Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


For orientation or alignment

Subclass of:

356 - Optics: measuring and testing

356450000 - BY LIGHT INTERFERENCE (E.G., INTERFEROMETER)

356496000 - For dimensional measurement

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
356508000 For orientation or alignment 30
20090116035Structure and method for overlay measurement - A structure for overlay measurement is provided in the present invention, using the diffraction characteristics on the boundary portion between two microstructures formed on each of two material layers. The optical intensity distribution on the boundary portion between microstructures formed on the two overlaid material layers respectively are measured by an optical microscope to obtain the overlay error between the two overlaid material layers. In addition, the present invention also provides a method for overlay measurement using the structure for overlay measurement, wherein a merit relation based on the optical intensity distribution on the boundary portion between different microstructures is determined. The merit relation can be used to analyze the overlay error to improve the efficiency and accuracy of on-line error measurement.05-07-2009
20090262362INTERFEROMETER FOR OVERLAY MEASUREMENTS - In general, in a first aspect, the invention features a system including an interferometer configured to direct test light to an overlay target and subsequently combine it with reference light to form an interference pattern, the test and reference light being derived from a common source, a multi-element detector, one or more optics to image the overlay target on the multi-element detector; and an electronic processor in communication with the multi-element detector. The overlay target includes a first pattern and a second pattern and the electronic processor is configured to determine information about the relative alignment between the first and second patterns.10-22-2009
20100053634DIRECT SOLVE IMAGE BASED WAVE-FRONT SENSING - A method of aligning an array of mirrors and computer program product therefor. The method may be used to align mirrors in a sparse aperture telescope system, e.g., a spaced based imaging interferometer. An image projected onto mirrors in an array of mirrors is reflected onto a sensor, where a point spread function (PSF) is collected from a pair of mirrors. A spatial image is extracted from PSF sidebands and a difference (e.g., piston difference) is determined for the pair of mirrors from the spatial image. Tip and tilt are determined for the pair of mirrors from spatial image characteristics.03-04-2010
20100091296INTERFEROMETER SYSTEM FOR MONITORING AN OBJECT - System for monitoring a position of one or more optical elements in a projection objective (PO) include a plurality of sensors each configured to receive input light and to form output light, each sensor including a first sensor optic and a second sensor optic, the first sensor optic of at least one of the sensors being affixed to a first PO optical element and the second sensor optic of the at least one sensor being affixed to a support element that positions the first PO optical element within the PO, the first and second sensor optics being configured introduce a first optical path length difference (OPD) between two components of the input light to form the output light, the first OPD being related to the position of the first PO optical element with respect to the support element. The systems also include a plurality of detectors configured to detect the output light from the sensors, a plurality of optical fibers configured to direct the input light to the sensors and to direct the output light from the sensors to the detectors, and an electronic controller in communication with the plurality of detectors, the electronic controller being configured to determine information about the position of the first PO optical element relative to the support element based on the detected output light from the at least one sensor.04-15-2010
20110075154LITHOGRAPHIC APPARATUS AND METHOD FOR CALIBRATING THE SAME - A method for calibrating an encoder in a lithographic apparatus, the encoder including a sensor and a grating, the encoder configured to measure a position of a moveable support of the lithographic apparatus, the method including measuring a position of the moveable support using an interferometer; and calibrating the encoder based on the position of the moveable support measured by the interferometer.03-31-2011
20110157600OPTICAL WAVE-FRONT RECOVERY FOR ACTIVE AND ADAPTIVE IMAGING CONTROL - An optical telescope system, method of actively, adaptively providing optical control to an array of articulated mirrors in a sparse aperture in the optical telescope system and a computer program product therefor. Array apertures are selected sequentially for imaging. Each aperture is temporally modulating at a unique/different frequency and, simultaneously, focal plane images are detected for each array aperture with known and separable temporal dependencies. The images are processed for the current set of said focal plane images to detect an image wavefront. The feeding back wavefront errors are fed back to aperture actuators for controlling the array.06-30-2011
20110188049Assembly Comprising a Conditioning System and at Least One Object, a Conditioning System, a Lithographic Apparatus and Methods - An assembly including a conditioning system and an object moveable into and/or out of an area to be conditioned is disclosed. The conditioning system has fluid outlet passages to supply conditioning fluid to the area to be conditioned and is configured to adjust outflow of the conditioning fluid from the fluid outlet passages depending on a position of the object.08-04-2011
20110211199DEVICE AND METHOD FOR ACQUIRING POSITION WITH A CONFOCAL FABRY-PEROT INTERFEROMETER - Device and method for acquiring position with a confocal Fabry-Perot interferometer. In a general aspect, the device for acquiring position may include an arrangement for acquiring position where the acquiring arrangement has a confocal Fabry-Perot interferometer. In another general aspect, a method for acquiring position may include generating an interference pattern dependent on a position of an object by a confocal Fabry-Perot interferometer; detecting the interference pattern to obtain a measuring signal; and evaluating the measuring signal.09-01-2011
20110228281INTERFERENCE CAVITY FOR CONTROLLING OPTICAL PATH - The present patent application provides an interference cavity for precisely controlling an optical path including a cavity formed by two equal distance arms, wherein a positive adjusting plate and a negative adjusting plate are disposed in the interference cavity for compensating the change of a cavity length with temperature and thereby ensuring that the interference cavity length is a constant. The present patent application utilizes the matching relationship between the change of the refractive index of the positive adjustment plate with the temperature and the change of the refractive index of the negative adjusting plates with the temperature to make the optical path difference OPL invariant with changes in the environment temperature and thereby to ensure the precision of the optical path.09-22-2011
20110304855APPARATUS FOR MEASURING SURFACE MISALIGNMENT AND ANGULAR MISALIGNMENT - Through a first diffraction grating, two conical fluxes different in wavefront propagation angle relative to its optical axis are applied to a first surface. Through a second diffraction grating, two conical fluxes different in wavefront propagation angle relative to its optical axis are applied to a second surface. Two sets of interference fringes formed by the fluxes reflected from the first surface and a reference beam are analyzed to obtain surface misalignment and angular misalignment of the first surface relative to the optical axis. Similarly, two sets of interference fringes formed by the fluxes reflected from the second surface and the reference beam are analyzed to obtain surface misalignment and angular misalignment of the second surface relative to the optical axis. Surface misalignment and angular misalignment of a sample lens are obtained from the measurement results of the first and second surfaces.12-15-2011
20120127479Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method - While a wafer stage linearly moves in a Y-axis direction, a multipoint AF system detects surface position information of the wafer surface at a plurality of detection points that are set at a predetermined distance in an X-axis direction and also a plurality of alignment systems that are arrayed in a line along the X-axis direction detect each of marks at positions different from one another on the wafer. That is, detection of surface position information of the wafer surface at a plurality of detection points and detection of the marks at positions different from one another on the wafer are finished, only by the wafer stage (wafer) linearly passing through the array of the plurality of detection points of the multipoint AF system and the plurality of alignment systems, and therefore, the throughput can be improved.05-24-2012
20120224186METHOD FOR PRODUCING A MIRROR HAVING AT LEAST TWO MIRROR SURFACES, MIRROR OF A PROJECTION EXPOSURE APPARATUS FOR MICROLITHOGRAPHY, AND PROJECTION EXPOSURE APPARATUS - A mirror (M) of a projection exposure apparatus for microlithography configured for structured exposure of a light-sensitive material and a method for producing a mirror (M). The mirror (M) has a substrate body (B), a first mirror surface (S) and a second mirror surface (S′). The first mirror surface (S) is formed on a first side (VS) of the substrate body (B). The second mirror surface (S′) is formed on a second side (RS) of the substrate body (B), the second side being different from the first side of the substrate body (B). The mirror (M) may be embodied, in particular, such that the substrate body (B) is produced from a glass ceramic material.09-06-2012
20130010306Methods and Patterning Devices For Measuring Phase Aberration - A method of measuring a phase difference between two regions in an aberration function: Reference structures are produced on a substrate using illumination that minimizes effects of phase aberration. A grating is produced on the substrate using a phase-shift grating reticle to produce, in the exit pupil, a pair of diffracted non-zero orders, while forbidding other diffracted orders and produces interference fringes formed by interference between the pair. The interference contributes to a first grating on the substrate. Overlay error is measured between the grating and the reference structure using diffraction-based or image-based overlay measurements. A phase aberration function for the exit pupil of the lithographic apparatus can then be determined from the measured overlay errors.01-10-2013
20130163004POSITION DETECTION APPARATUS, IMPRINT APPARATUS, AND METHOD FOR MANUFACTURING DEVICE - A position detection apparatus that illuminates diffraction gratings formed on two objects with light from a light source and receives diffracted light from the diffraction gratings to acquire relative positions of the two objects includes: an optical system configured to cause plus n-th order diffracted light and minus n-th order diffracted light from each of the diffraction gratings to interfere with each other, where n is a natural number; a light receiving unit; and a processing unit, wherein the light receiving unit receives a two-beam interference light from each of the diffraction gratings, and wherein the processing unit acquires the relative positions of the two objects by using the two-beam interference light at an area where two-beam interference lights of the diffracted light from the respective diffraction gratings do not overlap each other among the two-beam interference lights of the diffracted light from each of the diffraction gratings.06-27-2013
20130176575IMAGE SENSOR, ATTITUDE DETECTOR, CONTACT PROBE, AND MULTI-SENSING PROBE - An image sensor for fringe images of interference fringes and the like in which the optical system has a simpler configuration than that of the conventional line image sensor, and faster detection becomes possible includes a light receiving plane on which two or more straight rows of pixels are disposed, and captures images of regular fringes generated from light reflected from an irradiated body in accordance with the amount of light received by each pixel; among the rows of pixels, at least two rows of pixels are disposed at right angles to each other, and acquires images of linear fringes crossing almost at right angles in two directions among the fringe projected onto the light receiving plane.07-11-2013
20130286404METHODS AND APPARATUS FOR ALIGNMENT OF INTERFEROMETER - Methods and apparatus are provided for the alignment of an interferometric system. A spatial filter comprising a reflective pinhole is provided at the output of the interferometer, and tilt is measured by a tilt detection subsystem positioned to reimage the pinhole. A shear detection subsystem is positioned to image an offset of the interferometer beams. Tilt and shear offsets are determined by comparing measurements obtained from the tilt and shear subsystems with pre-recorded measurements obtained for an aligned state. The tilt and shear offsets are employed to realign the system using positioning controls corresponding a reduced number of dominant degrees of freedom of the system.10-31-2013
20150070710MEASUREMENT APPARATUS - The present invention provides a measurement apparatus which obtains a measurement value with respect to a measurement surface based on an interference signal obtained by causing measurement light reflected from the measurement surface and reference light reflected from a reference surface to interfere with each other, the apparatus including a measurement head including an interference optical system configured to generate the interference signal, and a processor configured to obtain a position of an alignment target on the measurement surface based on the interference signal, and obtain the measurement value based on the position of the alignment target and the interference signal.03-12-2015
20150098091System for Positioning a Tool Relative to a Workpiece - A system for positioning a tool relative to a workpiece includes a movable table for accommodating a workpiece, the table executing movements in two main moving directions during the processing of the workpiece, one or more planar measuring standards provided in stationary fashion about the tool and extend in the plane of the main moving directions, and scanning heads, mounted in at least three corners of the table, for detecting the position of the table relative to the measuring standards. The position of the table is determinable by the scanning heads in six degrees of freedom. In at least one of the corners, one or more scanning heads having a total of at least three measuring axes is/are provided for 3-D position detection in three independent spatial directions. The sensitivity vectors of the measuring axes for the 3-D position detection are neither parallel to the X-Z plane nor parallel to the Y-Z plane. In this manner, all measuring axes supply periodic signals when the table is moved in a main moving direction.04-09-2015
20150109624Position Measuring Method, Position Measuring Apparatus, Lithographic Apparatus and Device Manufacturing Method, Optical Element - An apparatus (AS) measures positions of marks (04-23-2015
356509000 Between mask and wafer 6
20080259347EXPOSURE APPARATUS, METHOD OF CONTROLLING THE SAME, AND MANUFACTURING METHOD - An exposure apparatus comprises an optical system support supporting a projection optical system, a stage surface plate, first stage and second stages, a first interferometer configured to measure stage position in a first area, a second interferometer configured to measure stage position in a second area, a third interferometer which is interposed between the first interferometer and the second interferometer, a gap sensor configured to measure a gap between the optical system support and the stage surface plate, and a control unit configured to pass, in the swapping, the measurement result obtained by one of the first interferometer and the second interferometer to the other one of the first interferometer and the second interferometer using the measurement result obtained by the third interferometer, and to correct the passed measurement result based on the measurement result obtained by the gap sensor.10-23-2008
20090195787Method and Apparatus for Measurement and Control of Photomask to Substrate Alignment - A method, structure, system of aligning a substrate to a photomask. The method includes: directing incident light through a pattern of clear regions transparent to the incident light in an opaque-to-the-incident-light region of a photomask, through a lens and onto a photodiode formed in a substrate, the photodiodes electrically connected to a light emitting diode formed in the substrate, the light emitting diode emitting light of different wavelength than a wavelength of the incident lights; measuring an intensity of emitted light from light emitting diode; and adjusting alignment of the photomask to the substrate based on the measured intensity of emitted light.08-06-2009
20100091297LITHOGRAPHIC APPARATUS WITH MULTIPLE ALIGNMENT ARRANGEMENTS AND ALIGNMENT MEASURING METHOD - A lithographic apparatus has a plurality of different alignment arrangements that are used to perform an alignment measurement on the same mark(s) by: detecting a first alignment mark located on an object and producing a first alignment signal by a first detector; detecting the first mark and producing a second alignment signal by a second detector using a different alignment measurement than the first detector; receiving the first alignment signal from the first detector; calculating a first position of the at least first mark based on the first alignment signal; receiving the second alignment signal from the second detector; calculating a further first position of the at least first mark based on the second alignment signal.04-15-2010
20100259761Robust Long Wire Resistance Thermometer - Methods and apparatus for compensating for air or gas temperature fluctuations associated with an interferometer beam path are disclosed. According to one aspect of the present invention, a resistance thermometer assembly includes an insulating tube arrangement, a support arrangement, and a resistance arrangement. The insulating tube arrangement includes a first end and a second end, as well as an insulating tube and a metal film layer that coats the insulating tube. The support arrangement is configured to support the first end and the second end of the insulating tube arrangement. The resistance arrangement is configured to measure a resistance associated with the insulating tube arrangement.10-14-2010
20110205549DEVICE AND METHOD FOR MEASURING LITHOGRAPHY MASKS - A device for measuring lithography masks is provided, comprising 08-25-2011
20130044331OVERLAY METROLOGY BY PUPIL PHASE ANALYSIS - The present invention may include measuring a first phase distribution across a pupil plane of a portion of illumination reflected from a first overlay target of a semiconductor wafer, wherein the first overlay target is fabricated to have a first intentional overlay, measuring a second phase distribution across the pupil plane of a portion of illumination reflected from a second overlay target, wherein the second overlay target is fabricated to have a second intentional overlay in a direction opposite to and having the same magnitude as the first intentional overlay, determining a first phase tilt associated with a sum of the first and second phase distributions, determining a second phase tilt associated with a difference between the first and second phase distributions, calibrating a set of phase tilt data, and determining a test overlay value associated with the first and second overlay target.02-21-2013
356510000 Tilt 5
20100053635DIRECT SOLVE IMAGE BASED WAVE-FRONT SENSING - A method of aligning an array of mirrors and computer program product therefor. The method may be used to align mirrors in a sparse aperture telescope system, e.g., a spaced based imaging interferometer. An image projected onto mirrors in an array of mirrors is reflected onto a sensor, where a point spread function (PSF) is collected from a pair of mirrors. A spatial image is extracted from PSF sidebands and a difference (e.g., piston difference) is determined for the pair of mirrors from the spatial image. Tip and tilt are determined for the pair of mirrors from spatial image characteristics.03-04-2010
20130021617METHOD FOR DETERMINING THE TILT OF AN IMAGE SENSOR - A method for determining a tilt of an image sensor surface plane in a camera in relation to a lens reference plane of the camera includes sending light onto the image sensor, receiving light reflected from the image sensor, identifying an interference pattern in the reflected light, identifying a feature of the interference pattern, and determining the tilt of the image sensor surface plane based on a position of the feature identified in the interference pattern.01-24-2013
20130314718TILT MINIMIZATION THROUGH INTENSITY CONTROL OF LIGHT SOURCE - The power input to the light source of a microscope is varied as necessary to maintain a constant degree of detector saturation as the objective is moved toward a best-focus position. Focus is found by tracking the source's intensity necessary to maintain the detector irradiance at a constant level. The in-focus position is reached when the power input (and correspondingly the intensity of the light emitted by the source) reaches a minimum. The concept can be applied in a similar manner to minimize or eliminate tilt in a sample.11-28-2013
20140218749SPARSE APERTURE OPTICAL ALIGNMENT AND RELATED METHODS - A method for configuring an alignment of a plurality of optical segments in a sparse aperture configuration of an optical device includes providing at least one beam of light from at least one light source located on the sparse aperture optical device, directing the at least one beam of light toward at least one segment of the plurality of optical segments, detecting a reflection or transmission of the at least one beam of light off of the at least one segment of the plurality of optical segments, determining a characteristic of the reflected or transmitted light, and based on the characteristic of the reflected or transmitted light, determining an alignment of the at least one segment of the plurality of optical segments.08-07-2014
20160097914SPARSE APERTURE OPTICAL ALIGNMENT METHODS - A method for configuring an alignment of a plurality of optical segments in a sparse aperture configuration of an optical device includes providing at least one beam of light from at least one light source located on the sparse aperture optical device, directing the at least one beam of light toward at least one segment of the plurality of optical segments, detecting a reflection or transmission of the at least one beam of light off of the at least one segment of the plurality of optical segments, determining a characteristic of the reflected or transmitted light, and based on the characteristic of the reflected or transmitted light, determining an alignment of the at least one segment of the plurality of optical segments.04-07-2016

Patent applications in class For orientation or alignment

Patent applications in all subclasses For orientation or alignment

Website © 2025 Advameg, Inc.