Class / Patent application number | Description | Number of patent applications / Date published |
342202000 | For pulse modulation | 23 |
20100134347 | RADAR SYSTEM - To provide a smaller radar system having a simple structure with as small number of component parts as possible at a lower cost as compared to conventional ones. A radar system | 06-03-2010 |
20100164784 | Surveillance Apparatus and Method - A surveillance apparatus ( | 07-01-2010 |
20100214159 | Transmitter apparatus for transmitting RF pulse signal, transmitter/receiver apparatus incorporating the transmitter apparatus, and receiver apparatus for receiving RF pulse signal - A transmitter apparatus generates a RF pulse signal having alternating high-amplitude pulse-on intervals and low-amplitude pulse-off intervals, and supplies the RF pulse signal as respective individual transmission signals of antenna elements of an array antenna, with the individual transmission signals having a phase distribution during each pulse-on interval whereby a beam is transmitted from the antenna in a predetermined transmission direction. During each pulse-off interval, a different phase distribution is established for the individual transmission signals, thereby reducing the level of noise radiated in the transmission direction during each pulse-off interval. | 08-26-2010 |
20100245162 | AGILE BEAM PULSE TO PULSE INTERLEAVED RADAR MODES - A system and method for concurrently operating a plurality of agile beam radar modes by pulse-to-pulse interleaving groups of the radar modes. Radar modes are grouped, each radar mode being allocated a certain amount of time for operation and a suitable pulse repetition frequency to improve or optimize the duty cycle of the antenna while concurrently operating the plurality of modes. Priorities may be assigned to groups or to individual radar modes within each group. In some embodiments, TDM communications are further interleaved within the radar modes to enhance the operation of the radar antenna. | 09-30-2010 |
20110001661 | METHOD OF DETECTING TARGET OBJECT AND TARGET OBJECT DETECTION DEVICE - This disclosure provides a target object detection device for detecting different detection areas by different pulse-shaped signals and synthesizing detected information to detect an area from an antenna position to a given distance. The device includes a transmission module for transmitting at least two or more different pulse-shaped transmission signals at predetermined timings, a reception module for receiving a reflection signal of each of the transmitted pulse-shaped transmission signals to generate a reception signal, a saturation detection module for comparing a level of each of the reception signals with a predetermined threshold to detect saturation of the reception signal, and an image forming module for forming a detection image based on the reception signals. The transmission module generates an alternative pulse-shaped signal that is different from the transmitted pulse-shaped transmission signal when the saturation detection module detects the saturation of the reception signal. The image forming module replaces the saturated reception signal with a reception signal obtained by using the alternative pulse-shaped signal to form the detection image. | 01-06-2011 |
20110187587 | RECEIVER TEST CIRCUITS, SYSTEMS AND METHODS - Embodiments relate to apparatuses, systems and methods for testing high-frequency receivers. In an embodiment, a method includes integrating a pulse train generator and a receiver in an integrated circuit; generating a pulse train by the pulse train generator and applying the pulse train to an input of the receiver; measuring at least one property of the pulse train; and determining at least one characteristic of the receiver using the at least one property of the pulse train. In an embodiment, an integrated circuit includes a receiver, and a pulse train generator configured to generate a pulse train and apply the pulse train to an input of the receiver, wherein at least one characteristic of the receiver can be determined using at least one measured property of the pulse train. | 08-04-2011 |
20130135141 | PRESCRIBED MODULUS CHIRP-LIKE WAVEFORMS WITH MULTIPLE FREQUENCY NOTCHES - An iterative method for modifying an initial time signal to form a created signal having a prescribed envelope, and frequency notches at prescribed frequency values, wherein the created signal closely resembles the initial time signal, the envelope of the created time signal is the prescribed envelope, and the Fourier magnitude of the created time signal at the prescribed frequency values is nearly zero. The created time signal may be a real-valued signal as well as a complex-valued time signal which closely resembles an arbitrary initial time signal, including initial time signals which are standard transmit signals for radar systems, and which have Fourier transform magnitudes with notches and stop-bands at prescribed frequency values. These notches and stop bands are created by enforcing nulls of prescribed order at the prescribed frequency values within the modified time signal. | 05-30-2013 |
20130147658 | CREATING AND PROCESSING UNIVERSAL RADAR WAVEFORMS - A new approach to radar imaging is described herein, in which radar pulses are transmitted with an uneven sampling scheme and subsequently processed with novel algorithms to produce images of equivalent resolution and quality as standard images produced using standard synthetic aperture radar (SAR) waveforms and processing techniques. The radar data collected with these waveforms can be used to create many other useful products such as moving target indication (MTI) and high resolution terrain information (HRTI). The waveform and the correction algorithms described herein allow the algorithms of these other radar products to take advantage of the quality Doppler resolution. | 06-13-2013 |
20130176166 | RADAR DEVICE - A first sector radar generates signals which are obtained by modulating a first code sequence at a first transmission cycle, obtained by modulating a second code sequence at a second transmission cycle, obtained by modulating the first code sequence at a third transmission cycle, and obtained by modulating the second code sequence at a fourth transmission cycle respectively. A second sector radar generates signals which are obtained by modulating the second code sequence at the first transmission cycle, obtained by modulating, at the second transmission cycle, a third code sequence having the opposite polarity to the first code sequence, obtained by modulating, at the third transmission cycle, a fourth code sequence having the opposite polarity to the second code sequence, and obtained by modulating the first code sequence at the fourth transmission cycle respectively. | 07-11-2013 |
20130214966 | AVALANCHE PULSER - Circuits and methods for generating a pulse are provided. The generating can comprise receiving at least one trigger input signal with a pulse generating circuit; generating a voltage pulse having a duration less than the avalanche time of a transistor in response to at least a portion of the at least one trigger input signal with the pulse generating circuit; transmitting the voltage pulse from the pulse generating circuit to a terminal of the transistor, the transistor constructed and arranged to be operable in an avalanche mode; and outputting an avalanche pulse from at least one terminal of the transistor in response to the voltage pulse. In some embodiments, the pulse can be transmitted with an antenna in a radar system, and a return pulse can be received and processed. | 08-22-2013 |
20130278458 | BASEBAND AMPLIFIER UNIT AND PULSE RADAR DEVICE - Provided is a pulse radar device which can attenuate an interference signal and significantly amplify a reflected wave without saturating the interference signal. A baseband amplifier unit ( | 10-24-2013 |
20130342387 | METHOD FOR SEPARATING TRANSMITTED SIGNALS IN A RADAR SYSTEM - The present invention relates to a method for separating transmitted signals in radar systems and an associated radar system. In the method, the signals for transmission are shared among multiple subcarriers by means of OFDM, which subcarriers are assigned to the transmitting antennas according to a distribution scheme. In this distribution scheme, each subcarrier is assigned to one transmitting antennas only. The subcarriers assigned to a given transmitting antenna are spread over the entire signal bandwidth. In this way, very high dynamics may be achieved while retaining complete orthogonality of the signal paths. | 12-26-2013 |
20130342388 | APPARATUS AND METHOD FOR DETECTING TARGET OBJECT - A target object detection apparatus is provided. The apparatus includes a transmitter, a receiver, a threshold determiner, a parameter setter, a parameter selector, and a timing controller. The transmitter repeatedly transmits a transmission pulse at a transmission timing. The receiver receives a reception signal at a reception timing set based on the transmission timing. The threshold determiner determines whether an amplitude value of the reception signal exceeds a predetermined threshold at every sampling point and counts the number of sampling points at which the amplitude value of the reception signal exceeds the threshold. The parameter setter sets a plurality of different parameters for controlling the transmission timing. The parameter selector selects the parameter from the parameter settings, to minimize the number of sampling points counted by the threshold determiner. The timing controller controls the transmission timing, based on the parameter selected by the parameter selector. | 12-26-2013 |
20140197984 | VIRTUAL ANTENNA EXTENSION FOR SAMPLED APERTURE ARRAYS - A high frequency surface wave radar (HFSWR) system with improved performance. Two or more transmitters including separate transmitting antennas ( | 07-17-2014 |
20140313071 | SYSTEM AND METHOD FOR NONLINEAR RADAR - A non-linear radar is disclosed that is able to detect non-linear target responses that are below the harmonic-noise floor of the radar. To accomplish this below-the-noise-floor sensitivity feature the proposal specifically addresses all of the problems commonly faced by non-linear radar such as linearity of the transmitter path, receiver path, and size, weight, and power, and cost (SWaP-C). The radar operates in both standard and nonlinear modes with signal processing that allows display of nonlinear alone, linear alone, or both types of backscatter. Different combinations of six methodologies allow customization to fit different application needs, from low-cost modest performance, to higher cost and extremely high performance. | 10-23-2014 |
20160036135 | ANTENNA ARRAY HAVING A VARIABLE DIRECTIVITY CHARACTERISTIC - An antenna array includes a first patch antenna and a second patch antenna which are oriented mutually in parallel. Each patch antenna includes a linear array of radiation elements. Adjacent radiation elements within each patch antenna are equidistantly spaced apart and are interconnected. In addition, a connecting line between adjacent first ends of the two patch antennas is provided, and the two second ends of the patch antennas are each adapted for transfer of an electrical oscillation. The spacings between the adjacent radiation elements of the first patch antenna are greater than the spacings between the adjacent radiation elements of the second patch antenna. | 02-04-2016 |
342203000 | With noise reduction | 2 |
20090278731 | RFI SUPPRESSION IN SAR - A filter scheme for broadcast interference cancellation that is computationally efficient and numerically robust Airborne Low Frequency Synthetic Aperture Radar (SAR) operating in the VHF and UHF bands has been shown. At least interference Doppler filtering or interference cancellation is utilized. The interference cancellation involves prediction of the interference for each particular reception interval of mixed interference and radar ground response. This prediction is then coherently subtracted from the incoming signal. | 11-12-2009 |
20100026564 | HETERODYNE TRANSCEIVER SYSTEMS AND METHODS - One embodiment relates to a transceiver. The transceiver includes first and second phase-locked loops. The first phase-locked loop is adapted to receive a reference signal and output a transmission signal based on the reference signal. The second phase-locked loop is adapted to receive the reference signal and output a local oscillator (LO) signal based on the reference signal. The frequency of the LO signal is shifted relative to the frequency of the transmission signal. Other methods and systems are also disclosed. | 02-04-2010 |
342204000 | With pulse shaping | 5 |
20080246650 | Short Range Radar and Method of Controlling the Same - A pair pulse generator generates one pair of pulses including a first pulse having a predetermined width and a second pulse having a width equal to that of the first pulse and being behind from the first pulse by preset time each time a transmission designation signal is received. A burst oscillator performs an oscillation operation in a period in which one pair of pulses are input to output a signal having a predetermined carrier frequency as a first burst wave in synchronism with the first pulse and also output the signal of the predetermined carrier frequency as a second burst wave in synchronism with the second pulse, and stops the oscillation operation in a period in which one pair of pulses are not input. A transmitting unit emits the first burst wave into an exploration target space as a short pulse wave. A receiving unit receives a reflected wave and detects the second burst wave as a local signal. A control unit variably controls an interval between the first pulse and the second pulse. | 10-09-2008 |
20090102703 | SCANNING ULTRA WIDEBAND IMPULSE RADAR - In one embodiment, an ultra wide band (UWB) radar includes: a substrate; a plurality of antennas adjacent the substrate, the plurality of antennas being arranged into a plurality of sub-arrays; an RF feed network adjacent the substrate, the RF feed network coupling to a distributed plurality of amplifiers integrated with the substrate, wherein the RF feed network and the distributed plurality of amplifiers are configured to form a resonant network such that if a timing signal is injected into an input port of the RF feed network, the resonant network oscillates to provide a globally-synchronized RF signal across the network; a plurality of pulse-shaping circuits corresponding to the plurality of sub-arrays, each pulse-shaping circuit being configured to receive the globally-synchronized RF signal from the network and process the globally-synchronized RF signal into pulses for transmission through the corresponding sub-array of antennas; and an actuator for mechanically scanning the UWB radar so that the pulses transmitted by the antennas scan across a desired area. | 04-23-2009 |
20090212998 | Object Detection - An object is detected by generating a m-ary primary signal having an irregular sequence of states. Each transition results in the transmission of a pulse encoded according to the type of transition. Reflected pulses are processed with a delayed, reference version of the primary signal. The presence of an object at a range corresponding to the delay is determined from the extent to which the reflected pulses coincide with transitions in the reference signal. In one aspect, transitions between states of the primary signal occur at varying time offsets with respect to nominal regular clock pulses. In another aspect, the object-detection system is operated while inhibiting the transmission of pulses, and if a significant output is obtained, the parameters of the transmitted signal are altered. | 08-27-2009 |
20090256739 | Short range radar small in size and low in power consumption and controlling method thereof - A transmitter section radiates a short range wave to a space. A receiver section has a detector circuit composed of a branch circuit which receives a reflection wave of the short range wave radiated to the space by means of the transmitter section and branches in phase a signal of the reflection wave into first and second signals, a linear multiplier which linearly multiplies the first and second signals branched in phase by means of the branch circuit, and a low pass filter which samples a baseband component from an output signal from the linear multiplier. A signal processor section carries out an analyzing process of an object which exists in the space based on an output from the receiver section. A control section makes a predetermined control with respect to at least one of the transmitter section and the receiver section based on an analysis result from the signal processor section. | 10-15-2009 |
20090256740 | Short-range radar and control method thereof - A transmitting unit of a short-range radar includes a first pulse generating unit, a second pulse generating unit, an oscillator and a switch, and while complying with the spectrum mask specified for a UWB short-range radar, emits a predetermined short pulse wave not interfering with the RR prohibited band or the SRD band into the space. The first pulse generating unit outputs a first pulse having the width larger than the width of the short pulse wave in a predetermined period. The second pulse generating unit outputs a second pulse having the width corresponding to the width of the short pulse wave during the period when the first pulse generating unit outputs the first pulse. The oscillator oscillates only during the period when the first pulse generating unit outputs the first pulse, and the switch is turned on and passes the output signal from the oscillator only during the period when the second pulse generating unit outputs the second pulse, thereby to emit the output signal from the switch into the space as the predetermined short pulse wave. | 10-15-2009 |