of the measuring beam and the reference beam, and a second interference signal of the reference beam and the calibration beam. By means of the broadband incident wave, the morphologies of the surface and the internal interface of the object can be imaged and measured in a non-destructive way. In addition, by means of the calibration beam, the accuracy of imaging and measuring the surface and the internal interface of the object can be improved.07-28-2011
20110181891Systems Configured to Generate Output Corresponding to Defects on a Specimen - Systems configured to generate output corresponding to defects on a specimen and systems configured to generate phase information about defects on a specimen are provided. One system includes an optical subsystem that is configured to create interference between a test beam and a reference beam. The test beam and the reference beam are reflected from the specimen. The system also includes a detector that is configured to generate output representative of the interference between the test and reference beams. The interference increases contrast between the output corresponding to the defects and output corresponding to non-defective portions of the specimen.07-28-2011
20110188050SUBJECT INFORMATION ANALYZING APPARATUS AND SUBJECT INFORMATION ANALYZING METHOD - A subject information analyzing apparatus includes a light detector that receives frequency-modulated light as scattered light corresponding to irradiating light of a second frequency from a region to be examined in a subject irradiated with ultrasound of a first frequency, an information extracting section that extracts information on a specific frequency shifted by an integer multiple of the first frequency of the frequency-modulated light and a feature information generating section that generates a calculated value or the like of a cell nuclei/cytoplasm ratio of constituent tissues as feature information on a composition ratio of constituent tissues making up the region to be examined using the extracted information on the specific frequency.08-04-2011
20110188051Secure Tracking Of Tablets - The present invention relates to a verification method for tracking and tracing tablets, particularly pharmaceutical tablets. It further relates to a visible secure marking or information that is a part of such tablet (08-04-2011
20110205550OPTICAL TOMOGRAPHIC IMAGING METHOD AND APPARATUS - An optical tomographic imaging method is provided in which light from a light source is split into a measuring beam and a reference beam, the measuring beam being moved by a scanning optical system and guided to an object to be examined, the reference beam being guided to a reference mirror, and in which a tomogram of the object is generated from a return beam of the measuring beam reflected or scattered by the object and the reference beam reflected by the reference mirror. The method includes acquiring longitudinal sectional information on the object, calculating depth-position information on the object from the longitudinal sectional information, and acquiring a three-dimensional surface image of the object by controlling a reference-path length defined by the reference mirror and a scanning operation of the scanning optical system in accordance with the depth-position information on the object.08-25-2011
20110279823APPARATUS FOR MEASURING ROTATIONALLY SYMMETRIC ASPHERIC SURFACE - A low coherent light from a white light source is emitted to a sample surface. A detour distance in a detour section is adjusted such that an optical path difference between a reference light and a sample light is equal to or shorter than a coherence length of interference light. The interference light is incident on an image sensor only when an inclination angle of a diffraction grating plate and a wavelength of the interference light satisfy a predetermined condition. Thus, an interference fringe image is formed. Based on each of the interference fringe images taken on a wavelength-by-wavelength basis of the interference light and an optical distance between a reference surface and the sample surface along an optical path of a measuring light at the time of taking the interference fringe image, a shape of the sample surface is measured.11-17-2011
20110286005WELDING INSPECTION METHOD AND APPARATUS THEREOF - A welding inspection method has steps of: generating transmission laser light for generating an ultrasonic wave and transmitting the transmission laser light to an object to be inspected during or after welding operation for irradiation; generating reception laser light for detecting an ultrasonic wave and transmitting the reception laser light to the object to be inspected for irradiation; collecting laser light scattered and reflected at surface of the object to be inspected; performing interference measurement of the laser light and obtaining an ultrasonic signal; and analyzing the ultrasonic signal obtained by the interference measurement. At least one of the transmission laser light generated in the transmission laser light irradiation step and the reception laser light generated in the reception laser light irradiation step is irradiated onto a welded metal part or a groove side surface.11-24-2011
20110292405FREQUENCY-SHIFTING INTERFEROMETER WITH SELECTIVE DATA PROCESSING - A frequency-shifting interferometer is arranged for measuring an optical profile of a test object with a continuously tunable light source. A succession of the interference images of the test object are captured together with a measure of the beam frequencies at which interference images are formed. A limited number of the captured interference images of the test object are selected so that the monitored beam frequencies approximately match a predetermined beam frequency spacing pattern. Further processing proceeds based on the selected interference images.12-01-2011
20110304856LIGHTWAVE INTERFERENCE MEASUREMENT APPARATUS - A microinterferometer applies low coherent measurement light, which travels along an optical axis in a converging manner, to a front surface of a flange. A part of the measurement light is reflected inside an interferometric optical system, and becomes reference light. Apart of the measurement light passed through the interferometric optical system is reflected from the front surface of the flange, and is incident again upon the interferometric optical system. By combining the reflected light with the reference light, interference light is obtained. While a sample rotating stage rotates a sample lens through 360 degrees, a first imaging camera having one-dimensional image sensor captures 3600 images of the interference light, i.e., the image of the interference light is captured every time the sample lens is rotated by 0.1 degrees. Based on the images of interference fringes, the shape of the front surface of the flange is analyzed.12-15-2011
20110317169IMAGING APPARATUS AND METHOD THEREOF - An imaging apparatus includes a light source; a first beam splitter for reflecting a projection beam emitted by the light source; an objective lens unit including a reflection reference surface for reproducing the projection beam into a measurement beam projected onto an object to generate a first reflection beam and a reference beam projected onto the reflection reference surface to generate a second reflection beam mixing with the first reflection beam and passing through the first splitter and forming an operating beam; a second beam splitter for modulating the operating beam into first and second sub-beams; a monochrome image detection device for passage of the first sub-beam to obtain an interferometric image with monochrome from a first interference region; and an image detection device for permitting passage of the second sub-beam in order to obtain a non-interferometric image from a second interference region.12-29-2011
20120026508SURFACE CHARACTERISTIC DETERMINING APPARATUS - A wavelength selector (02-02-2012
20120033228METHOD FOR ZERO-CONTACT MEASUREMENT OF TOPOGRAPHY" - A method for zero-contact measurement of the topography of a spherically or aspherically curved air-glass surface of an optical lens or lens combination, distinguished in that the surface (S02-09-2012
20120044502DEVICE FOR DIVIDING AN OPTICAL BEAM INTO FOUR BEAMS AND NON-CONTACT OPTICAL PROFILOMETER COMPRISING SAME - An optical probe for splitting a beam of light into multiple beams. The optical probe may comprise a first polarizing beam splitter having a first polarization axis, a second polarizing beam splitter having a second polarization axis orthogonal to the first polarization axis, a first half wave plate and a second half wave plate, and optionally a first birefringent phase plate, and a second birefringent phase plate. The first half wave plate may be located before first polarizing beam splitter, and the second half wave plate may be located after the first polarizing beam splitter, relative to the propagation of the light beam. The optical probe may further include a lens for collimating the four light beams. A profilometer includes the optical probe for splitting a beam of light into four light beams, and a scanner for traversing the optical probe over a surface of an element to be measured.02-23-2012
20120044503SHAPE MEASURING METHOD AND SHAPE MEASURING APPARATUS - A shape measuring method includes guiding light emitted from a light source to an object to be measured and a reference surface, combining light reflected from the object to be measured with light reflected from the reference surface, and taking a distribution image of an interference light intensity corresponding to each measurement position of the object to be measured, while changing an optical path length difference between a first optical path length and a second optical path length over a whole scanning zone, sequentially storing distribution images of the interference light intensity in the whole scanning zone, and obtaining an interference light intensity string at each measurement position based on the stored distribution images of the interference light intensity, and obtaining a position in an optical axis direction at each measurement position of the object to be measured from a peak position of the interference light intensity string.02-23-2012
20120057172OPTICAL MEASURING SYSTEM WITH ILLUMINATION PROVIDED THROUGH A VOID IN A COLLECTING LENS - An optical measuring system includes a scatterometer in which an illumination beam is provided through an aperture in a lens used to collect light for the scattering detection. The void may be a slit in the lens, a missing portion along an edge of the lens, or another suitable void. Another detection channel may be provided to detect light returning through the void in the collecting lens, for example, a profilometer may be implemented by detecting interference between reflected light returning along the illumination path and light from the illumination source.03-08-2012
20120069349METHOD AND APPARATUS FOR MEASURING SHAPE - A surface to be inspected is step-scanned in multiple steps. In each step, the phase corresponding to a shape measurement region in an interference fringe pattern, and the wavelength of light are measured. After defining a distance between any point on the surface to be inspected and the center of curvature of a reference spherical surface as a function of wavenumber (integer) including the measured phase and wavelength as parameters, the wavenumber in each step is calculated from the relationship of the function between adjacent steps, and the moving distance between each step is calculated. A measurement value of the distance is calculated from the wavenumber and the function thereof, a design value of the distance is calculated using the calculated moving distance, and the shape error of the surface to be inspected is calculated from the difference between the measurement value and the design value.03-22-2012
20120075640TOMOGRAPHY APPARATUS AND TOMOGRAM CORRECTION PROCESSING METHOD - This invention realizes accurate positional offset correction between a plurality of tomograms captured by using a tomography apparatus. The invention is a tomography apparatus which corrects the positional offsets between a plurality of two-dimensional tomograms constituting a three-dimensional tomogram. This apparatus includes a tomogram analysis unit (03-29-2012
20120127480TOPOGRAPHY DEVICE FOR A SURFACE OF A SUBSTRATE - A device for analyzing the topography of a surface (05-24-2012
20120176624APPARATUS FOR AND A METHOD OF DETERMINING SURFACE CHARACTERISTICS - Light reflected by a sample surface region and a reference surface interfere. A detector senses light intensity at intervals during relative movement along a scan path between the sample surface and the reference surface to provide a series of intensity values representing interference fringes. A data processor receives first intensity data comprising a first series of intensity values resulting from a measurement operation on a surface area of a substrate and second intensity data comprising a second series of intensity values resulting from a measurement operation on a surface area of a thin film structure. A gain is determined for each thin film of the thin film structure. Substrate and apparent thin film structure surface characteristics are determined on the basis of the first and second intensity data, respectively. The apparent thin film structure surface characteristic is modified using the substrate surface characteristic and the determined gain or gains.07-12-2012
20120176625APPARATUS FOR THE ABSOLUTE MEASUREMENT OF TWO DIMENSIONAL OPTICAL PATH DISTRIBUTIONS USING INTERFEROMETRY - An apparatus for the absolute measurement of a two dimensional optical path distribution comprising: a light source (07-12-2012
20120176626Optical Coherence Tomography Imaging - A digitized image of an object may include representations of portions of the object that are obscured, occluded or otherwise unobservable. The image may be a multi-dimensional visual representation of dentition. Characteristics of the dentition and its surfaces, contours, and shape may be determined and/or analyzed. A light may be directed toward and reflected from the dentition. The reflected light may be combined with a reference to determine characteristics of the dentition, including obscured areas such as subgingival tissue.07-12-2012
20120212747APPARATUS AND METHOD OF MEASURING SHAPE - An apparatus for measuring a shape of a surface comprises: a measurement head including a division unit that divides light into reference light and test light, a reference surface, a light-condensing unit that condenses the test light onto the surface, and a first detector that detects interfering light between the test light Cat's Eye-reflected by the surface and the reference light reflected by the reference surface; a driving unit that drives the measurement head along the surface; a second detector that detects a position of the measurement head; and a processor that obtains a Gouy phase generated by diffraction of the test light on the surface, calculates a phase difference between the test light and the reference light based on information of the detected interfering light, and calculates the shape of the surface from the detected position of the measurement head, the obtained Gouy phase, and the calculated phase difference.08-23-2012
20120257215INTERFEROMETRIC MEASUREMENT OF NON-HOMOGENEOUS MULTI-MATERIAL SURFACES - Correction factors for the ALR and PTR parameters of magnetic-head sliders are determined by calculating an effective reflectivity and a corresponding PCOR at each pixel of the air-bearing surface. The absolute value of reflectivity at each pixel of the AlTiC air-bearing surface is obtained from an empirical equation relating it to modulation. The ratio of Al10-11-2012
20120257216INTERFEROMETRIC MEASUREMENT OF NON-HOMOGENEOUS MULTI-MATERIAL SURFACES - Correction factors for the ALR and PTR parameters of magnetic-head sliders are determined by calculating an effective reflectivity and a corresponding PCOR at each pixel of the air-bearing surface. The absolute value of reflectivity at each pixel of the AlTiC air-bearing surface is obtained from an empirical equation relating it to modulation. The ratio of Al10-11-2012
20130033710NON-ENERGY DISSIPATING, CURVATURE SENSING DEVICE AND METHOD - A non-energy dissipating, curvature sensing device senses curvature variation of a sample and comprises an outer layer, an inner layer and at least one spacer. The outer layer is flexible, transparent material and has a shape. The inner layer is flexible, transparent material, has a shape corresponding to the shape of the outer layer, is positioned under the outer layer and is thicker and harder than the outer layer. At least one spacer is positioned between the outer layer and the inner layer and creates space between the outer layer and the inner layer. A non-energy dissipating, curvature sensing method is also disclosed.02-07-2013
20130063730IN SITU CALIBRATION OF INTERFEROMETERS - In-situ calibration of an interferometer includes making a sequence of phase measurements of a test object using the interferometer, each of the measurements having a same carrier fringe frequency, where at least some of the measurements are made at three or more different orientations of carrier fringes, and determining information about the test object based on at least some of the phase measurements, in which determining the information includes reducing errors in the measurements arising from imperfections in the interferometer based on the measurements made at the three or more different orientations.03-14-2013
20130077100SURFACE SHAPE MEASUREMENT METHOD AND SURFACE SHAPE MEASUREMENT APPARATUS - The present surface shape measurement method includes: splitting white light that includes different wavelengths into reference light and measurement light; causing the measurement light to enter a measurement target plane; causing the reference light to enter a first diffraction grating; combining the reference light having passed through a first optical path from the first diffraction grating to enter a second diffraction grating and thereafter having passed through the first optical path from the second diffraction grating to enter the first diffraction grating to be output from the first diffraction grating and the measurement light reflected from the measurement target plane, to form interfering light, to thereby measure a surface shape of the measurement target plane.03-28-2013
20130188198ASPHERIC FACE FORM MEASURING METHOD, FORM MEASURING PROGRAM, AND FORM MEASURING APPARATUS - An aspheric face form measuring method calculates phase information of interference light from light intensity of a fringe pattern image obtained by detecting interference light that is formed by measurement light and reference light reflected off a subject aspheric face being overlaid. The method changes a relative distance between an optical system and the subject aspheric face and transitions a position of a null region. The method performs calculation of form data for a vertical incident region where measurement light is vertically incident to the subject aspheric face, using phase information and a scanning amount. The method performs calculations of form data, of the null regions, a non-vertical incident region that is outside of the vertical incident region. The method also composites a plurality of partial form data of the subject aspheric face previously calculated, using each of a plurality of the phase information and scanning amounts.07-25-2013
20130229664MEASUREMENT APPARATUS FOR MEASURING SHAPE OF TEST OBJECT AND MEASUREMENT METHOD - A measurement apparatus includes: a vibration detection surface which has a set relative position with respect to a test surface, and is irradiated with a part of the measurement light; an image sensor configured to sense, together with a first interference fringe generated by interference between reference light from a reference surface and measurement light from the test surface, a second interference fringe generated by interference between light from the vibration detection surface and the reference light; and a processor configured to obtain a relative vibration between the reference surface and the test surface by using data of the sensed second interference fringe, and obtain the shape of the test surface by using the obtained relative vibration and data of the sensed first interference fringe.09-05-2013
20130235386MEASUREMENT APPARATUS - The present invention provides a measurement apparatus which measures a measurement surface based on an interference signal obtained by causing measurement light reflected by the measurement surface and reference light reflected by a reference surface to interfere with each other, the apparatus including an interference optical system including a lens for focusing the measurement light to be incident on the measurement surface, and configured to cause the measurement light and the reference light to interfere with each other, and an adjusting device configured to adjust a focusing state of the measurement light focused by the lens such that a measurement point on the measurement surface positions within a range of a depth of focus of the lens, wherein the interference signal is obtained with the focusing state adjusted by the adjusting device.09-12-2013
20130278938SURFACE PROFILE MEASURING APPARATUS AND METHOD - A surface profile measuring apparatus includes a reflection unit to reflect a reference beam diffracted by a first diffraction grating and cause the reflected reference beam to be incident on the first diffraction grating again, a detection unit to receive an interference beam in which the reference beam diffracted again by the first diffraction grating and a measuring beam reflected by a sample surface optically interfere with each other, and detect an interference intensity signal for each, wavelength in the interference beans, a shifting unit to shift the first diffraction grating in a direction perpendicular to a grating groove direction of the first diffraction grating, a calculation unit to calculates a phase on a basis of the interference intensity signal for each wavelength varying with a degree of shift, and a measurement unit to measure the sample surface.10-24-2013
20130308137INTEGRATION OF FIBER OPTIC SHAPE SENSING WITHIN AN INTERVENTIONAL ENVIRONMENT - An integrated optical shape sensing system and method include an arrangement structure (11-21-2013
20130342849SHAPE MEASUREMENT DEVICE AND SHAPE MEASUREMENT METHOD - The shape measurement device 12-26-2013
20140036273Interferometer for TSV Measurement and Measurement Method Using Same - Provided herein is a TSV measuring interferometer that uses a variable field stop that adjusts such that a light is focused at an inlet and at a bottom surface of a TSV when measuring a diameter and depth of the TSV, thereby reducing a measurement time and result data, the interferometer also using a telecentric lens that adjusts the light injected into the TSV to be a straight line, so as to obtain a sufficient amount of light reaching the bottom surface to improve the accuracy of measurement even in a TSV having a large aspect ratio.02-06-2014
20140111810SYSTEM OF COMPUTING SURFACE RECONSTRUCTION, IN-PLANE AND OUT-OF-PLANE DISPLACEMENTS AND STRAIN DISTRIBUTION - A system of computing surface reconstruction, in-plane and out-of-plane displacements and strain distribution utilizes the optical switching element to switch the reference beam to analyze the images of the test object before and after deformation, to measure the topography, in-plane and out-of-plane displacements and surface two-dimensional strain distribution on the test surface of the test object, and thus to increase the measurement range on the test surface of the test object with the use of image registration. Thereby, the complexity and error of scanning the test object can be reduced. Such a system need not to move the image capturing device or test object to generate relative displacement for reaching the measurement effect of the test surface of the test object in three-dimensional coordinates.04-24-2014
20140160490INTERFERENCE MEASURING APPARATUS AND INTERFERENCE MEASURING METHOD - An interference measuring apparatus measuring a distance to a surface for inspection is provided. The interference measuring apparatus includes a light dividing unit that divides each of the plurality of light fluxes into light to be inspected and reference light; an objective lens that transmits light to be inspected; a photoelectric conversion element that receives interference light between the light to be inspected and the reference light for each of the plurality of light fluxes and output an interference signal obtained by converting the interference light into an electrical signal; and a calculation unit that calculates the distance to the surface to be inspected based on a phase obtained by subtracting a defocused wavefront from a phase component of a complex amplitude at the pupil position of the objective lens which transmitted light to be inspected for each of the plurality of light fluxes by using the interference signal.06-12-2014
20140160491METHOD FOR THE ABSOLUTE MEASUREMENT OF THE FLATNESS OF THE SURFACES OF OPTICAL ELEMENTS - A method for absolute measurement of flatness of surfaces of optical elements. In the method, an interferometer having a measurement axis is used for applying a three-flat method by three optical elements, by conducting actual measurements on the elements, and planes of the elements are reconstructed by an iterative processing operation in which measurements are simulated and simulated measurements are compared with the actual measurements. At least two actual measurements are made after having performed a rotation around the measurement axis and/or a translation perpendicularly to the measured axis, of a measured optical element relatively to the other.06-12-2014
20140168660METHOD AND APPARATUS FOR SURFACE PROFILOMETRY - Methods of performing surface profilometry are provided. A low coherence light beam is scanned relative to a sample surface. The intensity of interference fringes generated by the interference of a sample beam and a reference beam are recorded by an image sensor. Variations of light intensity around each pixel are calculated in terms of variance or standard derivation. The peak position of variance on a particular location along vertical scan direction is identified as the scan position corresponding to zero optical path difference between the reference and measuring beams. A topography map (height map) may be generated using the relative scanning position where zero optical path difference occurs at each location on sample surface.06-19-2014
20140268172Enhanced Inspection and Metrology Techniques And Systems Using Bright-Field Differential Interference Contrast - A method of providing high accuracy inspection or metrology in a bright-field differential interference contrast (BF-DIC) system is described. This method can include creating first and second beams from a first light beam. The first and second beams have round cross-sections, and form first partially overlapping scanning spots radially displaced on a substrate. Third and fourth beams are created from the first light beam or a second light beam. The third and fourth beams have elliptical cross-sections, and form second partially overlapping scanning spots tangentially displaced on the substrate. At least one portion of the substrate can be scanned using the first and second partially overlapping scanning spots as the substrate is rotated. Radial and tangential slopes can be determined using measurements obtained from the scanning using the first and second partially overlapping scanning spots. These slopes can be used to determine wafer shape or any localized topography feature.09-18-2014
20140268173SHAPE MEASUREMENT APPARATUS, MEASUREMENT METHOD, AND METHOD OF MANUFACTURING ARTICLE - An apparatus measures a shape of an object by detecting interfering light between reference light and test light. The apparatus includes a detector configured to detect the interfering light, an optical member located between the object and the detector and including a light attenuating part, and an adjusting unit configured to adjust a relative position and/or angle between the optical member and an optical path of the test light. A part of the test light from a second region, having surface roughness smaller than that of a first region in the region including the measured region of the object is attenuated by the light attenuating part. The detector detects interfering light between the reference light and test light from the first region and the second region after passing through the optical member.09-18-2014
20140293291Wafer Shape and Thickness Measurement System Utilizing Shearing Interferometers - Interferometer systems and methods for measurement of shapes as well as their derivatives and thickness variations of wafers are disclosed. More specifically, shearing interferometry techniques are utilized in such measurement systems. The output of the measurement systems can be utilized to determine at least one of: a surface slope, a surface curvature, a surface height, a shape, and a thickness variation of the wafers.10-02-2014
20140320866Shape Measuring Apparatus - A shape measuring apparatus (10-30-2014
20140362385MEASURING DEVICE OF MEASUREMENT OBJECT, CALCULATING DEVICE, MEASUREMENT METHOD, AND METHOD FOR PRODUCING ITEM - A measuring device that measures a measurement object includes a two-dimensional measuring unit that outputs two-dimensional image data by performing image pickup on the measurement object, a three-dimensional measuring unit that outputs three-dimensional data by three-dimensionally measuring the measurement object; and an obtaining unit that detects a temporary edge of the measurement object using the three-dimensional data, sets an edge detection range in a two-dimensional image using the detected temporary edge, and detects an edge of the measurement object in the edge detection range using the two-dimensional image data to obtain shape information of the measurement object.12-11-2014
20150055139IN SITU CALIBRATION OF INTERFEROMETERS - In-situ calibration of an interferometer includes making a sequence of phase measurements of a test object using the interferometer, each of the measurements having a same carrier fringe frequency, where at least some of the measurements are made at three or more different orientations of carrier fringes, and determining information about the test object based on at least some of the phase measurements, in which determining the information includes reducing errors in the measurements arising from imperfections in the interferometer based on the measurements made at the three or more different orientations.02-26-2015
20150103357SIGNAL SECTIONING FOR PROFILING PRINTED-CIRCUIT-BORD VIAS WITH VERTICAL SCANNING INTERFEROMETRY - The rough bottom surface of a recessed feature partially obscured by an overlying structure is profiled interferometrically with acceptable precision using an objective with sufficiently large numerical aperture to illuminate the bottom under the obscuring structure. The light scattering produced by the roughness of the surface causes diffused light to return to the objective and yield reliable data fringes. Under such appropriate numerical-aperture and surface roughness conditions, the bottom surface of such recessed features can be profiled correctly simply by segmenting the correlograms produced by the scan and processing all fringes that correspond to the bottom surface elevation.04-16-2015
20150362308DETECTION DEVICES AND METHODS USING DIFFRACTION WAVEFRONT OF A PINHOLE STITCHING MEASUREMENT OF SURFACE SHAPE - The present disclosure provides detection devices and methods using a diffraction wavefront of a pinhole stitching measurement of surface shape. The light emitted from the laser passes through a filter hole, a first condenser lens, a spatial filter, a beam expander, a half wave plate, a λ/4 wave plate, an attention plate and then is transmitted through a beam splitter, reflected by a reflecting mirror and is irradiated onto an pinhole through a first optical adjustable shelf and a second set of condenser lens. A part of diffraction light generated by the pinhole is irradiated to the mirror to be measured; the light reflected by the mirror to be measured is reflected by a frame of the pinhole and generate a diffraction fringe along with another part of the diffraction wavefront of the pinhole. The interference fringe is focused by the third set of condenser lens on the third optical adjustable shelf and is collected by the CCD detector. The mirror to be measured is positioned on the second optical adjustable shelf and may be moved along a normal direction of the mirror to be measured to implement an annular aperture stitching measurement. Meanwhile, the first optical adjustable shelf may be rotated and moved in translation to measure the mirror by a scanning sub apertures stitching measurement.12-17-2015
20160047645CALIBRATION OF SCANNING INTERFEROMETERS - Calibrating a scanning interferometry imaging system includes: configuring the scanning interferometry imaging system for operation with an interference objective using light having a narrowband wavelength spectrum; using the scanning interferometry imaging system to direct measurement light and reference light along different paths and to overlap the measurement and reference light on a detector, the measurement and reference light having the narrowband wavelength spectrum; scanning an optical path length difference between the measurement light and the reference light at the detector while acquiring intensity data using the detector, the detector acquiring the intensity data at a frame rate and the scanning being performed at a scan speed; determining information about the scan speed based on the acquired intensity data, geometric information about the scanning interferometry imaging system, and the narrowband wavelength spectrum; and calibrating the scanning interferometry imaging system based on the information about the scan speed.02-18-2016
20160061592SYSTEMS AND METHODS FOR USING WHITE LIGHT INTERFEROMETRY TO MEASURE UNDERCUT OF A BI-LAYER STRUCTURE - Systems and methods for using white light interferometry to measure undercut of a bi-layer structure are provided. One such method involves performing a first scan of a first bi-layer structure with a microscope using a first scan range, where the microscope is configured for white light interferometry, generating a first interferogram using data from the first scan, performing a second scan of the first bi-layer structure with the microscope using a second scan range, generating a second interferogram using data from the second scan, determining a first distance between features of the first interferogram, determining a second distance between features of the second interferogram, and calculating a width of the undercut based on the first distance and the second distance. One such system involves using the microscope and/or a computer to perform one or more actions of this method.03-03-2016
20160066790LASER SPECKLE INTERFEROMETRIC SYSTEM AND METHOD FOR MOBILE DEVICES - The laser speckle interferometric system includes a memory for storing a measurement result of a correction parameter and models for matching a result of processing the speckle pattern to the parameters of the object and a processor for stabilizing the speckle pattern detected by controlling a condition for detecting the speckle pattern in real time, processing a time-varying function representing a temporal change in the speckle pattern based on the speckle pattern and the parameters and generating data indicating tested parameters.03-10-2016
20160091304Surface Profile Measurement Method and Device Used Therein - To provide a technique that can measure a surface profile of any test object in a nondestructive manner and noncontact manner, highly accurately, and in a wide tilt angle dynamic range. In white light interference method using a dual beam interferometer, the technique is configured to be capable of changing a surface orientation of a standard plane with respect to an incident optical axis on the standard plane, acquires, while relatively changing the surface orientation of the standard plane with respect to a local surface orientation in any position on a test surface, a plurality of interferograms generated by interference of reflected light from the test surface and reflected light from the standard plane, and calculates the local surface orientation on the test surface from the interferograms to thereby measure a surface profile of the test surface.03-31-2016
20160109227SHAPE MEASURING DEVICE USING FREQUENCY SCANNING INTERFEROMETER - A shape measuring device includes a light source unit, a light splitting unit, a reference mirror, a light receiving unit and a processing unit. The light source unit generates light and can change the wavelength of the light. The light splitting unit splits the light generated from the light source unit into at least a reference light and a measurement light. The light receiving unit receives the reference light which is reflected by the reference mirror so as to form a reference light path, and the measurement light which is reflected by a light-transmitting target object formed on a substrate so as to form a measurement light path. The processing unit calculates the shape of the measurement argent object based on an interference change resulting from a wavelength change of the light between the reference light and the measurement light received by the light receiving unit.04-21-2016
20160123719AUTOMATED RE-FOCUSING OF INTERFEROMETRIC REFERENCE MIRROR - A reference surface is used to develop an empirical plot between a parameter of interest, such as roughness or modulation, and the position of the reference mirror in an interferometer by repeating measurements of the reference surface at different positions of the reference mirror so as to identify the in-focus position of the reference mirror. Serial quality-control measurements of samples of interest are carried out with the reference mirror in such in-focus position until a predetermined quality-control event triggers an automated system re-calibration by re-measuring the reference surface and, if the result does not correspond to the in-focus position of the reference mirror according to the plot, by finding a new in-focus position for the reference mirror using the same plot or, alternatively, a new similarly produced plot. Sample measurements are then resumed with the mirror placed at that new position.05-05-2016
20160131474NON-CONTACT SURFACE-SHAPE MEASURMENT METHOD AND APPARATUS USING WHITE LIGHT INTERFEROMETER OPTICAL HEAD - A non-contact surface-shape measuring method uses a white light interferometer optical head that divides, through a beam splitter, light emitted from a white light source into reference light for a reference mirror and measurement light for a measured object surface; obtains an image having interference fringes generated from an optical path difference of light reflecting from the reference mirror and light reflecting from the measured object surface; and is displaced for scanning in a vertical direction with respect to the measured object surface in order to obtain the image having interference fringes. While the white light interferometer optical head is displaced in a scanning direction, a position of the optical head in the scanning direction is detected, and the image having interference fringes is obtained at predetermined spatial intervals in the scanning direction.05-12-2016
20160153766OPTICAL APPARATUS AND METHODS06-02-2016
20160187124REFERENCE MIRROR CONVERTER OF LINNIK INTERFEROMETER - Provided is a reference mirror converter of a Linnik interferometer in which a first object lens 06-30-2016
20170234678OPTICAL MEASURING METHOD AND MEASURING DEVICE HAVING A MEASURING HEAD FOR CAPTURING A SURFACE TOPOGRAPHY BY CALIBRATING THE ORIENTATION OF THE MEASURING HEAD08-17-2017

Patent applications in class Contour or profile

Patent applications in all subclasses Contour or profile

Website © 2025 Advameg, Inc.