Class / Patent application number | Description | Number of patent applications / Date published |
333200000 | Reed- or fork-type resonators | 9 |
20090160581 | Temperature Stable MEMS Resonator - One embodiment of the present invention sets forth a method for decreasing a temperature coefficient of frequency (TCF) of a MEMS resonator. The method comprises lithographically defining slots in the MEMS resonator beams and filling the slots with oxide. By growing oxide within the slots, the amount of oxide growth on the outside surfaces of the MEMS resonator may be reduced. Furthermore, by situating the slots in the areas of large flexural stresses, the contribution of the embedded oxide to the overall TCF of the MEMS resonator is increased, and the total amount of oxide needed to decrease the overall TCF of the MEMS resonator to a particular target value is reduced. As a result, the TCF of the MEMS resonator may be reduced in a manner that is more effective relative to prior art approaches. | 06-25-2009 |
20090195330 | VIBRATOR, RESONATOR USING THE SAME AND ELECTROMECHANICAL FILTER USING THE SAME - An object is to provide a resonator and a vibrator with a high Q value in which dissipation of vibration energy in vibration of the vibrator is small, and a thickness of a support part of the vibrator of a beam structure is made thicker than a thickness of the vibrator and the support part is formed in axisymmetry with respect to a length direction of a beam. By this configuration, brittleness of the support part is improved and loss of vibration energy from the support part is reduced and also loss of vibration energy resulting from surface roughness of a surface of the vibrator can be reduced, so that a resonator having a high Q value can be provided. | 08-06-2009 |
20090261923 | Electronic apparatus - A quartz crystal unit has a quartz crystal tuning fork resonator that is capable of vibrating in a flexural mode and that has a quartz crystal tuning fork base, and first and second quartz crystal tuning fork tines. The quartz crystal tuning fork resonator is mounted on a mounting portion of the case after which the oscillation frequency of the quartz crystal tuning fork resonator is adjusted. The quartz crystal unit comprising the quartz crystal tuning fork resonator has a series resistance R | 10-22-2009 |
20100207709 | TUNING-FORK TYPE CRYSTAL RESONATOR AND METHOD OF FREQUENCY ADJUSTMENT THEREOF - The invention relates to a tuning-fork type crystal resonator in which the frequency adjustment accuracy is increased, and a frequency adjustment method thereof. In a tuning-fork type crystal resonator having a tuning-fork shaped piece of quartz crystal in which a pair of tuning fork arms extend from a tuning fork base, and a frequency adjustment method thereof, there is provided a first frequency adjustment step for adjusting an oscillation frequency by forming inclined surfaces spanning from outer peripheral surfaces surrounding the pair of tuning fork arms toward distal end surfaces, by using a femtosecond laser irradiated in a direction from the outer peripheral surfaces toward the distal end surfaces, or in a direction from the distal end surfaces toward the outer peripheral surfaces. | 08-19-2010 |
20110001582 | MICRO-ELECTROMECHANICAL DEVICE AND METHOD FOR FABRICATING THE SAME - A micro-electromechanical device of the present invention includes a resonator and an electrode facing each other, a pair of thermal oxide film formed on the surfaces of the resonator and electrode facing each other and a narrow gap provided between the thermal oxide films. A process for fabricating a micro-electromechanical device includes a step of processing an Si layer to be the resonator and the electrode by using photolithography and etching to form a groove to be a gap, and a step of performing thermal oxidation on the Si layer to form a pair of thermal oxide films of Si on the opposite surfaces of the groove. | 01-06-2011 |
20110084781 | Method For Temperature Compensation In MEMS Resonators With Isolated Regions Of Distinct Material - MEMS resonators containing a first material and a second material to tailor the resonator's temperature coefficient of frequency (TCF). The first material has a different Young's modulus temperature coefficient than the second material. In one embodiment, the first material has a negative Young's modulus temperature coefficient and the second material has a positive Young's modulus temperature coefficient. In one such embodiment, the first material is a semiconductor and the second material is a dielectric. In a further embodiment, the quantity and location of the second material in the resonator is tailored to meet the resonator TCF specifications for a particular application. In an embodiment, the second material is isolated to a region of the resonator proximate to a point of maximum stress within the resonator. In a particular embodiment, the resonator includes a first material with a trench containing the second material. | 04-14-2011 |
20110204999 | FRAME-SHAPED MEMS PIEZORESISTIVE RESONATOR - A novel Si MEMS piezoresistive resonator is described. The resonator has a shape of a frame, such as a ring or a polygon frame, which has two or more anchors. Electrodes located at the outer or inner rim of the resonant structure are used to excite the structure electrostatically into resonance with a desired mode shape. One or plurality of locally doped regions on the structure is used for piezoresistive readout of the signal. In the most preferred embodiments, the structure is a ring, which has four anchors, two electrodes and four piezoresistive regions at different segments of the structure. The piezoresistive regions are alternatively located at the outer rim and inner rim of the structure in such a way that the piezoresistive signals of the same sign from different regions can be collected. Advantages of this device are large readout signal, large electrode area, robustness, suppressed out-of-plane vibration and larger usable linear range. | 08-25-2011 |
20110227672 | RESONATOR ELEMENT, RESONATOR, OSCILLATOR, AND ELECTRONIC DEVICE - A resonator element includes a base portion in which a pair of notches is formed, a pair of resonating arms which is extended in parallel from one end side of a first portion of the base portion. The resonating arm is provided with a bottomed elongated groove which has an opening along at least one principal surface of both principal surfaces and a weight portion which is formed at the tip end side of the resonating arm on the opposite side of a root of the resonating arm attached to the base portion and which has a larger width than on the root side. The weight portion is formed so that the proportion of the length of the weight portion to the length from the root to the tip end side in a longitudinal direction of the resonating arm is within a range of 35% to 41%. | 09-22-2011 |
20110260810 | OUT-OF-PLANE MEMS RESONATOR WITH STATIC OUT-OF-PLANE DEFLECTION - A microelectromechanical systems (MEMS) device includes a tuning electrode, a drive electrode, and a resonator. The resonator is anchored to a substrate and is configured to resonate in response to a signal on the drive electrode. The MEMS device includes a tuning plate coupled to the resonator and positioned above the tuning electrode. The tuning plate is configured to adjust a resonant frequency of the resonator in response to a voltage difference between the resonator and the tuning electrode. In at least one embodiment of the MEMS device, the tuning plate and the tuning electrode are configured to adjust the resonant frequency of the resonator substantially independent of the signal on the drive electrode. | 10-27-2011 |