Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


WITH PARTICULAR CIRCUIT

Subclass of:

342 - Communications: directive radio wave systems and devices (e.g., radar, radio navigation)

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
342176000 Display 80
342195000 Digital processing 61
342200000 For frequency modulation 40
342189000 For correlation 24
342202000 For pulse modulation 23
342188000 With polarization 16
342194000 Complex signal (in phase and quadrature) 15
342192000 Spectrum analysis 9
342190000 With recording 6
342205000 Sensitivity time control (STC) 2
20090085799Pulse radar system - In a pulse radar system where received echo pulses are expanded in time by multiplication with sampling pulses and subsequent integration, the effect of disturbances on the integration is reduced by using a sample and hold circuit having a switch and a hold capacitor and wherein the switch is closed only when a sampling pulse is applied for the multiplication.04-02-2009
20120154208METHODS AND APPARATUS FOR AUTOMATIC STC FROM SEA STATE MEASUREMENT VIA RADAR SEA CLUTTER ECCENTRICITY - Methods and apparatus to receive radar return information from signals transmitted by a radar, process the radar return information to identify sea clutter, process the sea clutter to fit an ellipse to arrange horizon of the sea clutter as a function of azimuth to determine a sea state, and select sensitivity time control (STC) attenuation of the sea clutter based upon the sea state.06-21-2012
342199000 Automatic frequency control (AFC) 2
20100052976WEATHER RADAR SIGNAL PROCESSING - A method and system are described whereby a magnetron-based radar transmission signal is accurately measured, allowing for measurement of absolute phase change returns from fixed clutter targets caused by changes in the refractive index of the transmission medium.03-04-2010
20110043401VOLTAGE-CONTROLLED OSCILLATOR AND RADAR SYSTEM - A voltage-controlled oscillator circuit comprises an output terminal for providing an oscillatory output signal thereat, a first inductor, a varactor, and a negative-resistance element. The varactor's capacitance is a function of a tuning potential applied at a first terminal of the varactor. A bias branch is present for coupling a second terminal of the varactor to a bias potential. The bias branch comprises a second inductor or a transmission line. The bias branch may comprise a transmission line the length of which is one quarter wavelength associated with the resonance frequency of the voltage-controlled oscillator circuit. A radar system including a VCO circuit is further disclosed.02-24-2011
Entries
DocumentTitleDate
20080204307SEMICONDUCTOR DEVICE FOR SPREAD SPECTRUM RADAR APPARATUS - Provided is a semiconductor device for a spread spectrum radar apparatus which suppresses spurious signals resulting from non-linearity of active elements. The semiconductor device as the inverse spread spectrum modulation unit for the spread spectrum radar apparatus has a coupled line of two lines and another coupled line of two lines. The semiconductor device includes: an unbalanced to balanced transforming circuit which converts a received signal inputted as an unbalanced signal into a balanced signal pair; a switch circuit having one or more transistors; and a balanced inverse spread spectrum circuit which obtains as differential signal PN signals belonging to the same sequence code as a PN code which is used to generate an original signal of the received signal, also obtains the balanced signal pair from the unbalanced to balanced transforming circuit, and performs inverse spread spectrum modulation on the balanced signal pair by the switch circuit using the PN codes inputted as the differential signal.08-28-2008
20080224922DEVICE AND METHOD FOR RESONANT HIGH-SPEED MICROSCOPIC IMPEDANCE PROBE - A resonant high-speed microscopic impedance probe useful for small scale impedance measurements and/or cell and particle counting.09-18-2008
20080252513RADAR SYSTEM - The radar system includes: a transmission circuit transmitting the radar waves via a transmission antenna; a receiving circuit receiving the reflected waves via a receiving antenna; a delay line having an end connected to aid transmission circuit and the other end connected to said receiving circuit, which delays the radar waves by a predetermined delay amount; a correlation circuit/coherent detection circuit which detects a waveform having a strength equal to or higher than a predetermined strength, from a signal provided from said receiving circuit which obtains the signal from the reflected waves or the delayed radar waves; and a level decision circuit which judges, during self-diagnosis, whether or not the detected waveform is a waveform of the delayed radar wave according to the predetermined delay amount, and if the waveform is not the waveform of the delayed radar wave, determines that abnormality occurs in said radar system.10-16-2008
20080278369Apparatus and Methods For Radar Imaging Based on Injected Push-Push Oscillators - The present invention relates to radar imaging and to phased array antennas. The invention also relates to transmitter/receiver modules, push-push oscillators and Injection locked push-push oscillators for phased array antennas. The invention reduces the production cost and improves the performance of conventional phased array antennas.11-13-2008
20080297403Radar level gauging system for use at sea - A radar level gauging system for determining a filling level of a liquid in a tank arranged in a mobile unit is disclosed. The system is comprises a processing circuitry for determining a local and momentary filling level at different times at a certain position in the tank of the container based on received echo signals, and is further adapted to identify variations between said local and momentary filling levels corresponding to surface waves in the tank due to movement of said mobile unit. The result of this identification is used for improving the accuracy when estimating an average filling level of the tank.12-04-2008
20090002223Transmit-Receive FM-CW Radar Apparatus - A transmit-receive FM-CW radar apparatus according to one mode of the invention comprises: a mixer for downconverting an IF signal; a switch provided on the input side of the mixer; and a switch controller for controlling the switch on and off in different modes and selecting the IF signal in the different modes for supply to said mixer. A transmit-receive FM-CW radar apparatus according to another mode of the invention comprises: a mixer for downconverting an IF signal; a switch for turning on and off a local signal to be supplied to the mixer; and a switch controller for controlling the switch on and off in different modes and selecting the local signal in the different modes for supply to the mixer.01-01-2009
20090021421RADAR DEVICE - For enabling determination on whether a sign of a Doppler frequency or a target angle is positive or negative even when only a real signal can be obtained as a received signal, the present invention provides a radar device including: an oscillator; a transmitting element; a distributor; receivers using the local wave to detect the received wave to generate a real received signal; a plurality of inter-channel phase correcting units; a spatial frequency information generating unit for converting a received signal string obtained by gathering a plurality of phase-corrected received signals into a signal in a spatial frequency domain; and a sign selecting unit for selecting a signal having a larger amplitude in a spatial frequency spectrum when two signals from a positive direction and a negative direction which are symmetrical with respect to a direction at approximately 0 degree.01-22-2009
20090027259RADAR OSCILLATOR CAPABLE OF PREVENTING LEAK OF OSCILLATION OUTPUT - In order to enable intermittent output of an oscillation signal without essentially producing a leak in response to a pulse signal indicating a transmission timing of a radar wave, a radar oscillator is provided which employs a configuration in which an operation of an oscillating unit itself is alternately changed between an oscillating state and an oscillation stop state by a switch, rather than a configuration in which an output passage of an oscillation signal is switched to be opened and closed as in a conventional radar oscillator.01-29-2009
20090033547TRANSMIT/RECEIVE MODULE - A transmit/receive module that reduces size and weight of a radar apparatus is disclosed. The transmit/receive module includes a transmit input terminal, a receive output terminal, a transmit line, a receive line, and a plurality of branch devices. During monitoring the transmit line, the plural branch devices are configured so that a standard signal inputted to the transmitting terminal passes through the transmit line, and is outputted to the receive output terminal. During monitoring the receive line, the plural branch devices are configured so that the standard signal inputted to the transmitting terminal passes through the receive line, and is outputted to the receive output terminal.02-05-2009
20090040098RCS signature generation for closely spaced multiple objects using N-point models - A method and system for analyzing the RCS of an object using N Point signature prediction models is provided. N-point signature prediction models are created for each object in a scenario and stored in lookup tables. Shooting and Bounce trace back techniques are used to determine RCS signatures of multiple objects in modeled scenarios to account for blockage by and coupling phenomena of a scattered field.02-12-2009
20090058717Apparatus and methods for detection of multiple targets within radar resolution cell - A method and apparatus is operative for multiple target detection in a radar system which employs a radar waveform of two or more frequency diverse subpulses. The apparatus adds coherent processing of the subpulse echo signals to determine the presence of multiple scattering centers within the radar resolution cell. The subpulses are coherently combined and one can then estimate the number of scattering centers by forming a sample covariance matrix between the subpulse frequency channels and then performing an Eigenvalue decomposition. The resulting Eigenvalues represent the signal strengths of the scattering centers when the associated Eigenvectors correspond to the optimal subpulse weights associated with that signal. A single strong Eigenvalue indicates a single target while two or more strong Eigenvalues or those Eigenvalues larger than the noise related Eigenvalues or a threshold, indicates the presence of multiple targets.03-05-2009
20090066561EQUIVALENT TIME SAMPLING RADAR - A dither clock generating section 03-12-2009
20090121920SIGNAL PROCESSING METHOD - The invention concerns a method of signal processing which is applicable in particular to radar systems. The signal is first filtered, and then values of the filtered signal which in the time domain are below a base line level are clipped. The process is then iterated. The filter in question is of low pass type. The filter may be digital, in which case it can be implemented using a “kernel” comprising 10 or even fewer coefficients.05-14-2009
20090135051Mobile millimeter wave imaging radar system - A short range millimeter wave imaging radar system. The system includes electronics adapted to produce millimeter wave radiation scanned over a frequency range of a few gigahertz. The scanned millimeter wave radiation is broadcast through a frequency scanned transmit antenna to produce a narrow transmit beam in a first scanned direction (such as the vertical direction) corresponding to the scanned millimeter wave frequencies. The transmit antenna is scanned to transmit beam in a second direction perpendicular to the first scanned direction (such as the horizontal or the azimuthal direction) so as to define a two-dimensional field of view. Reflected millimeter wave radiation is collected in a receive frequency scanned antenna co-located (or approximately co-located) with the transmit antenna and adapted to produce a narrow receive beam approximately co-directed in the same directions as the transmitted beam in approximately the same field of view. Computer processor equipment compares the intensity of the receive millimeter radar signals for a pre-determined set of ranges and known directions of the transmit and receive beams as a function of time to produce a radar image of at least a desired portion of the field of view. In preferred embodiment the invention is mounted on a truck and adapted as a FOD finder system to detect and locate FOD on airport surfaces.05-28-2009
20090146868RF ATTENUATION CIRCUIT - An RF receiving circuit that selectively attenuates a received RF signal before it reaches sensitive modifying devices, such as a low noise amplifier or an analog to digital converter. The receiving circuit includes a delay element upstream of its attenuator so that high energy pulses of a short duration (for example, less than 10 nanoseconds) can be effectively attenuated despite coupler, detector, threshold and/or switch delays of the attenuation related circuitry.06-11-2009
20090153395Radar apparatus and method of measuring azimuth angle of target - A radar apparatus capable of determining the position of targets at a high accuracy even when plural objects of an identical relative velocity are present in a detection view field of the radar, using signal processing of obtaining an effect which is similar with that of virtually increasing the number of antennas along the moving direction of the radar by determining the change of intensity of reception signals using data in the past in which an identical antenna was positioned at a slightly different place (T06-18-2009
20090184864ANALOG SIGNAL PROCESSING DEVICE FOR PHASED ARRAY ANTENNAS - A signal processing device includes a device package, processing circuitry and biasing circuitry. The processing circuitry is packaged in the device package and is operative to receive one or more Radio Frequency (RF) input signals from one or more antenna elements via one or more pre-amplifiers that are separate from the device, and to process the RF input signals so as to produce an RF output signal. The biasing circuitry is packaged in the device package and is operative to produce one or more biasing signals for biasing the pre-amplifiers.07-23-2009
20090189801RF-front-end for a radar system - An RF sender/receiver front-end is disclosed comprising a terminal for receiving an oscillator signal, at least one distribution unit for distributing the oscillator signal into different signal paths, two or more mixer-arrangements for sending a transmit-signal or for receiving an receive-signal, where each mixer-arrangement comprises a mixer and an amplifier for amplifying the oscillator signal and generating the transmit-signal.07-30-2009
20090195440HIGHLY INTEGRATED CIRCUIT ARCHITECTURE - Various techniques may be implemented to isolate a receive signal from a transmit signal in an antenna. Signal isolation is desirable because it prevents interference of the signals with one another and minimizes signal noise, which reduces the signal quality. Some of the techniques are symmetry of at least two receive channels with regards to a transmit channel, using differential signals within the antenna, designing receive channel inputs to be orthogonal to a transmit channel, and designing a voltage controlled oscillator to be on the same substrate as the tuning circuitry of the voltage controlled oscillator.08-06-2009
20090243915MICROWAVE SENSOR APPARATUS AND MICROWAVE SENSOR SYSTEM - A microwave sensor apparatus according to an embodiment of the invention includes a reception detection circuit which amplifies a microwave received through a reception antenna, performs wave detection, and supplies a reception detection signal, a monitoring unit for monitoring the reception detection signal supplied from the reception detection circuit, detecting that the reception detection signal is changed not lower than a predetermined value, and supplying an intrusion alarm, a reflected wave detection unit which detects presence or absence of a reflected wave in the detection area using the reception detection signal supplied from the reception detection circuit, and an AGC circuit which controls a gain of the reception detection circuit at a response speed faster than that of the case in which reflected wave is not detected when the reflected wave detection unit detects the reflected wave.10-01-2009
20090251362THREE DIMENSIONAL INTEGRATED AUTOMOTIVE RADARS AND METHODS OF MANUFACTURING THE SAME - The invention is a low-cost, compact radar for adaptively forming beams and independently steering the beams to improve the noise and sensitivity of the radar. The radar includes a printed circuit board, a low-cost multi-layer organic substrate, and a three dimensional (3D) radio frequency (RF) front end that is flood mounted on the substrate.10-08-2009
20090256738SYSTEM FOR SIMULTANEOUSLY TRANSMITTING MULTIPLE SIGNALS THROUGH EACH ELEMENT OF A RADAR ARRAY - In conventional phased array antennas, multiple signals that perform different functions, such as radar, electronic warfare (EW) and telecommunications, can each be simultaneously transmitted only through a different sub-aperture of the array. For maximum power and efficiency in conventional phased array antennas, the power amplifiers operate on one signal at a time. The present invention forms a common waveform from multiple signals for transmission through a common aperture of a phased array antenna. In wideband operations, waveform-shaping and amplitude-to-phase-modulation are used to transmit high-power diverse waveforms through every element of the array.10-15-2009
20090273508Multi-beam radar sensor - A multi-beam radar sensor has a plurality of antenna elements disposed next to each other, a collective lens situated at a distance in front of the antenna elements, and an additional preliminary focusing lens disposed in such a way that it affects only a portion of the radar radiation transmitted from, and/or received by, the antenna elements.11-05-2009
20100001899UNBALANCED NON-LINEAR RADAR - A transmitter system can have a higher power transmitter and a lower power that are configured to transmit a pair of unbalanced radio frequency beams to a target so as to produce a difference frequency in the target. The difference frequency can disrupt operation of a device, such as a weapon. The difference frequency can provide a radar return. The use of a higher power transmitter and a lower power transmitter reduces costs, size, and weight as compared to the use of two higher power transmitters.01-07-2010
20100045511GENERIC RADAR ARCHITECTURE - The invention relates to the general field of complex electronic and/or computerized system architectures for which the interchanges take the form of irregular data flows prompted by processing functions of variable duration in time. The object of the invention is an architecture designed for electronic systems having a plurality of processing nodes in which each node provides a function or part of a function implemented by the system. This architecture is based on one single synchronization link which supplies all the modules with a common synchronization message containing synchronization information and a simplified header. There are a plurality of asynchronous data interchange links. Each link allows a message interchange between two specific processing nodes, with the interchanged messages having data to be processed, accompanied by a generic header. The asynchronous links' generic header includes all the information relating to the system's operating step to which the interchanged data refer. The synchronous link's simplified header makes it possible to determine the data stream to which the associated synchronization information applies. Each processing node has means suitable for interfacing with the synchronous and asynchronous links. The invention applies particularly to the design of electromagnetic or acoustic sensors, such as radars and sonars.02-25-2010
20100052975COMPACT ACTIVE PHASED ARRAY ANTENNA FOR RADARS - A radar system, including: a compact, active phased array antenna for transmission and reception of a focused radiation beam, circuits for providing signals to produce or detect a radiation beam by the phased array antenna and to control or detect the direction of the radiation beam, and wherein the radar is adapted to be mounted on a missile and scan a selected area proceeding the direction of motion of the missile.03-04-2010
20100066592PARALLEL PROCESSING TO GENERATE RADAR SIGNATURES FOR MULTIPLE OBJECTS - In one aspect, a system to generate a radar signature of an object includes electromagnetic processing modules that include a first module including at least one processing unit to perform a shooting and bouncing (SBR) technique to solve for physical optics and multi-bounce characteristics of the object, a second module including a processing unit to perform a physical theory (PTD) technique to solve for material edges of the object and a third module including a processing unit to perform an incremental length diffraction coefficient (ILDC) to solve for material boss/channel. Results from the first, second and third modules are coherently integrated by frequency to generate radar cross section (RCS) values of the object in real-time. Performance of the system is scalable by adding processing units to at least one of the first, second or third modules.03-18-2010
20100066593MAGNETRON AND RADAR APPARATUS - This disclosure is related to a magnetron including a pillar-shaped cathode having a center axis, an anode coaxially arranged with the cathode so as to be separated from the cathode via a predetermined space, and a pair of pole pieces provided to both ends of the cathode in the axial direction so as to oppose to each other and having opposing faces perpendicular to the axial direction. The pole piece has a first ridge of a ring shape that is formed on the opposing face and is coaxial with the cathode.03-18-2010
20100066594Modular design for a fill-level-radar antenna system - A modular system is for assembling a fill-level radar antenna, a fill-level radar antenna, and o a fill level radar. The modular system comprises several modules that can be interconnected. In this way a host of different fill-level radar antennae may be produced that are optimally adapted to the corresponding conditions.03-18-2010
20100073221Self-referencing radar pulse detector - An automatic pulse detector compares a radar video pulse to a delayed and amplified version of itself. The radar video pulse serves as an amplitude reference for a comparator. A delayed and amplified version of the same pulse serves as the pulse to be detected. Time of detection is amplitude independent and is not degraded by flat-topped pulses. Pulse detection occurs at a fixed, fractional point on the leading edge of a pulse where noise has less temporal influence than at the top of a pulse. Unlike a time-of-peak detector, the self-referencing pulse detector is well-suited to detecting wide, flat-topped pulses produced by expanded-time, pulse-echo radars operating in relatively narrow ISM bands.03-25-2010
20100073222FMWC SIGNAL GENERATOR AND RADAR APPARATUS USING FMCW SIGNAL GENERATOR - An FMCW signal generator includes a frequency divider to divide the FMCW signal at a preset dividing ratio, a reference signal generator to periodically generate a reference signal at a second time interval not less than a loop time constant set for a PLL, a frequency of the reference signal being discretely swept within a range of fc±Δf (fc is a center frequency, and Δf is a frequency sweep width) at a first time interval not more than the loop time constant, a comparison unit to compare the frequency divided signal with the reference signal to generate a comparison result signal corresponding to a phase difference between the frequency divided signal and the reference signal, a loop filter to filter the comparison result signal to generate a control voltage signal, and a VCO to have an oscillation frequency thereof controlled by the control voltage signal.03-25-2010
20100085243METHOD FOR THE MULTIPATH PASSIVE RADAR PROCESSING OF AN FM OPPORTUNITY SIGNAL - The present invention relates to the field of passive radars, and more particularly the field of the processing of the signals utilized by such radars. The signal processing method received according to one or more embodiments of the invention performs coherent processing, in order to purge spurious signals from the useful signal, including the reference signal and its multiple reflections, to regenerate the transmission signal and to perform a coherent integration of the signal received, by computing the cross-ambiguity between the signal received and the regenerated transmission signal. One or more embodiments of the invention also performs operations of non-coherent processing making it possible in particular to carry out extraction and Doppler distance purification operations making it possible to form blips and to eliminate the spurious blips present among the blips formed. The invention applies to passive radars operating on non-cooperating opportunity transmissions, such as FM transmissions intended for the public.04-08-2010
20100103026RADAR TRACKING DEVICE AND METHOD THEREOF - A radar tracking apparatus and method are provided. The radar tracking apparatus includes an α-β tracking filter, wherein the α-β tracking filter includes: a tracking index unit calculating a tracking index for obtaining α and β filter gains of an α-β tracking filter, based on changes in the measurement error covariance of a radar-measured value that occur when the measured value of target is converted from a polar coordinate system to a rectangular coordinate system; and a filter gain update unit calculating the variations of α and β filter gains, based on the partial differential coefficient of the changing rate of the α and β filter gains with respect to the changing rate of the tracking index and the variations of the tracking index, and updating the α and β filter gains.04-29-2010
20100103027RADAR SENSOR HAVING A SHIELDED SIGNAL STABILIZER - A radar sensor having a transmission module and a signal stabilizer, which are situated on a shared circuit board, a casing, which accommodates the signal stabilizer and forms a shield against high frequency radiation of the signal stabilizer together with a conductive layer of the circuit board, and having a connection line, which crosses through the shield, to connect the signal stabilizer to the transmission module, in which the connection line is embedded in the circuit board in insulated fashion.04-29-2010
20100117891MICROWAVE/MILLIMETER WAVE SENSOR APPARATUS - A microwave/millimeter wave sensor apparatus including a planar radiation type oscillator substrate having an inner-layer GND interposed between a front surface side dielectric substrate and a rear surface side dielectric substrate and a pair of conductor patches in an axis-symmetric manner on the side of the front surface layer. A gate and drain of a microwave transistor are respectively connected to the conductor patches to supply power to the gate and the drain of the microwave transistor through a gate-side RF choke circuit and a drain-side RF choke circuit. An impedance line satisfying an oscillation condition is connected to a source and a transmit RF signal in an RF zone as a planar radiation type oscillator is transmitted and a receive RF signal as reflected waves is received from a measured object, thus obtaining an IF signal as the sensing information through homodyne mixing.05-13-2010
20100123619ANTENNA DEVICE AND RADAR APPARATUS - An antenna device includes subarray antennas including antenna elements and feeding interfaces. Each feeding interface is connected to each of subarray antennas. The subarray antennas are arranged parallel to each other with an interval on a plane to be symmetrical about a central axis. The interval is less or equal than a free-space wavelength. The central axis is along with the center of two adjacent subarray antennas arranged at middle of the subarray antennas when the number of the subarray antennas is even. Moreover, the central axis is along with one subarray antenna arranged at the middle of the subarray antennas when the number of the subarray antennas is odd.05-20-2010
20100156703RADAR COORDINATE REGISTRATION - Integration of ionospheric models in over the horizon radars (OTHR) is achieved with very little or substantially no change to existing coordinate registration systems or software by specifying a virtual transponder at a target location and generating a signal which appears to have emanated from a transponder at that location. A return path to said virtual transponder is ray-traced through the ionospheric model to produce propagation parameters; and an appropriately delayed virtual transponder signal is inserted into the receiver. The result produced at the receiver is used to perform coordinate registration for further received signals.06-24-2010
20100164783Platform Integrated Phased Array Transmit/Receive Module - Disclosed are integration approaches for mm-wave planar phased array type architectures using multilayer substrate technologies. For instance, an apparatus may include a plurality of substrate layers, an integrated circuit, and a connector module. The plurality of substrate layers includes a first substrate layer having one or more phased array elements. The integrated circuit exchange one or more radio frequency (RF) signals (e.g., mm-wave signals) with the one or more phased array elements. The connector module exchange further signals with the integrated circuit that correspond to the one or more RF signals. For example, these further signals may be baseband or intermediate frequency (IF) signals.07-01-2010
20100194626Adaptive Calculation of Pulse Compression Filter Coefficients for a Radar Signal - In a method for adaptive calculation of pulse compression filter coefficients for a received signal in a radar installation, which received signal is evaluated with the aid of a complex pulse compression mismatch filter, a pulse compression filter coefficient set h(t) is calculated for an ideal theoretical received signal s(t) for a pulse compression mismatch filter, such that a pulse compression output signal results with a desired main lobe to side lobe ratio. A transformed set of pulse compression filter coefficients H08-05-2010
20100225529UNSWITCHED, ULTRA LOW POWER, LONG RANGE RADAR SYSTEM - An ultra low power, long range, robust radar system, for applications such as ionospheric sounding. The HF transmit signal and the received (reflected) signal are both unswitched and high frequency and share a path to a common loop antenna. The transmit signal originates at a local oscillator (LO), and is sufficiently low power to not saturate the receive signal path. A balun divides the local oscillator signal between the transmit path forward to the antenna and a mixer path, and also divides the received signal between the mixer path and the LO path. A mixer converts the mixed LO and received signal to baseband.09-09-2010
20100225530METHOD OF HANDLING RADAR SIGNALS FOR A WIRELESS COMMUNICATION DEVICE - A method of handling radar signals for a wireless communication device includes operating the wireless communication device in a listening mode to detect the radar signals on a first channel for a listening time period, operating the wireless communication device in an idle mode when the radar signal is not detected on the first channel during the listening time period, starting an idle timer when the wireless communication device is operated in the idle mode, sending at least one clear-to-send frame when the idle timer expires, and operating the wireless communication device in a waiting mode to make sure the at least one clear-to-send frame is completely sent within a waiting time period.09-09-2010
20100238068RADAR DEVICE - A radar device, particularly for measuring a speed above ground, includes a high-frequency circuit and an antenna. It is provided that the high-frequency circuit is arranged as a high-frequency chip, which has a plurality of antenna outputs, which are connected to the horn antennas via the antenna lines.09-23-2010
20100265123RADAR SYSTEM - A radar system is disclosed for forming a scanning receive beam from signals received by a phased array having a plurality of sub arrays. An exemplary radar system includes a plurality of phase units each configured to receive a signal from one or more sub arrays. Each phase unit includes a waveform generator configured to generate an analog waveform having a frequency corresponding to a time-varying phase shift. Each waveform generator is arranged to digitally generate the analog waveform, and output a comparison of the received signal with the waveform, incorporating the time-varying phase shift. The system further includes a combining unit configured to combine the outputs from the plurality of phase units to form a scanning receive beam.10-21-2010
20100283666RADAR SIGNALS CLUSTERING METHOD USING FREQUENCY MODULATION CHARACTERISTICS AND COMBINATION CHARACTERISTICS OF SIGNALS, AND SYSTEM FOR RECEIVING AND PROCESSING RADAR SIGNALS USING THE SAME - Disclosed is a radar signal clustering method using frequency modulation characteristics and combination characteristics of signals including: a first step of assigning pulses of received radar signals to cells consisting of parameters including radio frequency (RF) and angle of arrival (AOA) of the pulses; a second step of calculating a pulse density distribution of each cell using a kernel density estimator; a third step of extracting a corresponding cell as a frequency fixed cluster if the calculated pulse density distribution is greater than a threshold of the frequency fixed cluster; a fourth step of making cell groups by merging remaining cells that are not extracted as the frequency fixed clusters; a fifth step of calculating a pulse density distribution of each cell group by using the kernel density estimator for each cell group; and a sixth step of comparing the calculated pulse density distribution for each cell group with each threshold according to a signal combination type of frequency agile clusters, thus to classify and extract each cell group according to the signal combination type.11-11-2010
20110012776COMBINED TRANSMIT/RECEIVE SINGLE-POST ANTENNA FOR HF/VHF RADAR - An antenna configuration is described for high frequency (HF) or very high frequency (VHF) radars contained in a single vertical post. The radar may include a vertical dipole or monopole transmitting antenna collocated with a three-element receive antenna. The three antennas including two crossed loops and a vertical element are used in a direction-finding (DF) mode. Isolation between the three antennas produces high quality patterns useful for determining target bearings in DF mode. The single vertical post is sufficiently rigid mechanically that it may be installed along a coast without guy wires.01-20-2011
20110025553Radar High Frequency Module - A radar high frequency module having at least one distance piece mounted at the flat top wall of the shielding cover for supporting the shielding cover on the printed circuit board without mechanical contact of the downwardly extending side walls of the shielding cover with the printed circuit board to allow alignment of a rod antenna to a patch antenna arranged on the printed circuit board with greater precision. The side walls may be fixed to the printed circuit board by a conductive adhesive.02-03-2011
20110074623Low-power wireless network beacon for turning off and on fluorescent lamps - A low-power wireless network involves a plurality of RF-enabled fluorescent lamp starter units. In each of a plurality of intervals, a receiver of a starter unit operates in a receive mode during a beacon slot time, and for the majority of the rest of the interval operates in a low-power sleep mode. The starter unit wakes up and listens for a beacon each beacon slot time, regardless of whether a beacon is transmitted during that interval or not. A starter unit can be commanded to schedule a future action (for example, for a time between widely spaced synchronizing beacons) by making one of the beacons a scheduling beacon. The scheduling beacon includes a field that the starter unit uses to schedule the future action. If the scheduled action is to be canceled before the next widely spaced synchronizing beacon, then an action-canceling beacon is communicated in the next interval.03-31-2011
20110080315SURVEILLANCE WITH REANALYSIS OF SCREENING DATA - A surveillance system may include at least one controller configured to receive information data from at least one information source and to control operation of at least one controllable subsequent information source based, at least in part, on the information data. A surveillance method may include analyzing screening data, obtaining information data, and reanalyzing the screening data based, at least in part, on the obtained information data.04-07-2011
20110109499MODULAR DESIGN FOR A FILL-LEVEL-RADAR ANTENNA SYSTEM - A modular system is for assembling a fill-level radar antenna, a fill-level radar antenna, and o a fill level radar. The modular system comprises several modules that can be interconnected. In this way a host of different fill-level radar antennae may be produced that are optimally adapted to the corresponding conditions.05-12-2011
20110109500RADAR APPARATUS WITH AMPLIFIER DUPLEXER - An amplifier/duplexer for an antenna channel of a radar apparatus, comprises a first hybrid junction having two input/output ports for connection into the antenna channel, and two further ports each connected to a parallel combination comprising an amplifier and switching means switchable between a transmit condition in which it presents an open circuit and a receive condition in which it presents a short circuit so that a signal received in the antenna channel is applied to one of the input/output ports and reflected to the other input/output port each amplifier having an input connected to a respective output port of a further hybrid junction, an input port of the further hybrid junction being configured to receive a signal for transmission so that when the switching means is in the transmit condition the transmission signal is amplified by the amplifiers and delivered through the first hybrid junction to the antenna channel.05-12-2011
20110122017SINGLE-ANTENNA FM/CW MARINE RADAR - A high resolution, low power marine radar for use in applications such as the newly mandated barge/river radars that are to be used in very confined spaces such as canals. An example radar system includes frequency-modulated/continuous-wave (FM/CW) radar that uses very low transmitter power (a fraction of a watt) and has an exceptionally short sensing range of a few feet or even inches if needed.05-26-2011
20110175769Microwave Sensor - Microwave sensor includes an oscillator for generating microwave signals, a power divider for dividing the microwave signals, an antenna for transmitting the divided microwave signals to an outside of the microwave sensor and receiving microwave signals reflected from an object, and a mixer for detecting differences between the microwave signals received through the antenna and the signals input from the power divider and outputting Intermediate Frequency (IF) signals. The antenna includes a ground plate, an antenna pin located at a center of the ground plate, and a metallic wall formed along a circumference of the ground plate. Accordingly, the microwave sensor is advantageous in that it has uniform gain characteristics regardless of an azimuth angle by using a single antenna, functioning as both transmitting and receiving antennas, and a circuit for operating the antenna.07-21-2011
20110181460DEVICE FOR GENERATION OF MICROWAVES - The invention relates to a device for generation of microwaves comprising a virtual cathode oscillator (07-28-2011
20110241932SHIELD - A printed circuit board shield (10-06-2011
20110248883ANTENNA DEVICE AND RADAR APPARATUS - The disclosure provides an antenna device, which includes a waveguide antenna having wall surfaces and for emitting a radio wave in a direction substantially perpendicular to an emission face that is one of wall surfaces of the waveguide antenna extending in an elongated direction of the waveguide antenna, a plate-shape two-dimensional opening slots for beam formation formed in the waveguide antenna on the emission face side, a power feed waveguide module arranged in the rear face of the waveguide antenna opposite from the emission face and for supplying electric power to the waveguide antenna, and a cylindrical radome having a substantially circular cross-section of a diameter that is substantially equal to a length of the emission face in a direction perpendicular to the long-side direction so that the waveguide antenna is contained in the radome so as to be arranged at substantially the center of the radome.10-13-2011
20110248884SLOT ANTENNA AND RADAR DEVICE - This disclosure provides a slot antenna, which includes a tubular electromagnetic wave radiation part having a hollow space, a plurality of electromagnetic wave radiating slots for radiating electromagnetic waves being formed in at least a part of a side surface of the radiation part and a plurality of feeding slots for being inputted with the electromagnetic waves being arrayed in line in another part of the side surface opposing to the radiating slots, a feeding part having a hollow space, extending along the feeding slot array, and for feeding power from the outside of the radiation part to the feeding slots, and a power guiding part having a hollow space and for guiding the power to the feeding part, the power guiding part extending in a direction orthogonal to the array direction of the feeding slots and in parallel to the center axis of the radiation part, from a location of the feeding part corresponding to at least one of the feeding slots.10-13-2011
20110260912MONOSTATIC MULTIBEAM RADAR SENSOR DEVICE FOR A MOTOR VEHICLE - A monostatic multibeam radar sensor device for a motor vehicle, including a directional characteristic of an antenna unit having at least one transceiving channel and at least one receiving channel, and including a mixer system, which has an at least approximately isolating mixer for at least one of the receiving channels. The at least approximately isolating mixer includes a Gilbert cell mixer, which, due to a non-ideal isolation between an input of the local oscillator signal and the corresponding receiving channel, emits a transmission power via this receiving channel, using an overcoupling signal, the transmission power influencing the directional characteristic of the antenna unit and the directional characteristic being switchable by controlling the phase position of the overcoupling signal.10-27-2011
20110309973COMBINED TRANSMIT/RECEIVE SINGLE-POST ANTENNA FOR HF/VHF RADAR - An antenna configuration is described for high frequency (HF) or very high frequency (VHF) radars contained in a single vertical post. The radar may include a vertical dipole or monopole transmitting antenna collocated with a three-element receive antenna. The three antennas including two crossed loops and a vertical element are used in a direction-finding (DF) mode. Isolation between the three antennas produces high quality patterns useful for determining target bearings in DF mode. The single vertical post is sufficiently rigid mechanically that it may be installed along a coast without guy wires.12-22-2011
20110316734DUAL FREQUENCY ANTENNA APERTURE - An antenna structure including at least two stacked antenna apertures, a first antenna aperture with first antenna elements and at least a second antenna aperture with second antenna elements. The antenna structure is arranged for operation in at least a high and a low frequency band. The first antenna elements are arranged for operation in the high frequency band and the second antenna elements for operation in the low frequency band. The first antenna elements are arranged to have a polarization substantially perpendicular to the polarization of the second antenna elements. The second antenna elements are arranged in at least one group and each of the group includes a number of second antenna elements coupled in series and arranged to have a common feeding point on a straight feeding structure. One feeding structure is located adjacent to each group of second antenna elements. The direction of the feeding structure is substantially perpendicular to the polarization of the first antenna elements. A corresponding method and a radar system including the antenna structure.12-29-2011
20120007771SLOT ARRAY ANTENNA AND RADAR DEVICE - This disclosure provides a slot array antenna, which includes an emission waveguide having a conductor surface where emission slot rows are formed and for guiding electromagnetic waves to be emitted from the emission slot rows, each of the emission slot rows having a plurality of emission slots are arrayed in line, and a lattice. The lattice includes a plurality of conductor walls formed in a planer shape so as to extend in a direction intersecting with the conductor surface and repeatedly arranged corresponding to the plurality of emission slots, and a base plate coupling and fixing the plurality of conductor walls thereto, the base plate being fastened to the conductor surface of the emission waveguide.01-12-2012
20120032836Gain Enhanced LTCC System-on-Package for UMRR Applications - An apparatus, system, and method for Gain Enhanced LTCC System-on-Package radar sensor. The sensor includes a substrate and an integrated circuit coupled to the substrate, where the integrated circuit is configured to transmit and receive radio frequency (RF) signals. An antenna may be coupled to the integrated circuit and a lens may be coupled to the antenna. The lens may be configured to enhance the gain of the sensor.02-09-2012
20120056778WAVEGUIDE CONVERTER, ANTENNA AND RADAR DEVICE - This disclosure provides a waveguide converter, which includes a first waveguide for propagating an electromagnetic wave, a second waveguide for being inputted the electromagnetic wave from the first waveguide and propagating the electromagnetic wave in a direction different from the propagating direction of the electromagnetic wave in the first waveguide, and an elongated-plate-shaped inner conductor arranged between the first waveguide and the second waveguide so that end portions of the inner conductor are exposed to the inside of the first waveguide and the second waveguide, respectively.03-08-2012
20120062412MOVABLE INFORMATION COLLECTION APPARATUS - An object of the present invention is to provide a movable information collection apparatus capable of grasping the current situation in a timely fashion. Also, an object of the present invention is to provide a geographical monitoring system capable of utilizing the movable information collection apparatus. The movable information collection apparatus includes an observation data collection antenna system that receives observation data obtained by observing an observation target area from the air, a geographic information database that stores previously acquired geographic information in the observation target area, an evaluation calculation unit that calculates and outputs a difference between the observation data and the previously acquired geographic information, the observation data collection antenna system, the geographic information database, and the evaluation calculation unit being mounted on a movable pedestal.03-15-2012
20120086594MIXER ASSEMBLY AND RADAR SENSOR FOR MOTOR VEHICLES - Mixer unit for a radar sensor for motor vehicles, having an I mixer and a Q mixer which are connected in parallel branches between an oscillator port and an RF port with the aid of power splitters. A switch is situated between each of the power splitters and the Q mixer which allows the signal arriving from the power splitter to be selectively decoupled from the Q mixer and switched to a high-frequency ground. A transformation element is provided between the high-frequency ground and the particular node point of the power splitter which transforms the high-frequency ground into an open line at the node point.04-12-2012
20120086595MIXER STRUCTURE FOR DOPPLER RADAR APPLICATIONS - A Mixer structure (04-12-2012
20120092211DEVICE FOR RECEIVING SECONDARY RADIO SIGNALS WITH QUASI-DYNAMIC OR DYNAMIC SECTORING OF THE SPACE TO BE MONITORED AND CORRESPONDING METHOD - A device and method for secondary radar signal reception with quasi-dynamic or dynamic sectoring of a space to be monitored. The device includes at least one antenna assembly including antenna elements for the reception of transmitted secondary radar signals, a signal processing unit connected via a connection point to the antenna elements for the joint processing of received antenna signals, outputs associated with a couple matrix in the signal processing unit and individual receivers. The couple matrix includes adjustable coefficients for sectoring of the space to be monitored and for performing a superposition of the antenna signals using a multiplicative-additive combination of the received antenna signals. In the case of dynamic sectoring of the space, each receiver receives for each receipt telegram another weighted superposition of the antenna signals with certain couple coefficients, and in the case of quasi-dynamic sectoring the adjustable coefficients are fixed over a longer time period.04-19-2012
20120139777ADAPTIVE MAINLOBE CLUTTER METHOD FOR RANGE-DOPPLER MAPS - A method of adaptively removing mainlobe clutter from range-Doppler data includes estimating the peak of the mainlobe clutter, and determining clutter regionboundaries adaptively and robustly. The mainlobe clutter peak may be estimated from the range-Doppler data, for example using both nonlinear and linear filters. Alternatively the mainlobe clutter peak may be estimated from knowledge of the position and speed of the vehicle, such as a missile, upon which the radar system moves. The clutter boundaries may be determined at each of the range bins by stepping along Doppler bins from the mainlobe clutter peak estimate in opposite directions, locating the boundary at locations off of the mainlobe clutter peak estimate that meet a given criterion. The method produces a finer determination of the mainlobe clutter region, resulting in less of the range-Doppler data being excluded as part of the mainlobe clutter region.06-07-2012
20120146842RF TRANSCEIVER FOR RADAR SENSOR - An RF transceiver for radar sensors of microwave and millimeter wave bands, and an RF transceiver for a radar sensor which uses a monolithic microwave integrated circuit of core components and includes SP3T switches, Rotman lenses, and a transmitting five-patch array antenna and a receiving five-patch array antenna of a transmitting unit and a receiving unit. Smoother beam scanning with three beams is performed using the patch array antennas, the Rotman lenses, and the switches. The structure of the transceiver is configured in a homodyne scheme. A double balanced mixer is applied to improve separation characteristics between transmission and reception signals. Positive components such as the patch array antennas, the Rotman lenses, the switches, and an amplifier are configured on a single substrate.06-14-2012
20120188117DETECTION SENSOR - Disclosed is a detection sensor, which can detect various detection regions even with a small-sized antenna.07-26-2012
20120200453Method and Device for Supplying a Reflection Signal - The disclosure relates to a method and a device for supplying a reflection signal. According to the disclosure, an intermediate frequency signal having a high intermediate frequency can be demodulated in a numerical manner into I/Q components without intermediate frequency by means of a two channel sampling, thus enabling a complex reflection factor to be obtained.08-09-2012
20120229330RF Circuit with Improved Antenna Matching - In one embodiment, RF front-end circuit includes a tunable matching network having an input coupled to an RF interface port, a directional coupler with a first connection coupled to an RF input of a mixer, a second connection coupled to an RF signal generation port, and a third connection coupled to an output of the tunable matching network. The directional coupler is configured to direct a signal from the RF signal generation port to the tunable matching network and to direct a signal from the tunable matching network port to the RF port of the mixer. The RF front-end circuit also has a tunable matching network control unit coupled to the tunable matching network. The control unit is configured to optimize an impedance match between the RF interface port and the output of the tunable matching network.09-13-2012
20120274502Personal electronic device with a micro-impulse radar - A personal electronic device such as a smart phone can include a micro-impulse radar (MIR).11-01-2012
20120274503Network and personal electronic devices operatively coupled to micro-impulse radars - A network resource can be operatively coupled to personal electronic devices that include or are operatively coupled to micro-impulse radars (MIRs).11-01-2012
20120306686MULTI-TARGET DATA PROCESSING FOR MULTI-RECEIVER PASSIVE RADARS IN AN SFN OR MFN MODE - The invention relates to a data processing method for a multistatic radar system comprising a plurality of transmitters and receivers, each receiver being associated with one or more transmitters so as to form one or more bistatic bases. According to the invention, the method involves producing and sustaining multi-receiver Cartesian tracks from bistatic blips produced by the various receivers, and comprises: a first step in which mono-receiver Cartesian tracks are produced and sustained, each mono-receiver track consisting of blips formed by a given receiver; and a second step in which multi-receiver Cartesian tracks are produced and sustained, each multi-receiver track being constituted by merging the mono-receiver tracks together and with bistatic blips which have not been associated with a mono-receiver track. The produced tracks are transmitted together with the attributes thereof to processing means operating upstream from the method.12-06-2012
20130050015Antenna-Coupled Antenna Arrays - According one embodiment, a non-heterodyne radiation imager includes a substrate having a ground plane layer. The radiation imager also includes a plurality of antenna elements operable to receive radiative input. Each support element of a plurality of support elements mechanically couples an antenna element of the plurality of antenna elements to the substrate. A plurality of energy detectors is operable to measure the radiative input received by the plurality of antenna elements.02-28-2013
20130057428RADAR SENSOR AND METHOD FOR CONTROLLING SAME TO REDUCE THE CROSSTALK OF DIGITAL SIGNALS TO THE HF RADAR SIGNAL - The radar sensor has a transceiver device for generating a radar signal having a settable output power, a control unit and an interface unit. The transceiver device may be controlled via a digital interface via the interface unit and the control unit. One of the lines of the interface is connected to the control unit, the control unit being designed in such a way that when a predetermined level is present on this line, the output power of the transceiver device is lowered.03-07-2013
20130088383Automotive Radar Transmitter Architecture - One embodiment of the present invention relates to a radar transmitter comprised within a single integrated chip substrate, which is capable of continuous beam steering of a transmitted radar beam as well as an option to change the physical position of the origin of the transmit radar beam. The radar transmitter has a signal generator that generates an RF signal. The RF signal is provided to a plurality of independent transmission chains, which contain independently operated vector modulators configured to introduce an individual phase adjustment to the high frequency input signal to generate separate RF output signals. A control unit is configured to selectively activate a subset of (e.g., two or more) the independent transmission chains. By activating the subset of independent transmission chains to generate RF output signals with separate phases, a beam steering functionality is enabled. Furthermore, the subset defines a changeable position of the transmitted radar beam.04-11-2013
20130141271WAVEGUIDE ANTENNA FOR A RADAR ANTENNA ARRAY - A waveguide antenna for a radar antenna array, particularly for use in motor vehicles, includes a metal waveguide extending in an x direction and having a longitudinal axis, which, for the propagation of a radar wave of a first mode in the x direction, delimits an inner space, wherein in order to specifically convert the first mode to a second mode of the radar wave which is different from the first mode and to couple the second mode out of the waveguide, a plurality of structural elements arranged in the x direction are provided which extend into the inner space and wherein adjacent structural elements have a distance which is larger than half a waveguide wavelength of the radar wave of the first mode or larger than half a free-space wavelength, depending on which of the two wavelengths is smaller.06-06-2013
20130147657RADAR APPARATUS AND METHOD OF ASSEMBLING THE SAME - Disclosed are a radar apparatus having a reduced size and a reduced number of components, and a method of assembling the radar apparatus.06-13-2013
20130162464RADAR SENSOR FOR MOTOR VEHICLES - A radar sensor for motor vehicles includes: a transmit and receive component, which includes a mixer for mixing a transmitted signal with a received signal; an evaluation circuit which is connected to an output of the mixer by a direct voltage coupling device; and a compensation device for compensating a DC offset in the output signal of the mixer, the compensation device being subdivided into a rough compensation device in the transmit and receive component, and a fine compensation device in the evaluation circuit.06-27-2013
20130181864RADAR APPARATUS AND METHOD MANUFACTURING THE SAME - The present invention relates to a radar apparatus. More particularly, the present invention relates to a radar apparatus having a configuration which is reduced in the number of parts and size, and a method of assembling the same.07-18-2013
20130187807ANTENNA APPARATUS AND ANTENNA SWITCH CIRCUIT - An antenna device and an antenna switch circuit are provided. The antenna device comprises a first antenna, an antenna detection circuit, a switch control circuit, and a controller. The first antenna is configured to transmit an RF signal. The antenna detection circuit comprises an inductor configured to detect a second antenna. The switch control circuit is coupled to the antenna detection circuit and configured to generate a first control signal indicative of the presence of the second antenna upon the detection thereof. The controller is coupled to the first antenna, the antenna detection circuit and the switch control circuit, and configured to receive the first control signal and connect to the second antenna when the first control signal indicates the presence of the second antenna.07-25-2013
20130187808RADAR APPARATUS AND ANTENNA APPARATUS - The present invention relates to radar and antenna technologies. More particularly, the present invention relates to an antenna apparatus and radar apparatus that have an antenna structure that enables a high antenna gain and a balanced beam pattern by preventing a distortion of a beam pattern caused by a coupling phenomenon between antenna arrays.07-25-2013
20130194131DEVICE WITH A VOLTAGE-CONTROLLED OSCILLATOR AND A CIRCUIT ARRANGEMENT FOR CONTROLLING THE OSCILLATOR - A device, particularly a radar sensor, includes 08-01-2013
20130249732RADAR APPARATUS - The present invention relates to a radar apparatus. More particularly, the present invention is a radar apparatus having a front end structure that is reduced in size and the number of parts.09-26-2013
20130321198MIMO RADAR SYSTEM HAVING MULTIPLE TRANSMITTERS AND RECEIVERS - A MIMO radar system includes one or more receivers and transmitters. Any one of the one or more transmitters provides a reference signal for injection-locking. The MIMO radar system generates multiple signals having phase and frequency which are injection-locked to those of the reference signal.12-05-2013
20130342385RADAR APPARATUS UTILIZING MULTIPLE TRANSMISSION CHANNELS - The present invention relates to a radar apparatus utilizing multiple transmission channels having the structure enabling multiple transmission channels only by using only the number of transmission RF ports as many as the number of the transmission channels.12-26-2013
20140002297Low Clutter Method for Bistatic RCS Measurements01-02-2014
20140002298RADAR RECEIVER, AND RADAR DEVICE EQUIPPED WITH SAME01-02-2014
20140022116DIGITAL BEAM FORMING USING PHASED ARRAY ARCHITECTURE - A radar apparatus includes a receiver having a plurality of receiver channels, each including an antenna element, a phase shifter, and a switch. The antenna element provides a signal that passes through a phase shifter to a switch. The signal may then be passed to a summing element if the switch is closed. The summing element receives signals from the receive channels, and provides a sum signal to a mixer. In phased array mode, the switches are closed and antenna controller adjusts the phase angles of the phase shifters. In DBF mode, the phase shifters are maintained at a set value, and switches are operated sequentially to provide time-multiplexed signals from the receive channels to the summing element.01-23-2014
20140035780ANTENNA DEVICE, AMPLIFIER AND RECEIVER CIRCUIT, AND RADAR CIRCUIT - An antenna device comprises a first chain of at least two antenna components, wherein each of the antenna components comprises a transmit antenna having a line of antenna patches for emitting radar waves; and a receive antenna having a line of antenna patches for receiving radar response waves; wherein the line of antenna patches of the receive antenna is aligned with the line of antenna patches of the transmit antenna. An amplifier and receiver circuit for amplifying radar signals and for receiving radar re-sponse signals, the amplifier and receiver circuit comprises a phase shifter for shifting a phase of the radar signals to be amplified and for synchronously shifting the received radar response signals. A radar circuit comprises a first chain of at least two radar components, wherein each of the radar components comprises: an amplifier and receiver circuit as described above; and a transmit antenna for emitting radar waves; and a receive antenna for re-ceiving radar response waves.02-06-2014
20140139370Conformal Array, Luneburg Lens Antenna System - A Luneburg lens is used in conjunction with a patch antenna array. The patch antenna array is conformed or adapted to cover a portion or backside of the Luneburg len's surface with the backplane of the conformed antenna array defining a field of regard (FOR) in which objects are detected and tracked. A processor is connected to a receiver/exciter module which connects to transmit/receive modules which are connected to the individual patch antennas through a network of MEMS switches. In a receive mode, selected subarrays of the conformed patch antenna array are scanned during selected time intervals with the sum and delta beams being formed coherently in amplitude and phase to realize amplitude monopulse sensing and angle tracking of an object.05-22-2014
20140159946RADAR APPARATUS AND SIGNAL PROCESSING METHOD - There is provided a radar apparatus configured to extract peak signals which are obtained from a difference frequency between a transmission signal and a reception signal, and to derive information of the target on the basis of the extracted peak signals. A prediction unit predicts this time peak signal based on a peak signal obtained in previous time. An extraction unit extracts this time peak signal corresponding to the predicted peak signal from peak signals existing within a predetermined frequency range. The extraction unit extends the frequency range when this time peak signal corresponding to the predicted peak signal does not exist within the predetermined frequency range.06-12-2014
20140184438TRANSMIT/RECEIVE MODULE FOR RADAR AND ASSEMBLING METHOD THEREOF - A transmit/receive module for radar may include a radio frequency (RF) circuit unit including an RF substrate and an RF part; and a direct current (DC) power supply circuit unit including a printed circuit board (PCB) and a DC power supply circuit part. The RF circuit unit and the DC power supply circuit unit may be disposed so that a rear surface of the RF circuit unit faces a rear surface of the DC power supply circuit unit, and may be assembled to have a separate space using at least one separation wall.07-03-2014
20140191899SYSTEMS AND METHODS FOR TRACKING TARGETS BY A THROUGH-THE-WALL RADAR USING MULTIPLE HYPOTHESIS TRACKING - Aspects of the present invention relate to a system (07-10-2014
20140203960Power Divider and Radio-frequency Transceiver System - A radio-frequency transceiver system comprises a radio-frequency processing unit, a transmitting microwave network and a receiving microwave network, wherein the transmitting microwave network comprises a transmitting power divider for distributing main power of transmitting signals to two central sub-array antennas of four sub-array antennas, and the receiving microwave network comprises a receiving power divider for providing power mainly from a first input terminal and a second input terminal for a receiving route, and providing power mainly from the second input terminal and a third input terminal for another receiving route.07-24-2014
20140232589RECEIVER CIRCUIT, PHASED-ARRAY RECEIVER AND RADAR SYSTEM - A receiver circuit, comprises an input balun circuit comprising a balanced balun output and being capable of receiving RF signals, an input amplification circuit comprising a balanced amplifier input and a balanced amplifier output, a single balanced in-phase mixing circuit comprising a first unbalanced RF mixer input and a balanced in-phase mixing frequency input, and a single balanced quadrature mixing circuit comprising a second unbalanced RF mixer input and a balanced quadrature mixing frequency input. The balanced amplifier input is connected to the balanced balun output, a first terminal of the balanced amplifier output is connected to provide an amplified RF signal to the first unbalanced RF mixer input and a second terminal of the balanced amplifier output is connected to provide a phase-shifted amplified RF signal to the second unbalanced RF mixer input.08-21-2014
20140253369METHOD AND APPARATUS FOR REDUCING SATELLITE POSITION MESSAGE PAYLOAD BY ADAPTIVE DATA COMPRESSION TECHNIQUES - An adaptive method by which Differential GNSS corrections may be compressed. Each measurement datum to be transmitted to a rover for satellite navigation purposes is decomposed into two parts, namely, an anchor value and a delta value, and in some instances an added third part termed a nonce value is used. Encoding parameters such as the number of bits assigned to each part of the measurement datum, the order of the models used to convey positional data, and scaling constants in the models, are adjusted adaptively based on changing data and/or transmission medium characteristics. Adaptive compression also allows for anomalous conditions such as out-of-range data values to be handled gracefully.09-11-2014
20140292562Circuit Arrangement For A Front End of An FMCW Radar Transceiver, FMCW Radar Transceiver And Method For Operation - A circuit arrangement for a front end of an FMCW radar transceiver, with a signal terminal that is configured so as to couple to a signal filter device for purposes of signal exchange, a further signal terminal that is configured so as to couple to a VCO device for purposes of signal exchange, and an electronic circuit, which with the aid of a switching device included in the electronic circuit can be switched over between a reception circuit configuration and a transmission circuit configuration, is disclosed. The switching device has an RF switch, with which a signal route formed respectively in the RF switch, is embodied asymmetrically, in that the signal route in a reception circuit configuration and the signal route in a transmission circuit configuration have a different number of switching stages. A FMCW radar transceiver, and a method for the operation of a front end are also disclosed.10-02-2014
20140313069Compound Circuit Board and Radar Device - A compound circuit board for a radar device includes a first substrate including a plurality of trace layers having a first trace layer formed with a digital signal processing unit and an electronic control unit in a first area, a second substrate including a plurality of trace layers having a second trace layer formed with an antenna module in a second area, and a prepreg layer between the first and second substrates for connecting the first and second substrates, wherein the first area and the second area in a first projecting result generated by projecting the first trace layer on the second trace layer are substantially overlapped.10-23-2014
20150009064RADAR SENSOR - A radar sensor includes: an oscillator for generating a transmission signal; a mixer for generating an intermediate-frequency signal by mixing a part of the transmission signal with a received signal; and an offset-compensation unit for generating an oscillating compensation signal, which is sent to the mixer in addition to the aforementioned part of the transmission signal.01-08-2015
20150061924SEMICONDUCTOR MODULE HAVING INTEGRATED ANTENNA STRUCTURES - A semiconductor module has: an integrated circuit, which includes at least one oscillator for generating a radar signal; a rewiring layer for the external connection of the integrated circuit; and at least two antenna structures integrated into the semiconductor module for transmitting and/or receiving radar signals, at least one of the at least two antenna structures being connected to the integrated circuit, and at least one first one of the antenna structures being embedded in a housing material of the semiconductor module outside a height region of the rewiring layer.03-05-2015
20150061925CIRCUIT FOR MILLIMETER WAVE SIGNALS - A circuit for millimeter wave signals, having a housing, mounted on a circuit board, that accommodates a high-frequency component, wherein the housing forms, on at least one housing wall facing away from the circuit board, a coupling structure for millimeter wave signals to which a hollow conductor is coupled outside the housing.03-05-2015
20150077287COMPARATOR OF MONO-PULSE RADAR AND SIGNAL GENERATION METHOD THEREOF - A comparator of a mono-pulse radar and a signal generation method thereof are provided. The comparator includes an antenna array, a TEM mode cavity power combiner and a switch device. The antenna array includes N antennas. The TEM mode cavity power combiner includes a combination port and M input port sets, and each of the input port sets has a positive input port and a negative input port, wherein N and M are integer greater than 1. The switch device is coupled between the antenna array and the TEM mode cavity power combiner and is used for transmitting the reflected signal received by the antenna array to the positive input port or the negative input port of one of the input port sets. The combination port of the TEM mode cavity power combiner generates an output signal according to the reflected signals received from the input port sets.03-19-2015
20150097720HIGH-FREQUENCY CIRCUIT HAVING CROSSED LINES - A high-frequency circuit is described as having lines crossing each other on a printed circuit board for high-frequency signals, wherein the sections of the lines, lying on both sides of a crossing point as well as a coupler forming the crossing point are situated in a common plane on the printed circuit board and the sections of the lines are connected to four ports of the coupler situated in a quadrangle, which are connected to one another via a plurality of coupling paths in such a way that the components of a signal supplied at a port, which propagate on various coupling paths, interfere destructively at the adjacent ports and constructively at the diagonally opposite port.04-09-2015
20150102958RADAR ANTENNA DEVICE AND METHOD FOR CONTROLLING ELECTRIC POWER SOURCE THEREOF - A radar antenna device is provided for rotating an antenna unit which successively emits transmission signals. It is configured to reduce the capacity of an electric power source for supplying electric power to a transmission circuit, a drive unit and the like. A radar antenna device is comprised with an antenna unit and a control unit. The antenna unit is driven by a drive unit to rotate and emits successively transmission signals generated by a transmission circuit into an outer space. After electric power is supplied to the drive unit to be driven, the control unit controls the transmission circuit in response to the transmission start signal from the transmission start signal producer so that the electric power for the transmission will be supplied to the transmission circuit.04-16-2015
20150123840RADAR APPARATUS - A transmission signal generating unit generates a transmission signal by multiplying one (selected in prescribed order) of 205-07-2015
20150130657HIGH SPEED, HIGH EFFICIENCY, HIGH POWER RF PULSE MODULATING INTEGRATED SWITCH - Embodiments of a drain modulator that uses high power switch sensing to control active pulldown are generally described herein. In some embodiments, a logic and sense module is arranged to receive a control signal for controlling an on and an off state of an input of a switch to turn a high power voltage at an output of the switch on and off. A pullup module and a pulldown module are coupled to the input of the switch. An active pulldown module coupled to the output of the switch. The logic and sense module monitors the input to the switch and activates the active pulldown module to drain the output of the switch to a zero voltage when the input of the switch transitions to the off state.05-14-2015
20150130658Methods and Apparatus for Signal Sideband Receiver/Transceiver for Phased Array Radar Antenna - Methods and apparatus for a receiver having a single sideband mixer with all pass networks to remove unwanted sidebands down conversion of signals. In exemplary embodiments, a single chip receive/transceiver can be used in phased array radars. Since the need for bulky off-chip switch filter banks is eliminated, the number of chips for phased array antenna elements can be increased.05-14-2015
20150130659PLANAR ANTENNA AND RADAR APPARATUS - The planar antenna has a dielectric substrate; an antenna main body portion including first and second antenna elements on first and second sides, respectively, of the dielectric substrate and functioning as a balanced antenna; a signal line portion including first and second feed lines on the first and second sides, respectively, and a coplanar line on the first side and formed by a signal line and the first ground conductors, the signal line connected to the first feed line; a second ground conductor on the second side and connected to the second feed line; and via holes connecting the first ground conductors to the second ground conductor provided at ends of edges of the first ground conductors facing the end of the signal line where the signal line connects to the first feed line, to allow the first and second feed lines to function as balanced transmission lines.05-14-2015
20150301163BROADBAND FREQUENCY DETECTOR - Provided is a broadband frequency detector, more particularly, to a frequency detector detecting all the signals for guiding the safe vehicle operation, and radar signals for determining vehicle speeds. The broadband frequency detector comprises: a horn antenna configured to receive signals having specific frequencies; a first amplifier configured to receive the signals having specific frequencies from the horn antenna; a mixer unit configured to receive signals from the first amplifier, wherein the signals are low noise amplified therein; and a second amplifier, arranged in parallel with the amplifier, for transferring signals to the mixer unit after low noise amplifying the signal received from the horn antenna, wherein the second amplifier includes a transistor.10-22-2015
20150316641Automotive Radar Transmitter Architecture - One embodiment of the present invention relates to a transmitter within a single integrated chip substrate, which is capable of continuous beam steering of a transmitted radar beam as well as an option to change the physical position of the origin of the transmit radar beam. The transmitter has a signal generator that generates an RF signal. The RF signal is provided to a plurality of independent transmission chains, which contain independently operated vector modulators configured to introduce an individual phase adjustment to the high frequency input signal to generate separate RF output signals. A control unit is configured to selectively activate a subset of (e.g., two or more) the independent transmission chains. By activating the subset of independent transmission chains to generate RF output signals with separate phases, a beam steering functionality is enabled. Furthermore, the subset defines a changeable position of the transmitted radar beam.11-05-2015
20150323652Radio-Frequency System - A radio-frequency (RF) system includes a substrate; a plurality of antenna strings, formed on a first plane of the substrate, each comprising a plurality of radiating units connected in a sequence, wherein the plurality of antenna strings are classified into a first group and a second group; a plurality of wires, formed on a second plane of the substrate, for transmitting RF signals; a plurality of connecting units, disposed in the substrate, for coupling the plurality of wires and antenna strings of the second group; a first RF processing module, for transmitting or receiving RF signals via antenna strings of the first group, and a second RF processing module, for coupling to the antenna strings of the second group through the plurality of wires and the plurality of connecting units, so as to transmit or receive RF signals via the antenna strings of the second group.11-12-2015
20150331086RADAR SYSTEM WITH IMPROVED MULTI-TARGET DISCRIMINATION - A includes a plurality of antennas and a controller. Each antenna is configured to detect a reflected radar signal reflected by an object in a field-of-view of the system. The controller is configured to receive an antenna signal from each antenna corresponding to the reflected radar signal detected by the antenna. The controller is also configured to determine a reflected signal profile of each antenna signal. The controller is also configured to determine a composite data set based on a combination of the reflected signal profiles. The controller is also configured to determine if the composite data set includes a composite data point characterized as greater than a composite threshold. The controller is also configured to determine if any of the reflected signal profiles indicate that the radar signal is reflected by more than one object.11-19-2015
20150331087Control Device - The invention relates to a control device which has a housing with a housing base and a housing cover In the housing, a circuit board with electronic components has been arranged in the housing, which, furthermore, has a plug connection element with a connector housing. The connector housing has been arranged on the housing base, and in the housing base an opening has been arranged, which is covered by the connector housing and penetrated by connection elements of the plug connection element. A pressure compensation element has been arranged in the connector housing.11-19-2015
20150333695VOLTAGE CONTROLLED OSCILLATOR - A voltage controlled oscillator (VCO) comprising a first supply node, a second supply node, an oscillation transistor, a biasing network, an output node and a feedback network is described. The VCO is be powered by a supply voltage applied across the first and second supply nodes. The oscillation transistor and the biasing network are connected in series between the first supply node and the second supply node. The output node is connected to the oscillation transistor so as to deliver an oscillatory output signal. The feedback network provides an oscillatory feedback signal from the output node to the biasing network. The feedback network comprises a capacitive element and a transmission line connected in series for transferring the feedback signal. The VCO may be integrated in a radar device, for example.11-19-2015
20150341064A RECEIVER CIRCUIT - A receiver circuit comprising first and second antennas; an input amplification stage comprising first and second input amplifier circuits for amplifying first and second signals received at the first and second antennas respectively; a switching stage comprising first and second transconductance components connected respectively to the first and second input amplifier circuits and to a common output, and a switching mechanism arranged to selectively turn on and off the first and second transconductance components so that only one of the first and second transconductance components is in an on state at any time, the first and second transconductance components further amplifying the first and second signals respectively when in an on state; and an output amplification stage connected to the common output of the switching stage and comprising an output amplifier circuit for further amplifying the first and second signals when they are outputted via the common output.11-26-2015
20150346322AUTOMOTIVE RADAR SUB-SYSTEM PACKAGING FOR ROBUSTNESS - An integrated circuit for processing transmitted and received signals is positioned on a first printed circuit board. A second printed circuit board is provided which has a plurality of antenna elements and at least one transmission line. The first printed circuit board is bonded to a first side of a metal housing and the second printed circuit board is bonded to a second side of the metal housing, so that the integrated circuit is sealed from environmental exposure between the first printed circuit board and the metal housing. A waveguide chamber is provided and is located between the first printed circuit board and the second printed circuit board. A signal is allowed to propagate from the integrated circuit to the metal trace to the square metal section to the waveguide chamber to the at leas one transmission line to the plurality of antenna elements.12-03-2015
20150364804RADIO FREQUENCY COUPLING STRUCTURE - A radio frequency coupling structure is arranged to couple a radio frequency signal between a first side of the radio frequency coupling structure to a second side of the radio frequency coupling structure opposite to the first side. The radio frequency coupling structure comprises a dielectric layer, a first electrically conductive layer comprising a first transition structure, a second electrically conductive layer comprising a second transition structure, and an integrated waveguide structure formed by an array of electrically conductive vias extending through the dielectric layer from the first to the second electrically conductive layer to enclose a portion of the dielectric layer. The portion is arranged to guide the radio frequency signal between the first transition structure and the second transition structure.12-17-2015
20150364829INTEGRATED CIRCUIT PACKAGE WITH RADIO FREQUENCY COUPLING ARRANGEMENT - An integrated circuit package comprises a dielectric material, a first stack comprising at least a first electrically isolating layer and a second electrically isolating layer arranged at a first side of the integrated circuit package, an electrically conductive material arranged on a second side opposed to the first side, and an integrated antenna structure for transmitting and/or receiving a radio frequency signal arranged between the first and second electrically isolating layers. The electrically conductive material is separated from the integrated antenna structure by at least the dielectric material and the first electrically isolating layer, arranged to partly overlap the integrated antenna structure and to reflect the radio frequency signal received by the electrically conductive material through at least the first electrically isolating layer and the dielectric material to the first side.12-17-2015
20150378006Radar Device - A radar device that transmits a high frequency signal and detects an object by a reflected wave that is reflected by the object includes a transmitting antenna that transmits the high frequency signal, a receiving antenna that receives a reflected wave that is transmitted by the transmitting antenna and reflected by the object, and a dummy antenna that attenuates a reflected wave that is reflected by a structure arranged on a transmission path of the high frequency signal. The dummy antenna is configured be selectable as an antenna having another function.12-31-2015
20150378007METHODS AND SYSTEMS FOR IMPROVING SIGNAL TO PHASE NOISE IN RADARS - Methods and systems that reduce the effect of phase noise in radar receivers. The received phase noise spectrum is modulated with periodic nulls due to the two way range delay function. The system and method include strategically positioning the nulls of the delay function to cancel portions of phase noise power spectral density, the portions of the power spectral density of the phase noise being selected so that effect of phase noise in radar sensitivity is reduced.12-31-2015
20160033621RADAR DEVICE, IN PARTICULAR FOR A MOTOR VEHICLE - A radar device, in particular for a motor vehicle, which includes a housing having a first housing part that defines a receiving space (02-04-2016
20160047893Beam Forming Network for Feeding Short Wall Slotted Waveguide Arrays - An example method for a beamforming network for feeding short wall slotted waveguide arrays. The beamforming network may include six beamforming network outputs, where each beamforming network output is coupled to one of a set of waveguide inputs. Further, the beamforming network may include a cascaded set of dividers configured to split electromagnetic energy from a beamforming network input to the six phase-adjustment sections. The cascade may include a first level of the cascade configured to split the electromagnetic energy from the beamforming network input into two first-level beamforming waveguides, a second level configured to split the electromagnetic energy from each of two first-level beamforming waveguides into two respective second-level beamforming waveguides, and a third level of the cascade configured to split the electromagnetic energy from one of two respective second-level beamforming waveguides into two respective third-level beamforming waveguides.02-18-2016
20160064792RADIO FREQUENCY COUPLING STRUCTURE AND A METHOD OF MANUFACTURING THEREOF - A radio frequency transmission structure couples a RF signal between a first and a second radiating elements arranged at a first and a second sides of a first dielectric substrate, respectively. The RF coupling structure comprises: a hole arranged through the first dielectric substrate, a first electrically conductive layer arranged on a first wall of the hole to electrically connect a first and a second signal terminals, a second electrically conductive layer arranged on a second wall of the hole opposite to the first wall to electrically connect a first and a second reference terminals. The first electrically conductive layer is separated from the second electrically conductive layer. The hole extends beyond the first wall away from the second wall.03-03-2016
20160091595RADAR SYSTEM AND METHOD FOR VIRTUAL ANTENNA SIGNALS - A radar system includes a radar antenna and a controller. The antenna includes a reference element, an alpha element spaced apart from the reference element by one half-wavelength of the reflected signal, and a beta element spaced apart from the reference element by an even number of half-wavelengths of the reflected signal. The controller is configured to determine an alpha phase difference between detected signals from the reference element and the alpha element, determine a beta phase difference between detected signals from the reference element and the beta element, and determine a first virtual phase difference that corresponds to the reflected signal expected to be detected by a first virtual element located halfway between the reference element and the beta element. The first virtual phase difference is based on the beta phase difference divided by two.03-31-2016
20160091597RADAR APPARATUS - A radar apparatus of the present invention includes: an antenna member including first-type and second-type horns different in distance from base portions to apertures of the horns; a feed unit including a plurality of waveguides each having one end connected to the respective base portions of the first-type horns and second-type horns; a radio frequency circuit; an information-processing circuit; and a signal line.03-31-2016
20160093956RADAR APPARATUS - A radar apparatus of the present invention includes an antenna member capable of emitting or receiving microwaves; a feed unit including a plurality of waveguides each having one end connected to a base portion of the antenna member; a radio frequency circuit in contact with the feed unit; an information-processing circuit; a signal line connecting the radio frequency circuit and the information-processing circuit; and a common board equipped with the radio frequency circuit and the information-processing circuit. Since planar positions of the information-processing circuit and the radio frequency circuit on the common board do not overlap with each other, it is possible to downsize the radar apparatus. The common board includes a closed foil made of conductive material and surrounding the radio frequency circuit, and the closed foil made of conductive material is grounded.03-31-2016
20160103205RADAR DEVICE, RADAR TRANSMISSION METHOD, AND TRANSMISSION TIMING CONTROL METHOD - There is provided a radar device with which the density of transmitted signals can be made uniform in relation to orientation even if the rotation rate of an antenna fluctuates, and interference removal processing can be given a simpler configuration. A radar device that transmits and receives signals while rotating an antenna comprises a motor, a transmission pulse generator, and a transmitter. The motor rotates the antenna (antenna main body). The transmission pulse generator generates transmission timing pulses for transmission signals from the antenna based on the rotational angle of the antenna main body. The transmitter transmits transmission signals via the antenna according to the transmission timing pulses generated by the transmission pulse generator.04-14-2016
20160131738Multi-Functional Radar Assembly - A radar assembly for transmitting and/or receiving at least one radar beam, includes an antenna assembly, which in turn includes a transmitting antenna device having a number of transmitting antenna elements. A control device generates control signals for the transmitting antenna elements. The antenna assembly also includes a first receiving antenna device having a plurality of receiving antenna elements. The transmitting antenna device includes a first antenna segment and a second antenna segment, the segments being arranged at a distance from one another and each having a plurality of transmitting antenna elements arranged along a rectilinear path.05-12-2016
20160141748ANTENNA DEVICE USING EBG STRUCTURE, WIRELESS COMMUNICATION DEVICE, AND RADAR DEVICE - An antenna device comprises a dielectric substrate that has first and second surfaces; first and second antenna elements that are arranged on the first surface of the dielectric substrate; a ground conductor that is arranged on the second surface of the dielectric substrate; and an electromagnetic band gap structure that is arranged between the first and second antenna elements on the dielectric substrate. The electromagnetic band gap structure comprises: a plurality of patch conductors that are arranged on the first surface of the dielectric substrate and are electromagnetically coupled with the ground conductor; and at least one opening that is arranged in the ground conductor to expose the dielectric substrate, and causes the electromagnetic coupling between the plurality of patch conductors and the ground conductor to change.05-19-2016
20160146932Method and Apparatus for Increasing Angular Resolution in an Automotive Radar System - Described herein is an automotive radar system which utilizes a three channel switched antenna to improve the angular resolution of an azimuth tracking two-channel, radar.05-26-2016
20160154092INTEGRATED CIRCUIT FOR SATURATION DETECTION, WIRELESS DEVICE AND METHOD OF DETECTING SATURATION06-02-2016
20160170009MULTICODE TRANSMITTER06-16-2016
20160178730RF System with an RFIC and Antenna System06-23-2016
20160187462Multiple Chirp Generation in a Radar System - A radar device is provided that includes a timing control component operable to generate, for each chirp of a sequence of chirps according to a set of chirp configuration parameters and a chirp profile for the chirp, chirp control signals to cause the radar device to transmit the chirp, the timing control component having chirp configuration parameter inputs, chirp profile parameter inputs, a chirp address output, and chirp control signal outputs, a chirp configuration storage component having chirp configuration parameter outputs coupled to corresponding inputs of the configuration parameter inputs of the timing control component, a chirp profile address output, and a chirp address input coupled to the chirp address output, and a chirp profile storage component having chirp profile parameter outputs coupled to the chirp profile parameter inputs of the timing control component; and a chirp profile address input coupled to the chirp profile address output.06-30-2016
20160197399RADAR APPARATUS FOR A SHIP07-07-2016
20180024227SIGNAL PROCESSING DEVICE, SIGNAL PROCESSING METHOD, RECORDING MEDIUM, TARGET DETECTION DEVICE, AND TARGET DETECTION METHOD01-25-2018
20180027647INTERCONNECTION BETWEEN PRINTED CIRCUIT BOARDS01-25-2018
20190146058DEVICE AND METHOD FOR PROCESSING RADAR SIGNALS05-16-2019
20220137182MULTIPLE CHIRP GENERATION IN A RADAR SYSTEM - A radar device is provided that includes a timing control component operable to generate, for each chirp of a sequence of chirps according to a set of chirp configuration parameters and a chirp profile for the chirp, chirp control signals to cause the radar device to transmit the chirp, the timing control component having chirp configuration parameter inputs, chirp profile parameter inputs, a chirp address output, and chirp control signal outputs, a chirp configuration storage component having chirp configuration parameter outputs coupled to corresponding inputs of the configuration parameter inputs of the timing control component, a chirp profile address output, and a chirp address input coupled to the chirp address output, and a chirp profile storage component having chirp profile parameter outputs coupled to the chirp profile parameter inputs of the timing control component; and a chirp profile address input coupled to the chirp profile address output.05-05-2022

Patent applications in class WITH PARTICULAR CIRCUIT

Patent applications in all subclasses WITH PARTICULAR CIRCUIT

Website © 2025 Advameg, Inc.