Entries |
Document | Title | Date |
20080204128 | Circuit arrangement with interference protection - A circuit arrangement with an interference protection is disclosed, including a supply line and a ground line, a first circuit and a second circuit. Each of the first and second circuit is connected to the supply line and to the ground line. The circuit arrangement also includes a blocking device coupled to at least the supply line to suppress any interfering signals from being applied to the supply line. | 08-28-2008 |
20080211573 | Tunable balanced loss compensation in an electronic filter - The invention provides a system for providing tunable balanced loss compensation in an electronic filter. Tunable balanced loss compensation is provided by using cross-connected balanced transconductors and self-connected balanced transconductors. The cross-connected balanced transconductors and the self-connected transconductors compensate the unbalanced loss across the electronic filter. The self-connected balanced transconductors compensate the balanced loss across the electronic filter. Further, the cross-connected and the self-connected balanced transconductors are tunable by adjusting the values of their transconductances, thereby providing tunable balanced loss compensation. | 09-04-2008 |
20080224763 | Transferred-Impedance Filtering in Rf Receivers - The specification and drawings present a new method and apparatus for using transferred-impedance filtering in RF (radio frequency) receivers (e.g., inside of a mobile communication device), wherein said filtering can be done with MOS-switches transferring impedance of a regular RC or RCL circuit to RF frequency filtering inside an RFIC (radio frequency integrated circuit). | 09-18-2008 |
20080315943 | Anti-Jitter Circuits - An anti jitter circuit for reducing time jitter in an input pulse train comprises an integrator, a DC removal circuit and a comparator. The anti jitter circuit also has a feedback loop effective to suppress phase deviation of the output pulse train in response to jitter. | 12-25-2008 |
20090039954 | FAN SYSTEM AND FAN WITH FILTER - A filter is electrically coupled to a fan or is built-in with a fan, the filter is also electrically coupled a first power terminal and a second power terminal. The filter includes an amplifier, a capacitor, and a divider. The amplifier includes a first terminal, a second terminal and a third terminal, wherein the third terminal is electrically coupled to a power circuit of the fan. The capacitor is electrically coupled between the third terminal of the amplifier and the second power terminal. The divider is electrically coupled between the first power terminal and the second power terminal, wherein a node of the divider is electrically coupled to the second terminal of the amplifier. | 02-12-2009 |
20090108926 | FILTER CIRCUIT - One aspect of the embodiments utilizes a filter circuit which can be connected to a signal source has a low-frequency cutoff of 1/(R×C). The filter includes a buffer circuit which can be connected to an output end of the signal source and has an output impedance of R, and a capacitor which is connected to an output end of the buffer circuit in a floating state and has a capacitance of C/2. The filter includes a resistor circuit which is connected to an output end of the capacitor and has a resistance value of R. | 04-30-2009 |
20090195304 | TRANSADMITTANCE AND FILTER HAVING A GAIN FUNCTION - Disclosed are a circuit and a method for tuning a programmable filter including input terminals, output terminals, a filter network and a transadmittance stage. The input terminals can receive input signals, and the output terminals output a filtered signal. The transadmittance stage, coupled to the input terminals, generates a current at its output based on the input signals. The output of the transadmittance stage can be coupled to the output terminals. The filter network can be a resistive-capacitive network connected to the input terminals. The RC network can include a capacitance respectively coupling the input terminals to output terminals, and a voltage divider network coupling the input and output terminals together. The transadmittance stage output terminals can be connected to the voltage divider, and the output terminals of the programmable filter circuit are coupled to respective intermediate nodes of the voltage divider network to provide a filtered output signal. | 08-06-2009 |
20090212855 | FEEDBACK TECHNIQUE AND FILTER AND METHOD - An example filter includes a differential amplifier and a resistor string coupled between output terminals of the differential amplifier. The resistor string may generate a common mode sense voltage and an intermediate voltage at an intermediate node. A feedback resistor is coupled between the intermediate node of the resistor string and an input terminal of the differential amplifier, and a feedback capacitor is coupled between a differential output terminal of the amplifier and the differential input terminal. Applying feedback in this manner may reduce area and power requirements of the filter to achieve selected frequency and gain performance. | 08-27-2009 |
20090261897 | Applying trenched transient voltage suppressor (TVS) technology for distributed low pass filters - An electronic circuit includes a filtering circuit implemented with a distributed inductor-and-capacitor (LC) network that includes metal oxide effect (MOS) trenches opened in a semiconductor substrate filled with dielectric material for functioning as capacitors for the distributed LC network. The electronic circuit further includes a transient voltage suppressing (TVS) circuit integrated with the filtering circuit that functions as a low pass filter wherein the TVS circuit includes a bipolar transistor triggered by a diode disposed in the semiconductor substrate. The distributed LC network further includes metal coils to function as inductors disposed on a top surface of the semiconductor electrically contacting the MOS trenches. | 10-22-2009 |
20090322418 | DISCRETE TIME MULTI-RATE ANALOG FILTER - A discrete time analog filter suitable for use in a receiver and other electronics devices is described herein. In one exemplary design, an apparatus may include a transconductance amplifier, a sampler, and a discrete time analog filter. The transconductance amplifier may amplify a voltage input signal and provide an analog signal. The sampler may sample the analog signal and provide analog samples at a sampling rate. The discrete time analog filter may filter the analog samples and provide filtered analog samples either at the sampling rate for a non-decimating filter or at an output rate that is lower than the sampling rate for a decimating filter. The discrete time analog filter may also filter the analog samples with either equal weights for a rectangular filter or at least two different weights for a weighted filter. | 12-31-2009 |
20100060348 | BANDWIDTH-ADJUSTABLE FILTER - A bandwidth-adjustable filter includes an operational amplifier, a first resistor, a first capacitor and a first resistor ladder circuit. The operational amplifier has a negative input terminal and a positive input terminal The first resistor is coupled to one of the input terminals of the operational amplifier. The first capacitor is coupled to the first resistor. The first resistor ladder circuit is coupled in parallel to the first resistor for changing the resistance of the first resistor so as to adjust the bandwidth of the filter. | 03-11-2010 |
20100060349 | METHOD OF FORMING AN INTEGRATED SEMICONDUCTOR DEVICE AND STRUCTURE THEREFOR - In one embodiment, a plurality of ESD devices are used to form an integrated semiconductor filter circuit. Additional diodes are formed in parallel with the ESD structures in order to increase the input capacitance. | 03-11-2010 |
20100117723 | ACTIVE FILTER, DELTA-SIGMA MODULATOR, AND SYSTEM - An active filter includes a first filter and a second filter. The first filter receives an input signal, and generates a first output signal by filtering the input signal. The second filter receives the first output signal during a time period adjusted based on a variation of a time constant of the first filter, and generates a second output signal by filtering the first output signal received during the time period. Therefore, a variation of a time constant is compensated by using post integration time control. | 05-13-2010 |
20100156524 | PULSE FILTERING MODULE CIRCUIT, SYSTEM, AND METHOD - A filtering module filters out high frequency signals, primarily noise, from an input data stream. The filtering module includes an input module, a phase detecting module, and a threshold module. The input module performs either a charging or a discharging across a capacitor on a basis of an RC time constant. The phase detecting module is coupled to the input module to keep identical phase at a first node and an output node. The threshold module is coupled to the phase detecting module for providing an output signal based on a threshold voltage and the charging or the discharging across the capacitor. | 06-24-2010 |
20100164611 | LEAKAGE INDEPENDENT VRY LOW BANDWIDTH CURRENT FILTER - A current filter circuit is provided. The current filter circuit comprises a source transistor comprising a drain, a gate, and a source. The source of the source transistor is coupled to a reference voltage terminal, the gate of the source transistor is coupled to the gate of a mirror transistor, and the drain of the source transistor is coupled to a reference current source. The mirror transistor comprises a drain, a gate, and a source. The source of the mirror transistor is coupled to the reference voltage terminal, the gate is coupled to the gate of the source transistor, and the drain is coupled to a load. The current filter circuit comprises a low pass filter for filtering noise. The current filter circuit also comprises an impedance reduction circuit coupled to the drain of the mirror transistor for reducing bandwidth of the current filter circuit. | 07-01-2010 |
20100171548 | ANALOG FIR FILTER - An analog finite impulse response (AFIR) filter including at least one variable transconductance block having an input for receiving an input voltage and being adapted to sequentially apply each of a plurality of transconductance levels to the input voltage during at least one of a plurality of successive time periods to generate an output current at an output of the variable transconductance block, the at least one variable transconductance block including a plurality of fixed transconductance blocks each receiving the input voltage and capable of being independently activated to supply the output current; and a capacitor coupled to the output of the variable transconductance block to receive the output current and provide an output voltage of the filter. | 07-08-2010 |
20100171549 | Variable Gain Amplifier Circuit and Filter Circuit - This variable gain amplifier is provided with an operational amplifier. The non-inversion input terminal of the operational amplifier is connected to a reference potential. A feedback resistor is connected between the output terminal and inversion input terminal of the operational amplifier. An input resistor is inserted between the inversion input terminal of the operational amplifier and the input terminal of the variable gain amplifier circuit. An adjustment resistor is connected between the inversion input terminal of the operational amplifier and the reference potential. The resistance value of the adjustment resistor is controlled in such a way as to maintain constant against the resistance value change a combined resistance value in its parallel connection with the input resistor when changing the resistance value of the input resistor. | 07-08-2010 |
20100201437 | TUNABLE RF FILTER - A tunable RF filter, comprising: an emitter follower stage ( | 08-12-2010 |
20100225385 | ACTIVE POWER FILTER METHOD AND APPARATUS - This disclosure provides active power filter methods and apparatus to control the PF, harmonics and/or ripple current associated with powering electrical devices. According to one exemplary aspect, an active power filter is configured to measure the momentary ac line output current, measure the momentary ac line input current and switch an energy buffer to provide additional current to the ac line output or draw current from the ac line input to control the PF associated with the device. | 09-09-2010 |
20100289566 | Amplitude AC noise filter with universal IEC connection - An AC noise filter designed to filter the small amplitude AC noise of all frequencies by using inline reverse coupled parallel PN semiconductors which offer a high resistance to AC voltages of less than a diode voltage drop. Inline reverse coupled parallel PN semiconductors are used in the AC power line-side as well as in the neutral-line side. For additional AC noise filtering, capacitors are coupled across the AC or DC power source input and at the output to the AC or DC user. For the AC power, IEC connectors are used at the input and output for worldwide use. | 11-18-2010 |
20100308903 | Filtering Arrangement, Filtering Method and Current Sensing Arrangement - A filtering arrangement comprises a reference voltage input ( | 12-09-2010 |
20100321104 | NETWORK FILTER AND USE OF A NETWORK FILTER - A network filter includes at least one X capacitor located between two supply lines and at least one discharge resistor that discharges the X capacitor, wherein the discharge resistor is arranged in series with at least one switching element, and at least one detector circuit that recognizes a network disconnection and closes the switching element to discharge the X capacitor via the discharge resistor when a network disconnection is recognized. | 12-23-2010 |
20100327965 | RECEIVER FILTERING DEVICES, SYSTEMS, AND METHODS - Exemplary embodiments of the invention disclose receiver baseband filtering. In an exemplary embodiment, the filter device may comprise a continuous-time filter and a discrete-time filter operably coupled to the continuous time-filter. The discrete-time filter may include a passive infinite impulse response filter operably coupled between the continuous-time filter and an amplifier. The discrete-time filter may also include an active infinite impulse response filter operably coupled between an output of the amplifier and an input of the amplifier. The discrete-time filter may be configured to combine an output of the active infinite impulse response filter and an output of the passive infinite impulse response filter to form a composite signal. Furthermore, the amplifier may be configured to receive and amplify the composite signal. | 12-30-2010 |
20110050333 | METHOD, APPARATUS, AND SYSTEM FOR OBTAINING TUNING CAPACITANCE FOR Gm-C FILTER - The present invention discloses a method, apparatus and system for obtaining the tuning capacitance of a Gm-C filter. The method includes: integrating a simulated capacitor within a given time via a current, where the simulated capacitor simulates the capacitor of the Gm-C filter which is set to an even capacitor array; and comparing the integral voltage obtained by the integration with the reference voltage, finding a simulated capacitance that makes the integral voltage equal to the reference voltage via gradual approaching by adjusting a control code, and determining the simulated capacitance as the tuning capacitance. The present invention improves the performance of a Gm-C filter without affecting the performance of the Gm-C filter. | 03-03-2011 |
20110057723 | Active polyphase filter producing two difference outputs having phase difference of pi/2 radians - An active poly-phase filter has a converting section and a filtering section having two first input terminals, two second input terminals and four output terminals. The converting section has first, second, fourth and fifth transistors forming a translinear circuit and a third transistor forming a current mirror circuit with the second transistor. The converting section converts unbalanced high-frequency power into a difference input between a collector current of the third transistor and a collector current of the first transistor having phase difference of π radians. The filtering section receives one collector current at the first input terminals and receives another collector current at the second input terminals and outputs a first difference output between outputs of two output terminals and a second difference output between outputs of other two output terminals such that the difference outputs has a phase difference of π/2 radians. | 03-10-2011 |
20110148512 | FILTER CIRCUIT - A filter circuit that removes high-frequency components from an input signal, comprises: an operational amplifier; a first resistor connected between a non-inverting input terminal of the operational amplifier and an input signal source; a first capacitor connected to the non-inverting input terminal of the operational amplifier; a second resistor connected to the non-inverting input terminal of the operational amplifier; a third resistor connected between an inverting input terminal of the operational amplifier and the input signal source; a second capacitor connected between the inverting input terminal of the operational amplifier and an output terminal of the operational amplifier; and a fourth resistor connected to the inverting input terminal of the operational amplifier. | 06-23-2011 |
20110148513 | DISCRETE-TIME FILTER APPARATUS AND DISCRETE-TIME RECEIVER SYSTEM HAVING THE SAME - The discrete-time receiver system includes: a voltage current conversion device low-noise-amplifying an input voltage signal, and converting the amplified signal into a current signal; a first filter performing IIR filtering on the current signal output from the voltage current conversion device; a discrete-time filter performing FIR filtering on a signal output from the first filter; and a second filter performing IIR filtering on a signal output from the discrete-time filter, wherein the discrete-time filter includes a plurality of current supply units generating a current having a size obtained by multiplying an input current by a determined gain, respectively, an adding unit adding currents supplied from the plurality of current supply units, and a plurality of controllers connecting the plurality of current supply units and the adding unit and controlling the flow of current supplied from the current supply units to the adding unit. | 06-23-2011 |
20110156809 | LOW DISTORTION MOS ATTENUATOR - An attenuation circuit uses a voltage controlled variable resistance transistor as a signal attenuator for receivers operating in the zero Hz to about 30 MHz range. The transistor functions in the linear region to linearize the transistor resistance characteristics used for signal attenuation. In an exemplary application, the attenuation circuit is used as an RF attenuator for AM radio broadcast receivers and amplifiers with automatic gain control. Multiple attenuation circuits can be coupled in parallel, each attenuation circuit having a different sized variable resistance transistor, to form sequentially activated stages that increase the range of attenuation while minimizing distortion. | 06-30-2011 |
20120007666 | DEVICE FOR IMPEDANCE MATCHING A COMPONENT, COMPRISING A FILTER HAVING MATCHABLE IMPEDANCE, BASED ON A PEROVSKITE TYPE MATERIAL - A device comprises at the input a first component (PA) having a first output impedance (Z | 01-12-2012 |
20120007667 | AUTOMATIC CUTOFF FREQUENCY ADJUSTING CIRCUIT AND PORTABLE DIGITAL ASSISTANT - The disclosed invention enables the cutoff frequency of a filter to be automatically adjusted to an arbitrary setting value within the adjustment range. An automatic cutoff frequency adjusting circuit includes a voltage/current converter circuit, a charge circuit, a discharge circuit, a digital capacitance having a plurality of electrostatic capacitances, a comparator for comparing a voltage inputted to the digital capacitance with a reference voltage, and a capacitance control circuit for controlling the digital capacitance. The time until the comparator detects that the voltage inputted to the digital capacitance is higher than the reference voltage after a reset signal has become a predetermined logic level is measured, and the digital capacitance is controlled by repeating, under a predetermined condition, processing for obtaining a next setting value of the digital capacitance, based on a measurement result, a target value of the digital capacitance, and the current value of the digital capacitance. | 01-12-2012 |
20120007668 | FILTER CIRCUIT, TRANSMISSION FILTER CIRCUIT, SEMICONDUCTOR INTEGRATED CIRCUIT, COMMUNICATION APPARATUS, AND TIMING ADJUSTMENT METHOD FOR FILTER CIRCUIT - A filter circuit includes two parallel digital filters, a DAC, and an LPF. The DAC includes two parallel decoders, a parallel-to-serial converter, a switch driver, and a switch. A PLL circuit supplies a reference clock to the DAC. A frequency divider provided in the DAC divides the frequency of the reference clock by two, and supplies the half frequency clock to a parallel processing section (the two decoders and the parallel-to-serial converter) of the DAC and the two digital filters. This makes it easy to secure a timing margin, permitting use in high-speed communication on the order of several GHz. | 01-12-2012 |
20120019313 | MILLIMETER-WAVE ON-CHIP SWITCH EMPLOYING FREQUENCY-DEPENDENT INDUCTANCE FOR CANCELLATION OF OFF-STATE CAPACITANCE - A semiconductor switching device includes a field effect transistor and an inductor structure that provides a frequency dependent inductance in a parallel connection. During the off-state of the semiconductor switching device, the frequency dependent impedance component due to the off-state parasitic capacitance of the switching device is cancelled by the frequency dependent inductance component of the inductor structure, which provides a non-linear impedance as a function of frequency. The inductor structure provides less inductance at a higher operating frequency than at a lower operating frequency to provide more effective cancellation of two impedance components of the parasitic capacitance and the inductance. Thus, the semiconductor switching device can provide low parasitic coupling at multiple operating frequencies. The operating frequencies of the semiconductor switching device can be at gigahertz ranges for millimeter wave applications. | 01-26-2012 |
20120019314 | CURRENT-MODE ANALOG BASEBAND APPARATUS - A current-mode analog baseband apparatus is provided. The apparatus includes a current-mode low-order filter, a current-mode programmable gain amplifier (PGA) unit and a high-order filter. The input impedance is smaller than the output impedance in the current-mode low-order filter. An input terminal of the current-mode PGA unit is connected to an output terminal of the current-mode low-order filter. An input terminal of the high-order filter is connected to an output terminal of the current-mode PGA unit. | 01-26-2012 |
20120025903 | Sampling of Multiple Data Channels Using a Successive Approximation Register Converter - Provided is a method for performing analog to digital conversion of a plurality of analog signal channels. The method may comprise successively processing each analog signal channel of a plurality of analog signal channels. The processing of an analog signal channel of the plurality of analog signal channels may comprise: selecting the analog signal channel from the plurality of analog signal channels, generating an analog output signal corresponding to an analog input signal transmitted over the selected analog signal channel, and sampling the analog output signal using a successive approximation register (SAR) converter. Sampling the analog output signal using a SAR converter may comprise sampling the analog output signal a specific number of times to produce a respective plurality of digital samples corresponding to the selected analog input signal. | 02-02-2012 |
20120092065 | FILTER CIRCUIT AND COMMUNICATION SEMICONDUCTOR DEVICE USING THE SAME - The present invention intends to provide a filter circuit in which an area occupied by the circuit can be reduced by suppressing the scale of its circuit configuration while a predetermined vicinity disturbance wave rejection ratio is maintained and a communication semiconductor device using the same, the filter circuit filtering an analog signal and including a voltage/current conversion circuit for converting the analog signal from voltage to current, and a capacitor array which executes signal processing by charging/discharging the current converted by the voltage/current conversion circuit to/from plural capacitors, the capacitor array being so constructed that the plural capacitors are divided to plural stages so that signals averaged by the capacitor on a preceding stage are accumulated in the capacitor on a next stage successively. | 04-19-2012 |
20120112825 | MODULES FOR AN ACTIVE MAINS FILTER AND ACTIVE MAINS FILTER - A module for an active mains filters for determining reference currents for a subsequent current adjustment control with transformation of the inflowing currents, first determines active power of the load, then directly calculates the reference currents taking into account the active power and the α-β components of the mains voltage. A module for an active mains filter for compensating one or more harmonic currents or voltages using selective signal analysis and an active mains filter for a 3-phase supply mains with a reference module for determining reference currents are also provided. | 05-10-2012 |
20120169414 | METAMATERIAL POWER AMPLIFIER SYSTEMS - Power amplifying systems and modules and components therein are designed based on CRLH structures, providing high efficiency and linearity. | 07-05-2012 |
20120188006 | Self-Calibrated, Broadband, Tunable, Active Filter with Unity Gain Cells for Multi-Standard and/or Multiband Channel Selection - An exemplary filter includes N (≧2) unity gain amplifiers, each with a pair of differential input terminals and a pair of differential output terminals; a pair of filter differential input terminals; a first pair of variable resistances coupling the pair of filter differential input terminals to the pair of differential input terminals of the first unity gain amplifier; N−1 pairs of variable resistances coupling the pairs of differential output terminals of each of the N unity gain amplifiers, other than the last one, to the pairs of differential input terminals of its downstream neighbor; N−1 pairs of variable capacitances coupling the pairs of differential input terminals of each of the N unity gain amplifiers, other than the last one, to the pairs of differential output terminals of its downstream neighbor; and a variable capacitance coupling the pair of differential input terminals of the last unity gain amplifier to each other. | 07-26-2012 |
20120206195 | Automatic Gain Control Circuit and Method for Automatic Gain Control - A method of attenuating an input signal to obtain an output signal is described. The method comprises receiving the input signal, attenuating the input signal with a gain factor to obtain the output signal, applying a filter having a frequency response with a frequency-dependent filter gain to at least one of a copy of the input signal and a copy of the output signal to obtain a filtered signal, the frequency-dependent filter gain being arranged to emphasize frequencies within a number N of predetermined frequency ranges, N>1; wherein the filter comprises a sequence of N sub-filters, each one of the N sub-filters having a frequency response adapted to emphasize frequencies within a corresponding one of the N predetermined frequency ranges; determining a signal strength of the filtered signal, and determining the gain factor from at least the signal strength. | 08-16-2012 |
20120212287 | ADAPTIVE FILTER CIRCUIT FOR SAMPLING A REFLECTED VOLTAGE OF TRANSFORMER IN A POWER CONVERTER AND METHOD THEREOF - An adaptive filter circuit for sampling a reflected voltage of a transformer of a power converter includes a first switch for receiving the reflected voltage, a resistor having a first terminal and a second terminal, the first terminal of the resistor being coupled to the first switch, a capacitor coupled to the second terminal of the resistor for holding the reflected voltage, and a second switch coupled to the resistor in parallel, wherein the resistor and the capacitor develop a filter for sampling the reflected voltage which is sampled without filtering by the filter in a first period during a disable period of a switching signal and also sampled with filtering by the filter in a second period during the disable period of the switching signal. | 08-23-2012 |
20120262228 | CURRENT-MODE ANALOG BASEBAND APPARATUS - A current-mode analog baseband apparatus is provided. The apparatus includes a current-mode low-order filter, a current-mode programmable gain amplifier (PGA) unit and a high-order filter. The input impedance is smaller than the output impedance in the current-mode low-order filter. An input terminal of the current-mode PGA unit is connected to an output terminal of the current-mode low-order filter. An input terminal of the high-order filter is connected to an output terminal of the current-mode PGA unit. | 10-18-2012 |
20120319767 | Single-Ended-To-Differential Filter Using Common Mode Feedback - A filter including common mode feedback can provide single-ended to differential-ended conversion with minimum loss of performance. | 12-20-2012 |
20120326773 | SYSTEMS AND METHODS FOR POWER TRANSFER BASED ON RESONANCE COUPLING OF INDUCTORS - An integrated circuit (IC) includes first and second resonator circuits and an isolation barrier. The first resonator circuit includes first and second inductors, wherein the first resonator circuit is connected to a supply voltage. The second resonator circuit includes third and fourth inductors, wherein the second resonator circuit is matched to the first resonator circuit. The isolation barrier separates the first and second resonator circuits. The first and second inductors are inductively coupled to the third and fourth inductors, respectively, thereby providing for transfer of power from the first resonator circuit across the isolation barrier to the second resonator circuit. | 12-27-2012 |
20130076434 | Differential Source Follower having 6dB Gain with Applications to WiGig Baseband Filters - A Sallen-Key filter requires an operational amplifier with a large input impedance and a small output impedance to meet the external filter characteristics. The operational amplifier requires an internal feedback path for stability that limits performance. This invention eliminates the need for internal feedback and increases the gain of a source follower which has characteristics matching the operational amplifier in the Sallen-Key filter. The source follower provides 6 dB of AC voltage gain and is substituted for the operational amplifier in the Sallen-Key filter. The Sallen-Key filter requires a differential configuration to generate all the required signals with their compliments and uses these signals in a feed forward path. Furthermore, since the source follower uses only two n-channel stacked devices, the headroom voltage is maximized to several hundred millivolts for a 1.2V voltage supply in a 40 nm CMOS technology. Thus, the required 880 MHz bandwidth of the Sallen-Key filter can be easily met using the innovative source follower. | 03-28-2013 |
20130106503 | HIGH FREQUENCY CIRCUIT DEVICE | 05-02-2013 |
20130154725 | CHARGE DOMAIN FILTER AND METHOD THEREOF - A charge domain filter (CDF) and a method thereof are provided. The CDF includes an amplifier, a first switch-capacitor network (SCN), a second SCN, a third SCN and a fourth SCN. Input terminals of the first and the second SCNs are coupled to first and second output terminals of the amplifier, respectively. Input and output terminals of the third SCN are coupled to output terminals of the first and the second SCNs, respectively. Input and output terminals of the fourth SCN are coupled to output terminals of the second and the first SCNs, respectively. A mode control terminal of the third SCN receives a first mode signal to set an impulse response mode of the third SCN. A mode control terminal of the fourth SCN receives a second mode signal to set an impulse response mode of the fourth SCN. | 06-20-2013 |
20130194034 | UNIVERSAL FILTER IMPLEMENTING SECOND-ORDER TRANSFER FUNCTION - An apparatus includes a biquad filter having first and second lossy integrators and multiple input networks. Each lossy integrator includes an amplifier, and each input network is coupled to an input of the amplifier in one of the lossy integrators. Each input network includes multiple resistors and a capacitor arranged in a T-structure. In a single-ended configuration, each input network includes a grounded capacitor. In a fully-differential configuration, each input network includes one of: a grounded capacitor and a floating capacitor coupled to another input network. The amplifiers and resistors could form a portion of an integrated circuit chip, which also includes multiple input/output pins. A single grounded capacitor could be coupled to a single input/output pin of the integrated circuit chip for an input network. A single floating capacitor could be coupled to two input/output pins of the integrated circuit chip for a pair of input networks. | 08-01-2013 |
20130222054 | LOW DISTORTION FILTERS - An integrated continuous-time active-RC filter comprises a set of opamp integrators with Operational Transconductance Amplifiers (OTAs). The filter further includes at least one assistant connected between the input and output of each of the integrators of the set to enhance the linearity and speed of the opamp integrators of the set. The assistant comprises a plurality of sets of transconductors connected in parallel to each other wherein each set of transconductors is formed by a pair of MOSFETs connected in series, with one MOSFET operating in the triode region and the other MOSFET operating in the saturation region. The assistant is configured to provide an assistant current to be injected into the source of each of the integrators in the set to enhance the linearity and speed of the opamp integrators of the set. | 08-29-2013 |
20130265105 | TRANSISTOR-BASED FILTER FOR INHIBITING LOAD NOISE FROM ENTERING A POWER SUPPLY - A transistor-based filter for inhibiting load noise from entering a power supply is disclosed. The filter includes a first transistor having an emitter coupled to a power supply, a collector coupled to a load, and a base. The filter also includes a first capacitor coupled between the base of the first transistor and a ground terminal The filter further includes an impedance coupled between the base and a node between the collector and the load, or a second transistor and second capacitor. The impedance can be a resistor or an inductor. | 10-10-2013 |
20130293291 | QUALITY FACTOR TUNING FOR LC CIRCUITS - Apparatus and methods are also disclosed related to tuning a quality factor of an LC circuit. In some implementations, the LC circuit can be embodied in a low-noise amplifier (LNA). A quality factor adjustment circuit can increase and/or decrease conductance across the LC circuit. This can stabilize a parasitic resistance in parallel with the LC circuit. In this way, a gain of the LC circuit can be stabilized. | 11-07-2013 |
20130307614 | Method and Apparatus for Improving the Performance of a DAC Switch Array - One of the critical design parameters occurs when a digital signal is converted into an analog signal. As the supply voltage drops to less than 2 times of threshold voltage to reduce leakage and save power, generating a relative large swing with a resistor-ladder DAC becomes more difficult. For a 5 bit DAC, 32 sub-arrays are used to select the appropriate voltage from the series coupled resistor network. Each sub-array uses p-channel transistors where the sub-array extracting the lowest voltage 700 mV only has a 100 mV of gate to source voltage. To compensate for the reduced gate to source voltage, the sub-arrays are partitioned into four groups. In each group, the p-channel width is increased from 2 um to 5 um, as the tap voltage drops from 1.2 V to 0.7 V. This allows the p-channel transistor with a small gate to source voltage to have a larger width thereby improving performance. | 11-21-2013 |
20130342267 | IMAGE REJECTION FOR LOW IF RECEIVERS - A system that includes a polyphase filter comprises first and second gm-C filters with first and second variable biasing and a bias controller coupled to the first and second gm-C filters and configured to offset the first variable biasing and corresponding first gm of the first gm-C filter relative to the second variable biasing and corresponding second gm of the second gm-C filter to thus improve image rejection in the system. A corresponding method includes processing a signal in a complex polyphase filter and controlling biasing of the first gm-C filter stage relative to the second gm-C filter stage to provide a mismatched gm and thereby improve rejection of the image signal. | 12-26-2013 |
20140035665 | Two-Stage Class AB Operational Amplifier - The invention relates to a two stage class AB operational amplifier ( | 02-06-2014 |
20140035666 | Op-R, A Solid State Filter - The device described herein proposes an electronic active filter void of capacitors and inductors. The circuit utilizes only operational amplifiers (OP-Amp) and resistors, hence the name Op-R. Although capable of being constructed of lumped circuit elements this filter is intended for integrated circuit (IC) applications. Filtering of signals can be accommodated from dc through the UHF frequency range depending on the selected op-amp ICs. Low pass, band pass, high pass, as well as band reject frequency responses are achievable. Although the circuits described herein are single input-single output, multiple inputs and outputs present no difficulty, being limited only chip space. Temperature and production spread variations are also considered within the realm of tenability. | 02-06-2014 |
20140035667 | Differential Source Follower having 6dB Gain with Applications to WiGig Baseband Filters - Sallen-Key filters require an operational amplifier with a large input impedance and a small output impedance to meet the external filter characteristics. This invention eliminates the need for internal feedback path for stability and increases the gain of a source follower which has characteristics matching the operational amplifier in the Sallen-Key filter. The source follower provides 6 dB of AC voltage gain and is substituted for the operational amplifier in the Sallen-Key filter. The Sallen-Key filter requires a differential configuration to generate all the required signals with their compliments and uses these signals in a feed forward path. Furthermore, since the source follower uses only two n-channel stacked devices, the headroom voltage is maximized to several hundred millivolts for a 1.2V voltage supply in a 40 nm CMOS technology. Thus, the required 880 MHz bandwidth of the Sallen-Key filter can be easily met using the innovative source follower. | 02-06-2014 |
20140184319 | SHAPER DESIGN IN CMOS FOR HIGH DYNAMIC RANGE - An analog filter is presented that comprises a chain of filter stages, a feedback resistor for providing a negative feedback, and a feedback capacitor for providing a positive feedback. Each filter stage has an input node and an output node. The output node of a filter stage is connected to the input node of an immediately succeeding filter stage through a resistor. The feedback resistor has a first end connected to the output node of the last filter stage along the chain of filter stages, and a second end connected to the input node of a first preceding filter stage. The feedback capacitor has a first end connected to the output node of one of the chain of filter stages, and a second end connected to the input node of a second preceding filter stage. | 07-03-2014 |
20140247089 | Two Stage Source-Follower Based Filter - A filter, comprising: two source-follower stages connected in series and in between input nodes and output nodes, wherein inner nodes connect the two stages; and a frequency dependent feedback circuit connected between the input and output nodes, wherein the filter comprises additional frequency dependent feedback circuits connected between input nodes and inner nodes and between output nodes and inner nodes, the additional frequency dependent feedback circuits comprising capacitors. | 09-04-2014 |
20140266415 | HARMONIC CANCELLATION CIRCUIT FOR AN RF SWITCH BRANCH - Disclosed is a harmonic cancellation circuit for an RF switch branch having a first transistor with a first gate terminal and a first body terminal, a second transistor having a second gate terminal coupled to the first body terminal, and having a second body terminal coupled to the first gate terminal. Also included is a first resistor coupled between a first coupling node and the second body terminal, and a second resistor coupled between a second coupling node and the first body terminal, wherein the first transistor and second transistor are adapted to generate an inverse phase third harmonic signal relative to a third harmonic signal generated by the RF switch branch, such that the inverse phase third harmonic signal is output through the first resistor and the second resistor to the RF switch branch to reduce the third harmonic signal. | 09-18-2014 |
20140285256 | TRANSCONDUCTANCE ADJUSTING CIRCUIT, FILTER CIRCUIT, AND ELECTRONIC APPARATUS - A transconductance adjusting circuit includes: a voltage generating section configured to generate a first differential voltage; a first transconductance amplifier configured to receive the first differential voltage through a first positive-phase voltage transmission line and a first reversed-phase voltage transmission line, and output a second differential voltage through a second positive-phase voltage transmission line and a second reversed-phase voltage transmission line; a first control section configured to receive the second differential voltage and supply a first control voltage to the first transconductance amplifier; a second control section configured to receive the second differential voltage and supply a second control voltage to the first transconductance amplifier; a first resistor section that makes a connection between the first positive-phase voltage transmission line and the second positive-phase voltage transmission line; and a second resistor section that makes a connection between the first reversed-phase voltage transmission line and the second reversed-phase voltage transmission line. | 09-25-2014 |
20140292399 | DECOUPLING CIRCUIT AND SEMICONDUCTOR INTEGRATED CIRCUIT - A decoupling circuit comprises an output buffer that includes a transistor, and a capacitor that has an end thereof connected to an output node of the output buffer and the other end thereof connected to a power supply line, and a logic level outputted by the output node of the output buffer is fixed. | 10-02-2014 |
20140300411 | Apparatus and method for removing mechanical resonance with internal control Loop - The present invention related to an apparatus and method to removing mechanical resonance of a system using internal control loop, and in more particularly, the internal control loop reduces the resonance factor of the system. The approach in the present invention is not sensitive to the system mechanical parameters changes within time and within temperature changes. The approach in the present invention creates mechanical platform with modified equation that have ξ greater than 0.5 which eliminate the mechanical resonance from the system response. The system with resonance response can base on platform that includes the following components: MEMS devices, DC/AC motors and more. | 10-09-2014 |
20140312964 | RECONFIGURABLE HIGH-ORDER INTEGRATED CIRCUIT FILTERS - Voltage and current mode reconfigurable n | 10-23-2014 |
20140333372 | UNIVERSAL FILTER IMPLEMENTING SECOND-ORDER TRANSFER FUNCTION - An apparatus includes a biquad filter having first and second lossy integrators and multiple input networks. Each lossy integrator includes an amplifier, and each input network is coupled to an input of the amplifier in one of the lossy integrators. Each input network includes multiple resistors and a capacitor arranged in a T-structure. In a single-ended configuration, each input network includes a grounded capacitor. In a fully-differential configuration, each input network includes one of: a grounded capacitor and a floating capacitor coupled to another input network. The amplifiers and resistors could form a portion of an integrated circuit chip, which also includes multiple input/output pins. A single grounded capacitor could be coupled to a single input/output pin of the integrated circuit chip for an input network. A single floating capacitor could be coupled to two input/output pins of the integrated circuit chip for a pair of input networks. | 11-13-2014 |
20140340144 | COMMON MODE NOISE REDUCTION CIRCUIT, DIFFERENTIAL SIGNAL TRANSMITTING APPARATUS, DIFFERENTIAL SIGNAL TRANSMITTING SYSTEM AND CAR ELECTRONICS DEVICE - A common mode noise reduction circuit works with a transmission signal output circuit that has a first and a second output terminals and transmits differential signals from the first and second output terminals. The common mode noise reduction circuit includes: a first generating circuit to generate electric current to input to or receive electric current from the first output terminal; a second generating circuit to generate electric current to input to or output receive electric current from the second output terminal; and a control circuit to control the first and second generating circuits so that in synchronism with a drive control clock of the transmission signal output circuit, the first and second generating circuits generate current pulses to reduce common mode noise of the differential signals to be transmitted. | 11-20-2014 |
20150048880 | GLITCH FILTER AND FILTERING METHOD - A glitch filter is disclosed herein. The glitch filter includes a high glitch filter circuit, a low glitch filter and a control circuit. The high glitch filter circuit is configured for generating a pull-up control signal in accordance with the input signal. The low glitch filter circuit is configured for generating a pull-down control signal in accordance with the input signal. The control circuit is configured for determining the logic level of the output of the glitch filter in accordance with the pull-up control signal and the pull-down control signal. A filtering method for filtering glitches is disclosed herein as well. | 02-19-2015 |
20150318794 | AUXILIARY RESONANT COMMUTATED POLE CONVERTER WITH VOLTAGE BALANCING CIRCUIT - A resonant power converter is provided. The resonant power converter comprises a balancing circuit for balancing the voltage in a feeding connection. The balancing circuit comprises: a first positive control means in series with an inductor, wherein the first positive control means and the inductor is coupled between the positive DC conductor and the feeding connection, and a second negative control means in series with the inductor, wherein the second negative control means are coupled between the negative DC conductor and the feeding connection. The first positive and second negative control means are adapted to be alternatingly switched on and off for balancing the resonant power converter, such that the voltage in the feeding connection is substantially the mean voltage of the positive DC conductor and the negative DC conductor. | 11-05-2015 |
20190148046 | MAGNETORESISTANCE EFFECT DEVICE AND MAGNETORESISTANCE EFFECT MODULE | 05-16-2019 |
20190149133 | TUNABLE FILTER | 05-16-2019 |