Entries |
Document | Title | Date |
20080204167 | METHOD FOR MANUFACTURING SURFACE ACOUSTIC WAVE DEVICE AND SURFACE ACOUSTIC WAVE DEVICE - A method for manufacturing a surface acoustic wave device includes the steps of forming an IDT electrode, a first wiring pattern, and a third wiring pattern on a piezoelectric substrate, forming an insulating film covering the IDT electrode and the wiring patterns, forming a photosensitive resin film, obtaining the photosensitive resin film, and forming a second wiring pattern on an insulating layer composed of the insulating film and the photosensitive resin film laminated on the insulating film so that the second wiring pattern three-dimensionally crosses the first wiring pattern. | 08-28-2008 |
20080211602 | High-Frequency Acoustic Wave Device - An acoustic wave device comprising a piezoelectric layer on an omnidirectional acoustic mirror and excitation and/or reception means on a surface of said piezoelectric layer, capable of exciting waves in a band gap of the acoustic mirror. | 09-04-2008 |
20080224799 | SAW FILTER DEVICE - A SAW filter device includes a SAW filter chip in which one-port surface acoustic wave resonators each including an IDT made of Al or an Al alloy, are provided on a θ-rotated Y-cut X-propagation LiNbO | 09-18-2008 |
20080258843 | Surface acoustic wave passband control - An apparatus in one example comprises a piezoelectric layer, an input transducer, an output transducer, and at least one electrode set. The input transducer is configured to convert an input signal from an input source to a surface acoustic wave and send the surface acoustic wave from an input portion of the piezoelectric layer to an output portion of the piezoelectric layer. The input transducer comprises a set of input passbands. The output transducer is configured to receive the surface acoustic wave from the output portion of the piezoelectric layer. The output transducer comprises a set of output passbands. The at least one electrode set is configured to apply at least one voltage bias to at least one portion of the piezoelectric layer to create an electric field that controls an acoustic velocity of the surface acoustic wave through the at least one portion of the piezoelectric layer. The at least one electrode set is configured to control one or more of the set of input passbands and the set of output passbands by adjustment of the at least one voltage bias. | 10-23-2008 |
20080258844 | METHOD FOR MANUFACTURING SURFACE ACOUSTIC WAVE DEVICE AND SURFACE ACOUSTIC WAVE DEVICE - A method for manufacturing a surface acoustic wave filter device includes a step of forming grooves in one principal surface of a piezoelectric substrate, a step of embedding a metallic film in the grooves to form IDT electrodes, a step of performing a process of removing a portion of the piezoelectric substrate from the one principal surface of the piezoelectric substrate, thereby forming a recessed portion including the bottom surface in which the IDT electrodes are embedded, and a step of bonding a cover member to the piezoelectric substrate. | 10-23-2008 |
20080272858 | Surface Acoustic Wave Device - A surface acoustic wave device having a three-layered structure of sealing resin for sealing a mounting substrate and a surface acoustic wave element in which the elastic modulus of resin of the intermediate layer is higher than that of resin of the outermost layer and the elastic modulus of resin of the innermost layer is lower than that of resin of the outermost layer. The three-layered structure of the sealing resin suppresses crush of a bump when a pressure is applied from the outside and reduces stress applied to the bump due to the change in temperature. | 11-06-2008 |
20080290968 | BOUNDARY ACOUSTIC WAVE DEVICE AND METHOD FOR MANUFACTURING THE SAME - A boundary acoustic wave device includes a first medium, a second medium, and an IDT electrode disposed at an interface between the first medium and the second medium, the IDT electrode having an Au layer defining a main electrode layer, wherein a Ni layer is laminated so as to contact at least one surface of the Au layer, and a portion of Ni defining the Ni layer is diffused from the Ni layer side surface of the Au layer toward the inside of the Au layer. | 11-27-2008 |
20080309433 | Elastic Wave Filter and Communication Device Equipped With the Elastic Wave Filter - An elastic wave filter includes two longitudinally coupled resonator type elastic wave filter elements that are cascade connected with each other, each longitudinally coupled resonator type elastic wave filter element including three IDTs (interdigital transducers) arranged on a piezoelectric substrate in a transmitting direction of an elastic wave. In at least one of the longitudinally coupled resonator type elastic wave filter elements, electrode fingers of the IDTs that are cascade connected are arranged at a pitch that is smaller than a pitch of electrode fingers of the remaining IDT. The adverse effect of a parasitic capacitance in cascade connected wires disposed between the longitudinally coupled resonator type elastic wave filter elements is reduced so as to improve impedance matching of a cascade connected portion and to improve the VSWR characteristics of input-output terminals of the elastic wave filter. | 12-18-2008 |
20080315972 | Acoustic Wave Transducer and Filter Comprising Said Transducer - A transducer includes an acoustic track in which an acoustic wave can be propagated, the acoustic track having a transversal fundamental mode, the acoustic track being subdivided in a transversal direction into an excitation area and two peripheral areas. The transducer also includes a first outside area and a second outside area bordering the acoustic track such that the acoustic track is arranged in the transversal direction between the first and second outside area. The transducer also includes peripheral areas configured such that the longitudinal phase velocity v | 12-25-2008 |
20090002099 | Elastic Wave Device - In an elastic wave device including an input side electrode and an output side electrode being a resonant single-phase unidirectional transducers (RSPUDT) provided with respective pairs of bus bars opposing to each other on a piezoelectric substrate and a number of excitation electrode fingers extending in a comb-teeth shape so as to respectively cross each other from the respective bus bars, the elastic waves are repeatedly reflected and amplified between the central part of the input side electrode and the central part of the output side electrode along the direction of extension of the respective bus bars by the excitation electrode fingers of the input side electrode and the output side excitation electrode, the elastic wave device includes a damper at least on either one of the input side bus bar or the output side bus bar in an area between the central part of the input side electrode in the direction of movement of the elastic waves and the central part of the output side electrode in the direction of movement of the elastic waves so that the energy leaked out into the bus bar is absorbed. | 01-01-2009 |
20090072926 | Saw filter frequency characteristic control - An apparatus in one example comprises an insulating piezoelectric layer, a base electrode along a first side of the insulating piezoelectric layer, and at least one gradient electrode along a second side of the insulating piezoelectric layer. The at least one gradient electrode is configured to provide a voltage gradient across an aperture of a surface acoustic wave (SAW) filter. The base electrode and the at least one gradient electrode are configured to provide a voltage bias across the insulating piezoelectric layer. The voltage bias comprises a gradient based on the voltage gradient across the aperture of the SAW filter. The base electrode and the at least one gradient electrode are configured to control at least one frequency characteristic of the SAW filter based on the voltage bias across the insulating piezoelectric layer. | 03-19-2009 |
20090085692 | Elastic wave filter - In an elastic wave filter in which an IDT is configured in a tapered shape, an object of the present invention is to provide a technology capable of suppressing deterioration of attenuation characteristics due to refraction and the like of the elastic wave and also suppressing loss. Then, an input side area adjacent to an input side tapered IDT electrode of this short grating electrode and an output side area close to an output side tapered IDT electrode are made patterns continuous (as if extended) from the input side tapered IDT electrode and the output side tapered IDT electrode respectively. The areas between the input side tapered IDT electrode, the output side tapered IDT electrode and the short grating electrode are set in a manner that the cycle unit λ which is a repeating unit of the electrode fingers is continued without breaking. | 04-02-2009 |
20090096551 | SURFACE ACOUSTIC WAVE ELEMENT, SURFACE ACOUSTIC WAVE APPARATUS, AND COMMUNICATION APPARATUS - The invention provides a surface acoustic wave element having improved heat dissipation and power durability. These characteristics are achieved by configuring the SAW such that either of an input or ground electrode is disposed between serial arm portions of the SAW comprising resonators. | 04-16-2009 |
20090153269 | ACOUSTIC WAVE FILTER - An acoustic wave filter includes: a first acoustic wave filter having a first group of multimode filters connected, a first unbalanced input node and two first balanced output nodes, a first multimode filter among the first group of multimode filters being connected to the two first balanced output nodes; and a second acoustic wave filter having a second group of multimode filters, a second unbalanced input node and two second balanced output nodes, a second multimode filter among the second group of multimode filters having an aperture length different from that of the first multimode filter and a connection with the two second balanced output nodes, the first and second multimode filters having different pass bands. One of the two first balanced output nodes and one of the two second balanced output nodes are unified, and the other first balanced output node and the other second balanced output node are unified. | 06-18-2009 |
20090167462 | Band Pass Filter - A band pass filter includes partial filters, each of which has a pass band. Pass bands of different ones of the partial filters have center frequencies that are different. A partial filter with a lowest center frequency has a pass band with a first low-frequency edge and a first high-frequency edge. The first low-frequency edge is steeper than first high-frequency edge. A partial filter with a highest center frequency has a pass band with a second low-frequency edge and a second high-frequency edge. The second high-frequency edge is steeper than the second low-frequency edge. | 07-02-2009 |
20090201102 | BOUNDARY ACOUSTIC WAVE ELEMENT, BOUNDARY ACOUSTIC WAVE DEVICE, AND MANUFACTURING METHODS FOR THE SAME - A boundary acoustic wave element includes an IDT electrode arranged at the interface between a piezoelectric substance and a dielectric layer, a heat dissipation film is arranged on the outer side surface of the dielectric layer or on the outer side surface of a sound-absorbing film laminated on the outer side of the dielectric layer, the heat dissipation film is arranged to have a portion that overlaps the IDT electrode in plan view, and the heat dissipation film is connected to a bump provided on the outer side surface of the sound-absorbing film, and is connected to a via-hole conductor that extends through the sound-absorbing film. The boundary acoustic wave element and a boundary acoustic wave device are excellent in a heat dissipation property and hence can provide enhanced electric power resistance, without causing an increase in chip size and an increase in the area of the mounting space. | 08-13-2009 |
20090201103 | SURFACE ACOUSTIC WAVE FILTER DEVICE - A first and a second longitudinally coupled resonator-type surface acoustic wave filter are disposed on a piezoelectric substrate. One end of a first IDT arranged at the middle of the first longitudinally coupled resonator-type surface acoustic wave filter is connected to a first unbalanced terminal, and one end of a first IDT arranged at the middle of the second longitudinally coupled resonator-type surface acoustic wave filter is connected to a second unbalanced terminal. Signal terminals of second IDTs of the first and the second longitudinally coupled resonator-type surface acoustic wave filter are connected to each other with a first signal line. Third IDTs are connected to each other with a second signal line. A capacitor is connected between the first and the second signal line. The above arrangement provides a cascaded longitudinally coupled resonator-type surface acoustic wave filter device including an inter-stage capacitor is miniaturized. | 08-13-2009 |
20090237181 | SURFACE ACOUSTIC WAVE DEVICE - A surface acoustic wave device which uses a Rayleigh wave as a surface acoustic wave includes an IDT electrode provided on a piezoelectric substrate composed of quartz having Euler angles of (0°±5°, 0° to 140°, 0°±40°), a piezoelectric film composed of c-axis oriented ZnO arranged so as to cover the IDT electrode, and the piezoelectric film has a convex portion provided on a surface thereof corresponding to the thickness of the ID electrode. The IDT electrode is composed of a metal material primarily including Al, Au, Ta, W, Pt, Cu, Ni, or Mo, and when the wavelength of the surface acoustic wave is represented by λ, the primary metal of the IDT electrode, a normalized thickness of the IDT electrode normalized by the wavelength of the surface acoustic wave, and a normalized thickness of the piezoelectric film normalized by the wavelength of the surface acoustic wave are preferably set within the ranges of each combination shown in Table 1. | 09-24-2009 |
20090267707 | ELASTIC WAVE DEVICE - An elastic wave device is described which includes a piezoelectric substrate, comb-shaped electrodes having teeth electrodes that are disposed so as to face each other on the piezoelectric substrate, a non-overlapping area in which the teeth electrodes of the comb-shaped electrodes do not overlap each other, and a overlapping area in which the teeth electrodes overlap each other and the velocity of sound is higher than that in the non-overlapping area. | 10-29-2009 |
20090278629 | COMPOSITE FILTER - A composite filter downsized without degrading its characteristics is disclosed. The filter includes a surface acoustic wave filter and a LC filter coupled to the surface acoustic wave filter. The LC filter is formed by combining a π-shaped LC filter formed of two capacitors and an inductor coupled together in a π-shape with a capacitor coupled in parallel to the inductor. The two capacitors of the π-shaped LC filter are placed on a piezoelectric substrate with their comb-shaped electrodes opposed to each other. This opposing direction differs from an opposing direction of comb-shaped electrodes of a surface acoustic wave resonator. | 11-12-2009 |
20090295507 | ACOUSTIC WAVE ELEMENT - An acoustic wave element includes an IDT electrode in contact with a piezoelectric material and including a plurality of electrode fingers, which include first and second electrode fingers that adjoin each other in an acoustic wave propagation direction and that connect to different potentials and a first dummy electrode finger facing the first electrode finger via a gap located on an outer side in an electrode finger length direction of the first electrode finger. At an area near the gap, first protrusions are provided in at least one of the first electrode finger and the first dummy electrode finger, the first protrusion protruding in the acoustic wave propagation direction from at least one of side edges of the at least one of the first electrode finger and the first dummy electrode finger. The acoustic wave element has greatly improved resonance characteristics of a resonance frequency and prevents short-circuit failure between electrode fingers and degradation in insulation properties. | 12-03-2009 |
20090322449 | Transversal type filter - To provide a transversal type filter having weighted finger electrodes of at least either of an input IDT and an output IDT provided on a piezoelectric substrate, in which a diffraction of elastic wave output from an end face of the weighted IDT electrode is suppressed, a band width is wide, and a high flatness and a high selectivity are realized. In at least either of an input IDT and an output IDT, an apodized region in which a weighting is performed by using an apodizing method with which an aperture of finger electrodes is continuously changed is formed on a center portion of the electrode with respect to a propagation direction of an elastic wave, and dog-leg regions in which a weighting is performed by using a dog-leg method with which the aperture is made into 1/n by floating electrodes to form n tracks are formed on both sides of the apodized region. Subsequently, finger electrodes in each track of the dog-leg region are further weighted by using the apodizing method. | 12-31-2009 |
20100001814 | THIN FILM ACOUSTIC REFLECTOR STACK - The invention refers to a method for the fabrication of a thin film acoustic reflector stack with alternating layers of a first and a second material having different acoustic characteristic impedances, wherein the layers are deposited alternately by a reactive pulsed dc magnetron sputtering process. The invention further comprises an acoustic reflector stack fabricated thereby and an arrangement for performing the method. | 01-07-2010 |
20100019867 | Piezoelectric component and manufacturing method thereof - The invention relates to a piezoelectric component and a manufacturing method thereof, that includes: a first piezoelectric element composed of a piezoelectric substrate, comb-shaped electrodes formed on a principal surface of the piezoelectric substrate, and wiring electrodes having element wiring disposed adjacent to the comb-shaped electrodes; terminal electrodes formed on the piezoelectric substrate; and a plurality of second piezoelectric elements on the principal surfaces of which are formed solder electrodes which contact the terminal electrodes, and comb-shaped electrodes and wiring electrodes. The second piezoelectric elements are sealed by a resin seal layer composed of a photosensitive resin sheet such that a hollow section is formed between both principal surfaces with the principal surface of the first piezoelectric element and the principal surface of the second piezoelectric element opposed, and comprise through electrodes which penetrate the resin seal layer and contact the terminal electrodes at their top end section. Small size, high performance, and cost reduction for the piezoelectric component is realized by the present invention. | 01-28-2010 |
20100052818 | MULTI-CHANNEL SURFACE ACOUSTIC WAVE FILTER DEVICE WITH VOLTAGE CONTROLLED TUNABLE FREQUENCY RESPONSE - A multi-channel surface acoustic wave (SAW) filter includes a voltage controlled velocity tunable piezoelectric substrate, an input transducer fabricated on the substrate, and an output transducer fabricated on the substrate. The input transducer further includes multiple input sub-transducers that are electrically and physically connected in parallel. The output transducer further includes multiple output sub-transducers that are electrically and physically connected in parallel. Corresponding pairs of input sub-transducers and output sub-transducers form multiple parallel channels for SAW propagation. The input transducer produces a voltage controlled tunable COMB frequency response that is combined with a voltage controlled tunable COMB frequency response produced by the output transducer to produce a SAW filter voltage controlled tunable frequency response. Further embodiments include a multi-channel SAW resonator, a SAW filter device connecting two novel SAW filters in series, and a SAW filter device connecting two novel SAW resonators in series. | 03-04-2010 |
20100052819 | ACOUSTIC WAVE DEVICE AND SYSTEM - An acoustic wave device includes: a piezoelectric substrate; at least five IDTs (InterDigital Transducers) arranged on the substrate in directions of SAW (Surface Acoustic Wave) propagation; and two balanced terminals connected to two first IDTs that are two out of the at least five IDTs and are 180 degrees out of phase. One of a pair of comb electrodes of one of the two first IDTs is connected to one of the two balanced terminals, and one of a pair of comb electrodes of the other one of the two first IDTs being connected to the other one of the two balanced terminals. The other comb electrodes of the two first IDTs are connected in series, and one of a pair of comb electrodes that form an IDT that is included in the at least five IDTs and is not connected to the two first IDTs is grounded. | 03-04-2010 |
20100182101 | COMPOSITE SUBSTRATE AND ELASTIC WAVE DEVICE USING THE SAME - A composite substrate | 07-22-2010 |
20100188173 | ACOUSTIC WAVE DEVICE, TRANSMISSION APPARATUS, AND ACOUSTIC WAVE DEVICE MANUFACTURING METHOD - A first acoustic wave device includes a second acoustic wave device. The second acoustic wave device includes a substrate made of a piezoelectric material, a pair of interdigital electrodes formed on the substrate, each of the intergidital electrodes including a plurality of electrode fingers, and a adjustment medium. The adjustment medium includes at least a single layer and is formed on at least a part of the pair of the intergidital electrodes. The adjustment medium further includes a thick portion and a thin portion being null or thinner than the thick portion, an area of the thick portion opposed to a region being determined according to a predetermined characteristic value, the area including the intergital electrodes and a plurality of spaces between the electrode fingers adjacent each other. | 07-29-2010 |
20100219910 | Surface acoustic wave device - A surface acoustic wave device is disclosed. The surface acoustic wave device includes: a substrate having a plane surface; multiple first electrodes formed on the plane surface of the substrate; and multiple second electrodes formed on the plane surface of the substrate. Each of the first and second electrodes has a predetermined closed ring shape. The first and second electrodes are concentric. The second electrodes are located radially inside or radially outside of the first electrodes. | 09-02-2010 |
20100219911 | ACOUSTIC WAVE DEVICE AND METHOD FOR FABRICATING THE SAME - A surface acoustic wave device includes a piezoelectric substrate, at least one interdigital transducer (IDT) electrode provided on the piezoelectric substrate, and an insulator layer to improve a temperature characteristic arranged so as to cover the IDT electrode. When a surface of the insulator layer is classified into a first surface region under which the IDT electrode is positioned and a second surface region under which no IDT electrode is positioned, the surface of the insulator layer in at least one portion of the second surface region is higher than the surface of the insulator layer from the piezoelectric substrate in at least one portion of the first surface region by at least about 0.001λ, where the wavelength of an acoustic wave is λ. | 09-02-2010 |
20100231330 | Component Working with Guided Bulk Acoustic Waves - A component working with guided bulk acoustic waves is disclosed with at least one substrate and a layer system that is connected to this substrate and suitable for wave propagation. The layer system includes a metallization layer, a first dielectric layer, and a second dielectric layer. The velocity of the acoustic wave is greater in the second dielectric layer than in the first dielectric layer. At least one of the dielectric layers contains TeO | 09-16-2010 |
20100259341 | Surface Acoustic Wave Device and Communication Device - To provide a communication apparatus and a SAW device wherein the steepness in the vicinity of the outside of the lower frequencies of a passband can be improved. On a piezoelectric board | 10-14-2010 |
20100259342 | BOUNDARY ACOUSTIC WAVE DEVICE - A boundary acoustic wave device includes a piezoelectric substrate having an upper surface in which grooves are provided, IDT electrodes which are at least partially embedded in the grooves in the upper surface of the piezoelectric substrate in a thickness direction of the IDT electrodes, and first and second dielectric layers stacked on the upper surface of the piezoelectric substrate. The second dielectric layer has an acoustic velocity greater than that of the first dielectric layer. | 10-14-2010 |
20100271152 | INTEGRATED COUPLING STRUCTURES - An integrated package provides contactless communication through a coupling mechanism embedded in the package. Package types include Surface Mount Technology (SMT), Low Temperature Co-fired Ceramic (LTCC) technology, and dual-in-line integrated circuit pressed ceramic packages generally. The package can include an acoustic wave device (AWD) sensor such as a surface acoustic wave (SAW) device or a bulk acoustic wave (BAW) device. Coupling includes inductive and capacitive effects through plates, loops, spirals, and coils. Coil inductance and SAW capacitance can be parallel resonant at the desired SAW resonance with the coil impedance higher than the SAW impedance, minimizing load-pull effects. | 10-28-2010 |
20100289600 | ELASTIC WAVE DEVICE AND METHOD FOR MANUFACTURING THE SAME - An elastic wave device has a structure that prevents flux from flowing into a hollow space of the device during mounting of the device using solder bumps. The elastic wave device includes a substrate, a vibrating portion located on a first main surface of the substrate, pads located on the first main surface of the substrate and electrically connected to electrodes of the vibrating portion, a supporting layer arranged on the first main surface of the substrate so as to enclose the vibrating portion, a sheet-shaped cover layer composed of resin including synthetic rubber and disposed on the supporting layer so as to form a hollow space around the periphery of the vibrating portion, a protective layer composed of resin having resistance to flux and disposed on a side of the cover layer remote from the supporting layer, via conductors extending through the protective layer, the cover layer, and the supporting layer and connected to the pads, and external electrodes including solder bumps, disposed at ends of the via conductors adjacent to the protective layer | 11-18-2010 |
20110001581 | ACOUSTIC WAVE DEVICE - An acoustic wave device includes an input terminal; a balun that is connected to the input terminal, converts a signal input from the input terminal into two anti-phase signals, and outputs the two anti-phase signals; and a filter that is connected to the balun, and outputs the two anti-phase signals input from the balun as balanced output signals. An output impedance of the balun is equal to an input impedance of the filter, and is larger than an output impedance of the filter. | 01-06-2011 |
20110012695 | ACOUSTIC WAVE DEVICE AND ELECTRONIC APPARATUS USING THE SAME - An acoustic wave device includes a piezoelectric substrate, an IDT electrode on the substrate, an internal electrode above the substrate, a side wall above the internal electrode, a lid on the side wall, an electrode base layer on the internal electrode, a connection electrode on the electrode base layer, and an anti-corrosion layer between the internal electrode and the side wall. The internal electrode is electrically connected to the IDT electrode. The side wall surrounds the IDT electrode. The lid covers the IDT electrode to provide a space above the IDT electrode. The electrode base layer is provided outside the space and the side wall. The anti-corrosion layer protrudes outside the side wall, and is made of material less soluble in plating solution than the internal electrode. This acoustic wave device prevents the internal electrode from breaking due to plating solution, hence being manufactured at a high yield rate. | 01-20-2011 |
20110080234 | BOUNDARY ACOUSTIC WAVE DEVICE - A boundary acoustic wave device includes an electrode structure that is provided at the interface between a piezoelectric substrate and a dielectric layer. The electrode structure defines a ladder filter in which at least two ground pads of a plurality of ground pads, to be connected to a ground potential, provided on the piezoelectric substrate are electrically connected by a connection conductor provided on the dielectric layer, and all of the ground pads are electrically connected. | 04-07-2011 |
20110095850 | Notched saw image frequency rejection filter system - A notched SAW image frequency rejection filter system includes a SAW filter having an input, an output and a ground output and an impedance matching network including a first matching inductance connected to the SAW filter output and a second matching inductance connected to the ground output of the SAW filter; the SAW filter having an inherent internal capacitance that produces a predetermined capacitive leakage current at the image frequency; an inherent internal inductance that produces an inductance leakage current at the image frequency; and a boosted inherent parasitic ground inductance at the ground output of the SAW filter for generating a voltage across the second matching inductance to produce a compensation current which is substantially opposite in phase and substantially matched in magnitude with the capacitive leakage current for reducing the capacitive leakage current and increasing the image frequency rejection. | 04-28-2011 |
20110102107 | FILTER, PORTABLE TERMINAL AND ELECTRONIC COMPONENT - An object is to obtain a steep and large attenuation amount in attenuation bands close to each other out of a band of a TV wave and to provide a filter in which the use number of inductors is reduced thereby to be able to contribute to downsizing of a device. Elastic wave resonators of a plurality of parallel arms for each forming plurality of attenuation band are connected to the same electric potential point in a signal path without aid of an inductor. Otherwise, a series circuit of a plurality of element parts generating series resonance is connected in a signal path as a parallel arm. Therefore, a large attenuation amount can be obtained in each of the plural attenuation bands, but a region equivalent to what is called a zero point exists between adjacent poles. However, there can be obtained a characteristic in which steep attenuations occur in both sides of the zero point even if the zero point exists. Sets of elastic wave resonators (sets of resonators) connected to the same potential points or parallel arms constituted by the series circuits are connected in a signal path in a plurality of stages, and an inductor for inverting a phase intervenes between the stages. | 05-05-2011 |
20110133857 | INTERFACE ACOUSTIC WAVE DEVICE - The present invention relates to the field of acoustic wave devices, and particularly to that of transducers capable of operating at very high frequencies, from a few hundred MHz to several gigahertz, and its subject is more particularly an interface acoustic wave device including at least two substrates and a layer of ferroelectric material, the latter being contained between a first electrode and a second electrode and having first positive-polarization domains and second negative-polarization domains, the first and second domains being alternated, wherein the assembly constituted by the first electrode, the layer of ferroelectric material, and the second electrode is contained between a first substrate and a second substrate. | 06-09-2011 |
20110140808 | ELASTIC WAVE DEVICE - An elastic wave device that suppresses high-frequency spurious components caused by unwanted waves, such as bulk waves, and improves filter characteristics, includes a piezoelectric substrate, an electrode structure including an IDT electrode provided on the substrate, a first wiring portion that is electrically connected to the IDT electrode, and a second wiring portion provided on a first insulating film that includes a through-hole partially exposing the first wiring portion therethrough. The second wiring portion extends into the through-hole and is electrically connected to the first wiring portion. The second wiring portion is arranged over an area other than the area in which the IDT electrode is disposed. | 06-16-2011 |
20110156840 | SURFACE ACOUSTIC WAVE DEVICE, OSCILLATOR, MODULE APPARATUS - A surface acoustic wave device includes: a sapphire substrate having a C-plane main surface; an aluminum nitride film which is formed on the main surface of the sapphire substrate; comb-like electrodes which are formed on the surface of the aluminum nitride film to excite surface acoustic waves; and a silicon dioxide film which covers the comb-like electrodes and the surface of the aluminum nitride film. | 06-30-2011 |
20110204998 | ELASTIC WAVE ELEMENT AND ELECTRONIC DEVICE USING THE SAME - Offers elastic wave device that has convex portion on the top face of first dielectric layer over IDT electrode when elastic wave device has a structure of a boundary wave device in which a film thickness of second dielectric layer is not less than 1.6 times as much as pitch width p of IDT electrode. This convex portion increases an electromechanical coupling coefficient of SH wave that is the major wave. Accordingly, good filter characteristics can be easily achieved. | 08-25-2011 |
20110221546 | ELASTIC WAVE DEVICE - An elastic wave device includes a piezoelectric substrate, an IDT electrode disposed on the piezoelectric substrate, an internal electrode disposed on the piezoelectric substrate and connected to the IDT electrode, a support pillar disposed on the piezoelectric substrate and provided around the IDT electrode, a top panel provided on the support pillar to cover a space above the IDT electrode, an insulation protector provided to cover the support pillar and the top panel, an external electrode disposed on the insulation protector, a conductor pattern disposed on the insulation protector in order to obtain inductance, and a connection electrode provided through the insulation protector, to connect the external electrode and the internal electrode to each other. | 09-15-2011 |
20110260809 | SURFACE ACOUSTIC WAVE DEVICE AND SURFACE ACOUSTIC WAVE OSCILLATOR - A surface acoustic wave device, includes: an interdigital transducer serving as an electrode pattern to excite a Rayleigh surface acoustic wave, the interdigital transducer including a comb-tooth-shaped electrode having a plurality of electrode fingers; a piezoelectric substrate on which the interdigital transducer is formed, the piezoelectric substrate being made of a quartz substrate that is cut out at a cut angle represented by an Euler angle representation (φ, θ, ψ) of (0°, 95°≦θ≦155°, 33°≦|ψ|≦46°); electrode finger grooves formed between the electrode fingers of the comb-tooth-shaped electrode; and electrode finger bases being quartz portions sandwiched between the electrode finger grooves and having upper surfaces on which the electrode fingers are positioned. The surface acoustic wave device provides an excitation in an upper limit mode of a stop band of the surface acoustic wave. | 10-27-2011 |
20110298565 | DEVICE AND METHOD FOR CASCADING FILTERS OF DIFFERENT MATERIALS - Some embodiments of the invention provide a filter having at least one first filter, each first filter being a band-reject type filter having a first set of filter parameters that are a function of a first material used to fabricate the at least one first filter, and at least one second filter, each second filter having a second set of filter parameters that are a function of a second material used to fabricate the at least one second filter, each second filter being one of a band-reject type filter and a band pass type filter. The at least one first filter and the at least one second filter are then cascaded together to form the filter. The first material and the second material are different materials. The cascaded filter has a new third set of filter parameters that are a function of both the first material and the second material. Other embodiments of the invention include a method for fabricating the filter and a method of filtering using such a cascaded filter. | 12-08-2011 |
20120032759 | Acoustic Wave Device and Method for Manufacturing Same - A SAW device ( | 02-09-2012 |
20120098625 | ELECTROSTATIC BONDING OF A DIE SUBSTRATE TO A PACKAGE SUBSTRATE - A transducer apparatus comprises a package substrate and a transducer disposed over a die substrate. The die substrate is disposed over the package substrate. The transducer apparatus also comprises a voltage source connected between the die substrate and the package substrate, and configured to selectively apply an electrostatic attractive force between the die substrate and the package substrate. | 04-26-2012 |
20120105174 | SINGLE-INPUT MULTI-OUTPUT SURFACE ACOUSTIC WAVE DEVICE - A single-input multi-output surface acoustic wave (“SAW”) device contains two or more output inter-digital transducers (“IDTs”) arranged in a longitudinal direction of a single input IDT. The detection sensitivity and reliability of the SAW device may be improved by eliminating the deviation and signal interference between multiple input IDTs. | 05-03-2012 |
20120119849 | ACOUSTIC WAVE DEVICE - An acoustic wave device includes a supporting substrate made of lithium tantalate, an element substrate made of lithium tantalate, and having a lower surface bonded to and arranged on an upper surface of the supporting substrate, and a comb-like electrode formed on an upper surface of the element substrate and exciting an acoustic wave. A propagation direction of the acoustic wave in the element substrate is an X-axis of the acoustic wave. A normal direction of the upper surface of the supporting substrate is an X-axis or a Y-axis of the supporting substrate. The propagation direction of the acoustic wave is not parallel to a Z-axis of the supporting substrate. | 05-17-2012 |
20120139665 | WIDE BANDWIDTH SLANTED-FINGER CONTOUR-MODE PIEZOELECTRIC DEVICES - Contour-mode piezoelectric devices and methods of forming contour mode piezoelectric devices. The contour mode piezoelectric device includes a piezoelectric film having first and second surfaces and suspended so that it is spaced away from a substrate. The contour mode piezoelectric device also includes first and second patterned electrodes respectively disposed on the first and second surfaces of the piezoelectric film, at least one of the first and second patterned electrodes having variable width along a length thereof. | 06-07-2012 |
20120146745 | VARIABLE ACOUSTIC GRATING BASED ON CHANGING ACOUSTIC IMPEDANCES - An embodiment is a variable acoustic grating. Each of the local grating structures in an array of local grating structures has a variable impedance such that the impedance is modified, steering an ultrasonic signal impinging on the array in a reflection or transmission mode through a medium. | 06-14-2012 |
20120146746 | Surface Acoustic Wave Device - A SAW device | 06-14-2012 |
20120182091 | ACOUSTIC WAVE DEVICE AND METHOD FOR PRODUCING SAME - An acoustic wave device comprises a substrate and an acoustic wave element on one main surface of the substrate. Side surfaces of the substrate comprises a protruding portion which protrudes out at a side of an another main surface closer than a side with the one main surface side. | 07-19-2012 |
20120223789 | ELASTIC-WAVE FILTER DEVICE AND COMPOSITE DEVICE INCLUDING THE SAME - An elastic-wave filter device includes a first piezoelectric substrate, a second piezoelectric substrate, a first pillar-like wiring electrode, and a second pillar-like wiring electrode. The first and second substrates have a first and a second IDT electrodes on their top faces respectively. A lateral face of the second substrate confronts a lateral face of the first substrate. The first pillar-like electrode and the second pillar-like electrode are formed above the first and the second substrates respectively, and are electrically connected to the first and the second IDT electrodes respectively. The first substrate is thicker than the second substrate. A distance between a plane including the top face of the first substrate and a plane including the top face of the second substrate is smaller than a distance between a plane including an underside of the first substrate and a plane including an underside of the second substrate. | 09-06-2012 |
20120280768 | ELASTIC WAVE DEVICE - An elastic wave device includes a piezoelectric substrate, an IDT electrode disposed on the piezoelectric substrate, a wiring electrode disposed on the piezoelectric substrate and connected to the IDT electrode, a first insulator disposed on the piezoelectric substrate to seal the IDT electrode and the wiring electrode, a resin layer provided on the first insulator, an inductor electrode disposed on the resin layer, a second insulator disposed on the resin layer to cover the inductor electrode, a terminal electrode disposed on the second insulator, and a connecting electrode passing through the first insulator, the second insulator, and the resin layer to electrically connect the wiring electrode, the terminal electrode, and the inductor electrode. The first insulator includes a resin and filler dispersed in the resin. A density of filler in the resin layer is smaller than an average density of the filler in the first insulator. This elastic wave device has excellent characteristics of the inductor while reducing variations of the characteristics. | 11-08-2012 |
20120306594 | ACOUSTIC WAVE DEVICE - An acoustic wave device has a substrate and adjacent IDT electrodes. One IDT electrode has a signal connecting bus bar at one side in a direction orthogonal to a propagation direction and is connected to a signal line. A ground bus bar is grounded and located at the other side in the orthogonal direction. The other IDT electrode has a signal connecting bus bar which is located at the other side in the orthogonal direction and is connected to a signal line. A ground bus bar is grounded and located at the one side in the orthogonal direction. The acoustic wave device further has a floating member on the substrate, which is located at a space between the ground bus bar of the IDT electrode and the signal connecting bus bar of the IDT electrode and is not connected to the ground bus bar nor the signal connecting bus bar. | 12-06-2012 |
20120319802 | ACOUSTIC WAVE DEVICE - A SAW device ( | 12-20-2012 |
20120326808 | MICRO-ACOUSTIC FILTER HAVING COMPENSATED CROSS-TALK AND METHOD FOR COMPENSATION - The invention relates to a micro-acoustic filter having a first and a second converter, in which the electromagnetic and capacitive cross-talk between the first and second converters is compensated for by providing additional coupling capacitors and additional current loops. Additional coupling capacitors and current loops are arranged in such a manner that they can counteract the sign of the natural coupling specified by the design and thus completely compensate for said coupling. | 12-27-2012 |
20130021116 | ELASTIC WAVE DEVICE - An elastic wave device includes a piezoelectric substrate, an IDT electrode located on the piezoelectric substrate, and a capacitive electrode that is located on the piezoelectric substrate and is connected in series with the IDT electrode. The capacitive electrode includes a plurality of capacitive electrode portions, each of which includes a pair of mutually interdigitated comb-shaped electrodes. The plurality of capacitive electrode portions are connected with each other in parallel. The plurality of capacitive electrode portions are arranged such that an intersecting width direction D | 01-24-2013 |
20130027156 | CIRCUIT MODULE AND COMPOSITE CIRCUIT MODULE - A SAW filter includes a piezoelectric substrate, a longitudinal coupling portion disposed on a main surface of the piezoelectric substrate, a support layer and cover layers covering the main surface of the piezoelectric substrate with an air gap on the longitudinal coupling portion, and bumps that are disposed on one of the cover layers and are electrically connected to the longitudinal coupling portion. A mount board is mounted on a motherboard. The SAW filter is mounted on the mount board via the bumps. | 01-31-2013 |
20130057361 | SURFACE ACOUSTIC WAVE DEVICE AND PRODUCTION METHOD THEREFOR - A surface acoustic wave device includes a surface acoustic wave element including a plurality of electrode pads, and a mount substrate. The surface acoustic wave element is flip-chip mounted on a die-attach surface of the mount substrate by bumps made of Au. The mount substrate includes at least one resin layer including via-holes, a plurality of mount electrodes provided on the die-attach surface of the mount substrate, and via-hole conductors. The mount electrodes are bonded to the electrode pads via the bumps. The via-hole conductors are provided in the via-holes. At least one of each of the electrode pads and each of the mount electrodes includes a front layer made of Au. At least one of the via-hole conductors is located below the corresponding bump. | 03-07-2013 |
20130069742 | DUAL-BAND SURFACE ACOUSTIC WAVE FILTER AND COMPOSITE HIGH-FREQUENCY COMPONENT - A dual-band surface acoustic wave filter is mounted on a circuit board together with a high-frequency switch, constitutes a composite high-frequency component together with the high-frequency switch, and significantly reduces and prevents deterioration of filter characteristics of the composite high-frequency component. A first input terminal is located on a first corner portion of a second principal surface of a wiring board. A second input terminal is located on the second principal surface of the wiring board and along a first long side or a first short side so as to be next to the first input terminal. First and second output terminals are arranged on an edge portion of the second principal surface of the wiring board on a second long side and along the second long side. | 03-21-2013 |
20130093537 | ACOUSTIC WAVE DEVICE - An acoustic wave device includes: an electrode that is located on a substrate and excites an acoustic wave; and an oxide silicon film that is doped with an element and provided so as to cover the electrode, wherein a normalized reflectance obtained by normalizing a local maximum value of a reflectance when a light is caused to enter an upper surface of the oxide silicon film doped with the element by a reflectance when a light having a wavelength at the local maximum value is caused to enter an upper surface of the substrate directly is equal to or larger than 0.96. | 04-18-2013 |
20130120084 | SAW Filter Operating in a Balanced/Unbalanced Manner - A SAW filter has two DMS tracks. Each DMS track includes six converters, with two converters each acting as input or output converters. The two DMS tracks are electrically connected in series by way of four pairs of coupling converters and the associated coupling lines. A common inner ground line is provided between the two DMS tracks, which extends over the entire length of the DMS tracks and crosses the coupling lines. The input converters of the first DMS track are connected to an asymmetrical port, while the output converters of the second DMS track are connected to a symmetrical port. | 05-16-2013 |
20130176087 | ELASTIC WAVE FILTER - An elastic wave filter that prevents damage caused by ESD is constructed such that a distance between an electrode finger or a dummy electrode of a first IDT electrode and an adjacent electrode finger or an adjacent dummy electrode of a fourth comb-shaped electrode, which is a floating electrode that is not connected to any of an input terminal, output terminals, and a ground terminal, is longer than a distance between the electrode finger or the dummy electrode of the first IDT electrode and an adjacent electrode finger or an adjacent dummy electrode of a third comb-shaped electrode, which is connected to the input terminal, the output terminal, or the ground terminal. | 07-11-2013 |
20130187729 | SWITCHABLE FILTERS AND DESIGN STRUCTURES - Switchable and/or tunable filters, methods of manufacture and design structures are disclosed herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed on a piezoelectric substrate. The method further includes forming a fixed electrode with a plurality of fingers on the piezoelectric substrate. The method further includes forming a moveable electrode with a plurality of fingers over the piezoelectric substrate. The method further includes forming actuators aligned with one or more of the plurality of fingers of the moveable electrode. | 07-25-2013 |
20130187730 | ACOUSTIC WAVE DEVICE AND FABRICATION METHOD OF THE SAME - An acoustic wave device includes: a substrate; an input terminal that is located on a first surface of the substrate, and to which a high-frequency signal is input; a resonator that is connected to the input terminal, and to which a high-frequency signal input to the input terminal is input; and an insulating layer that is located between the input terminal and the substrate, and has a permittivity smaller than that of the substrate. | 07-25-2013 |
20130207747 | ACOUSTIC WAVE ELEMENT AND ACOUSTIC WAVE DEVICE USING SAME - A SAW element has a substrate; an IDT electrode located on an upper surface of the substrate and comprises Al or an alloy containing Al; a first film located on an upper surface of the IDT electrode; and a protective layer which covers the IDT electrode provided with the first film and the portion of the substrate exposed from the IDT electrode, which has a thickness from the upper surface of the substrate larger than a total thickness of the IDT electrode and first film, and which contains a silicon oxide. The first film contains a material which has a larger acoustic impedance than the material (Al or the alloy containing Al) of the IDT electrode and the silicon oxide and which has a slower propagation velocity of an acoustic wave than the material of the IDT electrode and the silicon oxide. | 08-15-2013 |
20130222079 | SURFACE ACOUSTIC WAVE DEVICE AND METHOD OF ADJUSTING LC COMPONENT OF SURFACE ACOUSTIC WAVE DEVICE - A surface acoustic wave device comprises a piezoelectric substrate ( | 08-29-2013 |
20130229242 | ELASTIC WAVE FILTER DEVICE - An elastic wave filter device includes a ladder filter unit, a first inductor, a second inductor, and a capacitor. The ladder filter unit includes at least three parallel arms including a first parallel arm. The first inductor is connected between the first parallel arm and a ground potential. The second inductor is connected between at least two of the parallel arms, other than the first parallel arm among the at least three parallel arms, and the ground potential. The capacitor is connected between a connection point of the first parallel arm and the first inductor and a connection point of the second inductor and the at least two parallel arms. | 09-05-2013 |
20130278357 | MAXIMALLY FLAT FREQUENCY CODED (MFFC) PASSIVE WIRELESS SAW RFID TAGS AND SENSORS - A surface acoustic wave device responsive to an interrogation signal for producing a return signal. The surface acoustic wave device comprises an antenna for receiving the interrogation signal, a piezoelectric substrate, one or more frequency-selective reflective arrays disposed on the piezoelectric substrate, an interdigital transducer for launching an incident surface acoustic wave on the substrate in response to the interrogation signal, the incident surface acoustic wave propagating to the one or more frequency-selective reflective arrays, a reflected surface acoustic wave reflected from each one of the reflective arrays, the interdigital transducer receiving the reflected surface acoustic waves, and the return signal, responsive to each reflected surface acoustic waves. | 10-24-2013 |
20130285768 | ELASTIC WAVE DEVICE AND METHOD FOR MANUFACTURING THE SAME - An elastic wave device includes a supporting substrate, a high-acoustic-velocity film stacked on the supporting substrate and in which an acoustic velocity of a bulk wave propagating therein is higher than an acoustic velocity of an elastic wave propagating in a piezoelectric film, a low-acoustic-velocity film stacked on the high-acoustic-velocity film and in which an acoustic velocity of a bulk wave propagating therein is lower than an acoustic velocity of a bulk wave propagating in the piezoelectric film, the piezoelectric film is stacked on the low-acoustic-velocity film, and an IDT electrode stacked on a surface of the piezoelectric film. | 10-31-2013 |
20130321102 | ACOUSTIC WAVE DEVICE - An acoustic wave device includes: an acoustic wave filter chip that is mounted on a multilayered substrate including wiring layers; a first wiring that is electrically coupled to an internal circuit of the acoustic wave filter chip and formed in a first wiring layer of the multilayered substrate; a second wiring that is formed in a second wiring layer separate from the first wiring layer; and a via wiring that penetrates at least a part of the multilayered substrate and connects the first wiring to the second wiring; wherein the first wiring, the second wiring, and the via wiring forms a first inductor of which a direction of magnetic flux intersects with a stacking direction of the multilayered substrate. | 12-05-2013 |
20130321103 | Broadband SAW Filter - A new type of very broad bandwidth filters with small insertion loss and high return loss are given. The new filter uses a substrate that can propagate a PSAW and fan shaped transducers of low metallisation height, high metallisation ratio, low reflectivity and high coupling coefficient. | 12-05-2013 |
20130328643 | SAW Device and Method for Post-Seal Frequency Trimming - A surface acoustic wave (SAW) device includes a piezoelectric crystal substrate on which an acoustic channel is formed, at least one electro-mechanical transducer operatively associated with the acoustic channel, and an encapsulating casing having a cover spaced above the acoustic channel and thereby defining a sealed volume around the substrate. A mass deposition device within the casing is spaced between the acoustic channel and the cover, preferably as gold-coated heating wire spanning the acoustic channel and having ends that are connectable to an electric power source outside the casing. Stress and aging shifts can be induced after sealing of the cover. Tuning is achieved by evaporating metal molecules off the heated wire onto the acoustic channel as the frequency is monitored, until the mass loading of metal molecules on the transducer produces the target frequency. | 12-12-2013 |
20130335170 | ACOUSTIC WAVE ELEMENT AND ACOUSTIC WAVE DEVICE USING SAME - A SAW element has a substrate, electrode fingers on an upper surface of the substrate, and mass-adding films on upper surfaces of the electrode fingers. When viewing the cross-sections perpendicular to the extending directions of the electrode fingers, the mass-adding films have the narrowest widths at an upper sides in the cross-sections. By arranging the mass-adding films having such shape on the upper surfaces of the electrode fingers, the electromechanical coupling factor can be made high. | 12-19-2013 |
20130335171 | ELECTRONIC COMPONENT - An electronic component includes a support layer that surrounds an element region on a principal surface of a piezoelectric substrate, when viewed in plan from a z-axis direction. A surface acoustic wave element is provided in the element region. A cover layer is provided on the support layer, and is opposed to the principal surface. A pillar member connects the principal surface and the cover layer in a space surrounded by the principal surface, the support layer, and the cover layer, and does not contact with the support layer. | 12-19-2013 |
20130342286 | HIGH COUPLING, LOW LOSS PBAW DEVICE AND ASSOCIATED METHOD - In embodiments, a piezoelectric acoustic wave (PBAW) device may include a substrate and a resonator comprising a plurality of electrodes coupled with the surface of the substrate. A dielectric overcoat may be disposed over the substrate and the resonator. In embodiments, and electrode in the resonator electrode may have a width that is based at least in part on a period of the resonator. By selecting the width of the electrode based at least in part on the period of the resonator, a spurious-mode of the passband of the PBAW device may be suppressed. | 12-26-2013 |
20140028414 | Surface Acoustic Wave Filter - A surface acoustic wave filter includes a θ-rotated Y-cut X-propagation lithium niobate substrate. The cut angle ranges from 20° to 40°. An interdigital transducer can be used for exciting a surface acoustic wave that is formed on the substrate. | 01-30-2014 |
20140132368 | PIEZOELECTRIC COMPONENT - A piezoelectric component includes a piezoelectric element that includes: a piezoelectric plate; a comb-shaped electrode and an input/output electrode on a principal surface of the piezoelectric plate; a cover layer disposed above the comb-shaped electrode; and a rib to form a void between the comb-shaped electrode and the cover layer. The cover layer includes a photosensitive thermosetting resin in which translucent filler is contained. | 05-15-2014 |
20140218133 | FLIP CHIP TYPE SAW BAND REJECT FILTER DESIGN - A method and system for providing a surface acoustic wave band reject filter are disclosed. According to one aspect, a surface acoustic wave band reject filter includes a substrate having electrode bars and bonding pads formed on the substrate. The filter further includes at least one die having a side facing the substrate. A plurality of surface acoustic wave resonators are formed on the at least one die formed on the substrate. Solder balls formed on a side of the at least one die facing the substrate are positioned to engage bonding pads on the substrate. The plurality of surface acoustic wave resonators collectively exhibit a band reject filter response. | 08-07-2014 |
20140266511 | NETWORK SYNTHESIS DESIGN OF MICROWAVE ACOUSTIC WAVE FILTERS - Methods for the design of microwave filters comprises comprising preferably the steps of inputting a first set of filter requirements, inputting a selection of circuit element types, inputting a selection of lossless circuit response variables, calculating normalized circuit element values based on the input parameters, and generate a first circuit, insert parasitic effects to the normalized circuit element values of the first circuit, and output at least the first circuit including the post-parasitic effect circuit values. Additional optional steps include: requirements to a normalized design space, performing an equivalent circuit transformation, unmapping the circuit to a real design space, performing a survey, and element removal optimization. Computer implement software, systems, and microwave filters designed in accordance with the method are included. | 09-18-2014 |
20150365067 | Composite Substrates for Acoustic Wave Elements, and Acoustic Wave Elements - A composite substrate for an acoustic wave element includes a support substrate | 12-17-2015 |
20150372660 | SWITCHABLE FILTERS AND DESIGN STRUCTURES - Switchable and/or tunable filters, methods of manufacture and design structures are disclosed herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed to be in contact with at least one piezoelectric substrate. The method further includes forming a micro-electro-mechanical structure (MEMS) comprising a MEMS beam in which, upon actuation, the MEMS beam will turn on the at least one piezoelectric filter structure by interleaving electrodes in contact with the piezoelectric substrate or sandwiching the at least one piezoelectric substrate between the electrodes. | 12-24-2015 |
20160036410 | SURFACE ACOUSTIC WAVE DEVICE - A surface acoustic wave device includes, on a substrate, functional electrode units each including at least one IDT electrode, wiring electrodes connected to the functional electrode units, insulation films provided between the wiring electrode and the substrate, and a support member that surrounds the functional electrode units and at least a portion of the wiring electrodes. A thickness of the support member is larger than a thickness of the insulation films, and the insulation films and the support member are made of the same material. | 02-04-2016 |
20160126927 | SURFACE ACOUSTIC WAVE ELEMENT AND METHOD OF MANUFACTURING THE SAME - The present invention relates to a surface acoustic wave element and a method of manufacturing the same, and more specifically, to a surface acoustic wave element and a method of manufacturing the same, the element including a piezoelectric substrate; a plurality of IDT electrodes formed on the piezoelectric substrate; a plurality of resonator electrodes formed on the piezoelectric substrate; a wiring metal layer formed as a wiring area to electrically connect the plurality of IDT electrodes and the plurality of resonator electrodes; and an insulation layer formed on the piezoelectric substrate, the plurality of IDT electrodes, the plurality of resonator electrodes and the wiring metal layer. | 05-05-2016 |
20160133821 | SURFACE ACOUSTIC WAVE DEVICE HAVING MATRICES OF COMBINABLE SELECTABLE ELECTRODE SUB-ELEMENTS - Described embodiments include a surface acoustic wave device, method, and apparatus. The device includes a piezoelectric substrate and a configurable electrode assembly. The assembly includes N stacked instances of electrode assembly sub-units. Each electrode assembly sub-unit includes: a plurality M of elongated electrode sub-elements electromechanically coupled with the piezoelectric substrate; an electrically isolated first signal bus crossing each of the electrode sub-elements; a first matrix of individually addressable switches, each addressable switch of the first matrix configured to electrically couple a respective electrode sub-element of the plurality M of electrode sub-elements with the first signal bus; an electrically isolated second signal bus crossing each of the electrode sub-elements; and a second matrix of individually addressable switches, each addressable switch of the second matrix configured to electrically couple a respective electrode sub-element of the plurality M of electrode sub-elements with the second signal bus. | 05-12-2016 |
20160134256 | SURFACE ACOUSTIC WAVE DEVICE HAVING SELECTABLE ELECTRODE ELEMENTS - Described embodiments include a surface acoustic wave device, method, and apparatus. The device includes a piezoelectric substrate and a configurable electrode assembly. The configurable electrode assembly includes a plurality of spaced-apart elongated electrode elements electromechanically coupled with the piezoelectric substrate. The assembly includes a first signal bus crossing each of the plurality of electrode elements and electrically isolated therefrom. The assembly includes a first matrix of addressable switches. Each addressable switch of the first matrix configured to electrically couple a respective electrode element of the plurality of electrode elements with the first signal bus. The assembly includes a second signal bus crossing each of the plurality of electrode elements and electrically isolated therefrom. The assembly includes a second matrix of addressable switches. Each addressable switch of the second matrix configured to electrically couple a respective electrode element of the plurality of electrode elements with the second signal bus. | 05-12-2016 |
20160134257 | SURFACE ACOUSTIC WAVE DEVICE HAVING END-TO-END COMBINABLE SELECTABLE ELECTRODE SUB-ELEMENTS - A described surface acoustic wave device includes a piezoelectric substrate and a configurable electrode assembly. The assembly includes: an array of N rows of M electrically isolated elongated electrode sub-elements arranged end-to-end in columns; a first signal bus proximate to the first row of the N rows; a first matrix of row addressable switches configured to electrically couple the first signal bus with a respective electrode sub-element of the first row of electrode sub-elements; a second signal bus proximate to the N | 05-12-2016 |
20160141107 | CAPACITOR FOR SAW FILTER, SAW FILTER AND METHOD OF MANUFACTURING THEREOF - The present invention relates to a capacitor for a SAW filter, the SAW filter, and a method of manufacturing thereof, and more specifically, to a capacitor for a SAW filter including a first metal layer formed on a substrate; an insulation layer formed on the first metal layer; and a second metal layer formed on the insulation layer and overlapped with partially or totally of the first metal layer, in which the insulation layer is formed to be extended to the top of an IDT formed on the substrate, the SAW filter on which such a capacitor for a SAW filter is mounted, and a method of manufacturing thereof. | 05-19-2016 |
20160182010 | ACOUSTIC WAVE DEVICE | 06-23-2016 |
20220140807 | SAW DEVICE WITH IMPROVED THERMAL MANAGEMENT - This invention focuses on minimizing the hot spots on a filter chip by creating thermal radiators using the mechano-acoustic structures and connection circuitry. A gradual increase of metal to wafer relation is made to provide better heat dissipation and heat sinking. Preferably the shunt lines of the ladder type arrangement of SAW resonators (RS | 05-05-2022 |
20220140808 | WAVE APODIZATION FOR GUIDED SAW RESONATORS - An acoustic resonator includes a piezoelectric layer on a substrate and an interdigital electrode structure on the piezoelectric layer. The interdigital electrode structure includes a first bus bar, a second bus bar, a first set of electrode fingers, and a second set of electrode fingers. The first bus bar and the second bus bar extend parallel to one another along a length of the interdigital electrode structure. The first set of electrode fingers are coupled to the first bus bar and extend to a first apodization edge. The second set of electrode fingers are coupled to the second bus bar and extend to a second apodization edge. The first set of electrode fingers and the second set of electrode fingers are interleaved. At least one of the first apodization edge and the second apodization edge provides a wave pattern along the length of the interdigital electrode structure. | 05-05-2022 |