Entries |
Document | Title | Date |
20080238530 | Semiconductor Device Generating Voltage for Temperature Compensation - An input transistor unit includes a first transistor having a control electrode to which a reference voltage is supplied. An output transistor unit includes a diode-connected second transistor. At least one of the input transistor unit and the output transistor unit further includes a third transistor that is diode-connected and connected in series with the corresponding first transistor or the second transistor and outputs a current in the same direction as the corresponding transistor does. The number of transistors included in the input transistor unit and the number of transistors included in output transistor unit are different from each other. The size of transistors included in the input transistor unit differs from that of transistors included in the output transistor unit. | 10-02-2008 |
20080284493 | Proportional to absolute temperature current generation circuit having higher temperature coefficient, display device including the same, and method thereof - A proportional to absolute temperature (PTAT) current generation circuit may include a current mirror unit and/or a level control unit. The current mirror unit may be connected between a first power supply voltage, a first node, and/or a second node. The level control unit may be connected between the first node, the second node, and/or a second power supply voltage. The level control unit may be configured to control a level of an output current of the current mirror unit based on a voltage level of the first node and a voltage level of the second node. The level control unit may include a first transistor connected between the first node and the second power supply voltage, at least one second transistor connected between the second node and a third node, the at least one second transistor configured to operate in a weak inversion region, and/or a third transistor connected between the third node and the second power supply voltage. | 11-20-2008 |
20080297229 | LOW POWER CMOS VOLTAGE REFERENCE CIRCUITS - A CMOS voltage reference circuit for a low voltage (1v), low power supply application is described. The circuit achieves a temperature coefficient of 31 ppm for a relatively large temperature range of −40 C to 125 C. A combination of subthreshold current characteristics and moderate inversion operation of MOSFET's are utilized in conjunction to achieve a fairly stable temperature independent output voltage reference (V | 12-04-2008 |
20090015316 | Heating-Control Isolation-Diode Temperature-Compensation - A semiconductor integrated circuit (IC) acts as a controller of a heating-controlled device or appliance. A heating body has a positive temperature coefficient and acts as both a heating element and a temperature sensor. A Silicon-Controlled Rectifier (SCR) switches AC current to the heating body to increase its temperature. When the SCR switches off, temperature sensing is performed using a sampling resistor, isolation diode, voltage comparator, and switch for a low-voltage DC supply are formed on an integrated circuit that has a first circuit branch and a second circuit branch. A compensation diode and a compensation resistor can be added in parallel to reference resistors. The compensation diode compensates for the forward voltage drop of the isolation diode that would otherwise create an inaccurate temperature measurement. The diodes have the same temperature response, allowing for a more accurate temperature measurement over a full temperature range of the sensorless appliance. | 01-15-2009 |
20090027106 | Substantially Zero Temperature Coefficient Bias Generator - In an embodiment, a bias generator circuit comprises a first circuit and a second circuit. The first circuit includes a first input coupled to a voltage source and a first output that provides a first output current having a substantially non-zero temperature coefficient. The first circuit comprises a first transistor and a second transistor. The second circuit includes a second input that receives the first output current from the first circuit and a second output that provides a second output current. The second circuit comprises a third transistor and a fourth transistor. The second output current has a substantially zero temperature coefficient dependent on (i) a difference between an effective channel size of the first transistor and an effective channel size of the second transistor, and (ii) a difference between an effective channel size of the third transistor and an effective channel size of the fourth transistor. | 01-29-2009 |
20090039945 | Bias Current Generator - An electronic device generates a current with a predetermined temperature coefficient. The circuit comprises a temperature coefficient (TC) component receiving a bias current, a differential amplifier providing a buffered output voltage based on the voltage across the TC component and a resistor receiving an TC current based on the differential amplifier output voltage. The differential amplifier has a predetermined input related offset which decreases the voltage drop across the resistor. The temperature coefficient component could have either a negative temperature component (NTC) or a positive temperature component (PTC). | 02-12-2009 |
20090066404 | MOSFET WITH TEMPERATURE SENSE FACILITY - A transistor ( | 03-12-2009 |
20090066405 | APPARATUS AND METHOD FOR GENERATING INTERNAL VOLTAGE IN SEMICONDUCTOR INTEGRATED CIRCUIT - An internal voltage generating apparatus includes: a voltage detector that detects the level of the internal voltage and outputs a fixed level detection signal and a variable level detection signal. An oscillation controller generates an oscillation enable signal according to whether the fixed level detection signal and the variable level detection signal are enabled. An internal voltage generator generates the internal voltage in response to the oscillation enable signal. | 03-12-2009 |
20090072882 | On die thermal sensor of semiconductor memory device and method thereof - An on die thermal sensor (ODTS) includes a thermal sensor for outputting a first comparing voltage by detecting a temperature of the semiconductor memory device; a comparing unit for outputting a trimming code by comparing the first comparing voltage with a second comparing voltage and increasing or decreasing a preset digital code in response to the comparing result; and a voltage level adjusting unit for adjusting a voltage level of the second comparing voltage by determining a maximum variation voltage and a minimum variation voltage based on the trimming code and a temperature control code. | 03-19-2009 |
20090079493 | Temperature-Compensated Current Generator, for Instance for 1-10V Interfaces - A current generator arrangement for use, e.g., in 1-10V interfaces for lighting systems, includes at least one transistor (Q | 03-26-2009 |
20090085647 | STORAGE APPARATUS FOR USING ADAPTIVE CLOCK TO TEMPERATURE CHANGE AND BROADCAST RECEIVING APPARATUS USING THE SAME - Provided are a storage apparatus in which a clock can be adapted according to temperature changes and a broadcast receiving apparatus using the same. The storage apparatus adjusts and uses a signal, which is used to read out data from a memory, according to the measured temperature. Accordingly, the storage apparatus can be prevented from erroneously reading data from the memory due to clock errors caused by temperature changes. | 04-02-2009 |
20090096504 | Data reception apparatus and microcomputer having the same - A data reception apparatus includes: an oscillation circuit that multiplies or divides an oscillation signal from a CR oscillator based on a cycle setting value, and outputs a clock signal corresponding to the multiplied or divided oscillation signal; a temperature detector; a memory; a clock cycle setting element that reads the cycle setting value corresponding to the temperature from the memory, and inputs the cycle setting value into the oscillation circuit; a receiver that receives a data signal defined by the clock signal; a measurement element that measures a unit bit length of the data signal by counting the clock signal; and a correction element that corrects the cycle setting value based on a count value of the clock signal and a reference count value of a reference cycle corresponding to the unit bit length, and rewrites the cycle setting value with the corrected cycle setting value. | 04-16-2009 |
20090108913 | MOS RESISTOR WITH SECOND OR HIGHER ORDER COMPENSATION - A circuit arrangement (e.g., an integrated circuit) generates a second or higher order compensation voltage to compensate for variations in operation parameters (e.g., temperature and process variations). In one aspect, the compensation voltage is applied to a MOS resistor to compensate for mobility variations of the MOS resistor by maintaining a stable equivalent resistance. The compensated MOS resistor can provide a relatively stable resistance for a variety of analog circuit applications, such as a current reference. | 04-30-2009 |
20090128223 | Thermally stable semiconductor power device - A semiconductor power device includes a circuit to provide a gate signal wherein the gate signal has a negative temperature coefficient of gate driving voltage for decreasing a gate driving voltage with an increase temperature whereby the semiconductor power device has a net Ids temperature coefficient that is less than or equal to zero. In an exemplary embodiment, the gate voltage driver includes a diode that has a negative forward voltage temperature coefficient connected between a gate and a source of the semiconductor power device. In another embodiment, the gate voltage is integrated with the semiconductor power device manufactured as part of an integrated circuit with the semiconductor power device. | 05-21-2009 |
20090140792 | TEMPERATURE COMPENSATION CIRCUIT - A temperature compensation circuit according to an embodiment of the present invention includes a bias circuit configured to output a bias current, the bias current having a current value increasing in proportion to absolute temperature, in a low temperature region in which a temperature is lower than a predetermined temperature, and having a greater current value than the current value increasing in proportion to absolute temperature, in a high temperature region in which the temperature is equal to or greater than the predetermined temperature, and a transistor having a collector connected to a power supply terminal, an emitter which is grounded, and a base supplied with the bias current. | 06-04-2009 |
20090146726 | DELAY CIRCUIT WITH CONSTANT TIME DELAY INDEPENDENT OF TEMPERATURE VARIATIONS - A delay circuit has: an inverting receiver with a resistive element, the inverting receiver having an input node for receiving an input signal and an output node coupled to the resistive element; a capacitive element, coupled to the output node of the inverting receiver and the resistive element; a first transistor, having lower turned ON voltage at higher temperature; a second transistor, used for generating a rail to rail signals on a terminal of the first transistor; and an output inverter, having an input node coupled to the first transistor and an output node for outputting an output signal of the delay circuit. Further, a third transistor is used for enhancing pulling low of the output signal of the delay circuit. | 06-11-2009 |
20090146727 | VOLTAGE GENERATING APPARATUS - A voltage generating apparatus including a current source, a first voltage source, a second voltage source, a first differential pair, a second differential pair, a voltage divider and a current mirror is provided. The voltage divider is used for reducing a voltage with a negative temperature coefficient, so as to reduce the amplification ratio of the voltage with a positive temperature coefficient used for compensating the negative temperature coefficient. | 06-11-2009 |
20090167414 | TEMPERATURE DETECTION FOR A SEMICONDUCTOR COMPONENT - Temperature detection for a semiconductor component is disclosed. One embodiment includes a circuit arrangement for measuring a junction temperature of a semiconductor component that has a gate electrode and a control terminal being connected to the gate electrode and receiving a control signal for charging and discharging the gate electrode, where the gate electrode is internally connected to the control terminal via an internal gate resistor. The circuit arrangement includes: a measuring bridge circuit including the internal gate resistor and providing a measuring voltage which is dependent on the temperature dependent resistance of the internal gate resistor; an evaluation circuit receiving the measuring voltage and providing an output signal dependent on the junction temperature; a pulse generator providing a pulse signal including pulses for partially charging or discharging the gate electrode via the internal gate resistor. | 07-02-2009 |
20090184748 | Voltage regulator - Provided is a voltage regulator for limiting a rush current from an output stage transistor. The voltage regulator includes an output current limiting circuit having a low detection current value and an output current limiting circuit having a high detection current value, and is structured so as to enable operation of the output current limiting circuit having a low detection current value during a time period from a state in which an overheat protection circuit detects overheat and an output current is stopped to a state in which an overheat protection is canceled and a predetermined time passes. Accordingly, after the overheat protection is cancelled, an excessive rush current can be limited. | 07-23-2009 |
20090195294 | Method and System for Signal Generation via a Temperature Sensing Crystal Integrated Circuit - Aspects of a method and system for signal generation via a temperature sensing crystal integrated circuit are provided. In this regard, a temperature sensing crystal integrated circuit (TSCIC) comprising a memory and a crystal or crystal oscillator may generate a signal indicative of a measured temperature. The generated signal and data stored in the memory may be utilized to configure one or more circuits communicatively coupled to the TSCIC. The data stored in the memory may characterize behavior of the TSCIC as a function of temperature and/or time. The data characterizing the behavior of the TSCIC may indicate variations in frequency of the crystal or crystal oscillator as a function of temperature and/or time. The data characterizing the behavior of the TSCIC may comprise one or both of a frequency value and a frequency correction value. | 08-06-2009 |
20090212847 | SYSTEM AND METHOD FOR SENSOR THERMAL DRIFT OFFSET COMPENSATION - A system and method for compensating for thermal drift. A temperature is measured in a meter as a temperature voltage. The temperature voltage is converted to a digital signal. The digital signal is processed to generate an offset voltage in response to the digital signal. The offset voltage is applied as an input to an amplifier. The amplifier receives as a second input a gauge voltage. An output is generated from the meter that corrects the gauge voltage using the offset voltage to compensate for thermal drift. | 08-27-2009 |
20090224819 | CONSTANT CURRENT CIRCUIT, AND INVERTER AND OSCILLATION CIRCUIT USING SUCH CONSTANT CURRENT CIRCUIT - A bias current source generates a constant current Iref by applying to a current-generating resistor a voltage proportional to a thermal voltage Vt. A first bipolar transistor and a second bipolar transistor are disposed in series on the path of the constant current which is generated by the bias current source. A third bipolar transistor forms a current mirror circuit with the second bipolar transistor. A fourth bipolar transistor has a base connected to the base of the first bipolar transistor and has an emitter connected to a temperature-compensating resistor. The constant current circuit outputs a sum of the collector currents of the third bipolar transistor and the fourth bipolar transistor. | 09-10-2009 |
20090243704 | Internal voltage generator - An internal voltage generator includes an internal voltage detecting unit that receives an active signal activated in an active operation mode of a semiconductor memory and a bias voltage varying according to temperature variation, detects a level of an internal voltage by using a reference voltage and outputs an internal voltage pumping signal activated according to the level of the internal voltage. | 10-01-2009 |
20090284304 | CIRCUIT FOR GENERATING A TEMPERATURE-COMPENSATED VOLTAGE REFERENCE, IN PARTICULAR FOR APPLICATIONS WITH SUPPLY VOLTAGES LOWER THAN 1V - An embodiment of a circuit is described for the generation of a temperature-compensated voltage reference of the type comprising at least one generator circuit of a band-gap voltage, inserted between a first and a second voltage reference and including an operational amplifier, having in turn a first and a second input terminal connected to an input stage connected to these first and second input terminal and comprising at least one pair of a first and a second bipolar transistor for the generation of a first voltage component proportional to the temperature. The circuit also comprises the control block connected to the generator circuit of a band-gap voltage in correspondence with at least one first control node which is supplied with a biasing voltage value comprising at least one voltage component which increases with the temperature for compensating the variations of the base-emitter voltage of the first and second bipolar transistors and ensure the turn-on of a pair of input transistors of the operational amplifier. The circuit has an output terminal suitable for supplying a temperature-compensated voltage value obtained by the sum of the first voltage component proportional to the temperature and of a second component inversely proportional to the temperature. | 11-19-2009 |
20090322409 | Power reduction apparatus and method - Provided is an approach to saving active power through lowering a supply voltage when operating temperature goes up, while substantially maintaining operating performance. | 12-31-2009 |
20100001785 | SEMICONDUCTOR COMPONENT AND METHOD OF DETERMINING TEMPERATURE - One embodiment provides a circuit arrangement integrated in a semiconductor body. At least one power semiconductor component integrated in the semiconductor body and having a control connection and a load connection is provided. A resistance component is thermally coupled to the power semiconductor component and likewise integrated into the semiconductor body and arranged between the control connection and the load connection of the power semiconductor component. The resistance component has a temperature-dependent resistance characteristic curve. A driving and evaluation unit is designed to evaluate the current through the resistance component or the voltage drop across the resistance component and provides a temperature signal dependent thereon. | 01-07-2010 |
20100013544 | Temperature-Dependent Signal Provision - An arrangement and a method for providing a temperature-dependent signal. Several current sources ( | 01-21-2010 |
20100013545 | Temperature Compensation For RF Detectors - Compensation for an RF detector includes components having different order temperature functions. The components are combined and may be adjusted by various numbers of user-accessible terminals to provide individual adjustment for factors such as operating frequency. In some embodiments, first and second-order temperature functions are generated independently and combined to provide a polynomial function of temperature with coefficients that may be adjusted. In other embodiments, the outputs of the function generators may be more complex functions of temperature with various adjustable parameters. | 01-21-2010 |
20100013546 | SYSTEMS AND METHODS FOR FILTER TUNING USING BINARY SEARCH ALGORITHM - A filter tuning system for quickly compensating a time constant using a binary search algorithm is disclosed. The filter tuning system includes a time constant detector, a comparator and a calibration unit. The time constant detector detects a time constant of a filter based on an integral value of a reference input signal using an integrator when the time constant of the filter changes according to a variation of a manufacturing process or a temperature. The integrator includes a capacitor changing according to a variation of the time constant of the filter. The comparator compares the detected time constant with a reference value. The calibration unit compensates the time constant of the filter using the binary search algorithm based on the comparison result until an error between the time constant and the reference value is reduced within an acceptable range. | 01-21-2010 |
20100045362 | Temperature-gradient cancelation technique and device - A system, device, and method for minimizing x-axis and/or y-axis offset shift due to internally produced as well as externally produced on chip temperature imbalances. At least one temperature gradient canceling device is disposed on a substrate including a temperature gradient sensitive device having at least one pair of sensors. Voltage signals generated by the temperature gradient canceling devices can be combined with voltage signals generated by each of the pair of sensors to account for the offset. | 02-25-2010 |
20100066434 | TEMPERATURE COMPENSATING CIRCUIT AND METHOD - A temperature compensating circuit including a reference circuit, a transistor and a first circuit is provided. The reference circuit has a reference current and a resistance circuit, wherein the resistance circuit includes a first terminal receiving the reference current, a second terminal and a negative-temperature-coefficient resistor. The transistor has a drain, a source and a path disposed between the drain and the source, wherein the path of the transistor is connected in series with the resistance circuit, a gate of the transistor is electrically connected to the drain of the transistor and the second terminal of the resistance circuit, and the drain of the transistor produces a bias-voltage signal. The first circuit produces an output signal having a variable frequency in response to the bias-voltage signal, wherein the temperature compensating circuit utilizes the negative-temperature-coefficient resistor to compensate the variable frequency for a temperature change in the temperature compensating circuit. | 03-18-2010 |
20100073068 | FUNCTIONAL BLOCK LEVEL THERMAL CONTROL - An integrated circuit. The integrated circuit includes a plurality of functional units, wherein each of the plurality of functional units is implemented on a die of the integrated circuit. Each of the functional units includes one or more temperature sensors. The integrated circuit further includes a temperature control unit coupled to each of the functional units, wherein the temperature control unit is configured to monitor a temperature of each of the plurality of functional units based on temperature information provided from the temperature sensors. The temperature control unit is configured to, if the temperature exceeds a first threshold value for a particular one of the plurality of functional units, perform a first temperature control action on the particular one of the plurality of functional units independently of other ones of the plurality of functional units. | 03-25-2010 |
20100073069 | On-Chip Bias Voltage Temperature Coefficient Self-Calibration Mechanism - Techniques and corresponding circuitry for deriving a supply a bias voltage for a memory cell array from a received reference voltage is presented. The circuit includes a voltage determination circuit, which is connected to receive the reference voltage and generate from it the bias voltage, a temperature sensing circuit, and a calibration circuit. The calibration circuit is connected to receive the bias voltage and to receive a temperature indication from the temperature sensing circuit and determine from the bias voltage and temperature indication a compensation factor that is supplied to the voltage determination circuit, which adjusts the bias voltage based upon the compensation factor. | 03-25-2010 |
20100073070 | Low Voltage High-Output-Driving CMOS Voltage Reference With Temperature Compensation - A bandgap reference voltage generator has a first stage that generates a first current that is complementary-to-absolute-temperature (Ictat) and a second stage that generates a current that is proportional-to-absolute-temperature (Iptat). The Ictat and Iptat currents are both forced through a summing resistor to generate a voltage that is relatively independent of temperature, since the Ictat and Iptat currents cancel out each other's temperature dependencies. A PMOS output transistor drives current to an output load to maintain the load at the reference voltage. An op amp drives the gate of the PMOS output transistor and has inputs connected to emitters of PNP transistors in the second stage. A series of resistors generate the reference voltage between the PMOS output transistor and ground and drives bases of the PNP transistors and includes the summing resistor. Parasitic PNP transistors in an all-CMOS process are used. The generator operates with a 1-volt power supply. | 03-25-2010 |
20100073071 | Over-temperature detecting circuit with high precision - An over-temperature detecting circuit includes a band-gap circuit for generating a temperature-drop-dependent voltage and a reference voltage not varying with the temperature, a transistor coupled to the band-gap circuit for generating a temperature-rise-dependent current according to the temperature-drop-dependent voltage, a resistor coupled to the transistor for generating a temperature-rise-dependent voltage according to the temperature-rise-dependent current, and a comparator coupled to the band-gap circuit and the resistor for generating a thermal shutdown signal according to the reference voltage and the temperature-rise-dependent voltage. | 03-25-2010 |
20100079198 | Constant Current Circuit - A constant-current circuit comprising: a temperature-compensation circuit to output a temperature-compensated first current; and a current-supply circuit to supply a second current to the temperature-compensation circuit, the temperature-compensation circuit including a voltage-multiplication circuit including a first transistor to generate a base-collector voltage obtained by multiplying a base-emitter voltage by a predetermined ratio, a second transistor identical in conductivity type and substantially equal in base-emitter voltage to the first transistor, a first resistor having two ends connected to a first-transistor collector and second-transistor base, respectively, and a second resistor having two ends connected to first and second-transistor emitters, respectively, the first current being output according to a second-transistor collector current, the second current being supplied to a connection point between a second-transistor base and the first resistor, to generate between both ends of the first resistor a voltage varying substantially in proportion to temperature. | 04-01-2010 |
20100097121 | METHOD AND ARRANGEMENT FOR CONTROLLING SEMICONDUCTOR COMPONENT - A method is disclosed for controlling a semiconductor component which includes a voltage controlled gate. The method includes determining and storing, prior to use of the semiconductor component, reference values of a gate voltage to be given to the gate of the semiconductor component during a change of operating states. The method also includes providing a pulse width modulated voltage from a driver circuit to a resistor connected to the gate of the semiconductor component according to the stored reference values of the gate voltage when a change in operating states of the semiconductor component is desired. | 04-22-2010 |
20100109753 | METHOD OF OUTPUTTING TEMPERATURE DATA IN SEMICONDUCTOR DEVICE AND TEMPERATURE DATA OUTPUT CIRCUIT THEREFOR - A method of outputting temperature data in a semiconductor device and a temperature data output circuit are provided. A pulse signal is generated in response to a booting enable signal activated in response to a power-up signal and the generation is inactivated in response to a mode setting signal during a power-up operation. A comparison signal is generated in response to the pulse signal by comparing a reference voltage independent of temperature with a sense voltage that varies with temperature change. The temperature data is changed in response to the comparison signal. Thus, the temperature data output circuit can rapidly output the exact temperature of the semiconductor device measured during the power-up operation. | 05-06-2010 |
20100117716 | PERIODIC SIGNAL GENERATING CIRCUIT DEPENDENT UPON TEMPERATURE FOR ESTABLISHING A TEMPERATURE INDEPENDENT REFRESH FREQUENCY - A periodic signal generating circuit which is dependent upon temperature for establishing a temperature independent refresh frequency is presented The periodic signal generating circuit includes a reference voltage generating unit and a periodic signal generating unit. The reference voltage generating unit produces a reference voltage which exhibits a variable voltage level in response to temperature. The periodic signal generating unit produces a periodic signal in response to a set voltage to determine the reference voltage and an oscillation period, wherein a transition timing of the set voltage is controlled by the reference voltage. As a result the periodic signal has a relatively constant period which can be produced regardless of the temperature variation. | 05-13-2010 |
20100141329 | Temperature sensor and method of compensating for change in output characteristic due to varying temperature - Described is a method and apparatus for compensating for a change in an output characteristic of a temperature sensor due to varying temperature. The temperature sensor includes a temperature sensing core, an analog-to-digital converter, a counter, and a temperature compensating circuit. The temperature sensing core generates a sense voltage corresponding to a sensed temperature. The analog-to-digital converter converts the sense voltage into a digital signal and generates a conversion signal. The temperature compensating circuit generates a counter clock signal that varies according to a temperature change. The counter counts the number of pulses of the counter clock signal according to the conversion signal. | 06-10-2010 |
20100164602 | TEMPERATURE SENSING CIRCUIT - A temperature sensing circuit includes a temperature-dependent voltage generating block configured to generate a plurality temperature-dependent voltages having voltage levels that are changed according to temperature; and a comparing block configured to compare each voltage level of the temperature-dependent voltages with a voltage level of a predetermined voltage to output thermal codes. | 07-01-2010 |
20100176869 | TEMPERATURE COMPENSATION CIRCUIT - A temperature compensation circuit according to an embodiment of the present invention includes a bias circuit configured to output a bias current having a current value increasing in proportion to an absolute temperature in a low-temperature region in which a temperature is lower than a predetermined temperature, and having a greater current value than the current value proportional to the absolute temperature in a high-temperature region in which the temperature is equal to or greater than the predetermined temperature, and a transistor having a control terminal supplied with the bias current. The bias circuit includes a first current generating circuit configured to generate a first current increasing in proportion to the absolute temperature, a second current generating circuit configured to generate a second current that does not flow in the low-temperature region and flows in the high-temperature region, and a control circuit configured to control the second current and having a connection terminal capable of being connected with an external resistor for adjusting a magnitude of the second current, and is configured to generate a third current by adding the first current to the second current, and output the bias current depending on or equal to the third current. | 07-15-2010 |
20100194465 | TEMPERATURE COMPENSATED CURRENT SOURCE AND METHOD THEREFOR - In one embodiment, a temperature compensated current source includes a depletion mode transistor coupled in series with an active semiconductor device that adjust the depletion mode transistor to minimize variations in the current due to temperature changes. | 08-05-2010 |
20100201430 | MOS Resistor with Second or Higher Order Compensation - A circuit arrangement (e.g., an integrated circuit) generates a second or higher order compensation voltage to compensate for variations in operation parameters (e.g., temperature and process variations). In one aspect, the compensation voltage is applied to a MOS resistor to compensate for mobility variations of the MOS resistor by maintaining a stable equivalent resistance. The compensated MOS resistor can provide a relatively stable resistance for a variety of analog circuit applications, such as a current reference. | 08-12-2010 |
20100214007 | MICROPROCESSOR PERFORMANCE IMPROVEMENT BY DYNAMIC NBTI COMPENSATION THROUGH TRANSISTOR FORWARD BIASING - A method for compensating negative bias temperature instability (NBTI) effects on a given model of transistors includes monitoring the NBTI effects on the transistors over time, determining a change in a threshold voltage of the transistors over time based on the monitoring, determining a forward bias voltage based on the change in threshold voltage, and applying the forward bias voltage to the transistors over time. The method may further include storing the monitoring results in a lookup table, and adjusting the forward bias voltage based on the lookup table. The monitoring may include emulating the NBTI effects on a system comprising a plurality of semiconductor devices in which the transistors are used. | 08-26-2010 |
20100219880 | LEVEL DETECTOR, VOLTAGE GENERATOR, AND SEMICONDUCTOR DEVICE - A level detector, a voltage generator, and a semiconductor device are provided. The voltage generator includes a level detector that senses the level of an output voltage to output a sensing signal and a voltage generating unit that generates the output voltage in response to the sensing signal. The level detector may include a first reference voltage generator configured to divide a first voltage and to output a first reference voltage, a second reference voltage generator configured to divide a second voltage in response to the output voltage and to output a second reference voltage that varies as a function of temperature, and a differential amplifier configured to receive the first and second reference voltages and to output a sensing signal in response to a sensing voltage generated by amplifying a difference between the first and second reference voltages. | 09-02-2010 |
20100244931 | LOGARITHMIC TEMPERATURE COMPENSATION FOR DETECTORS - The intercept of a logarithmic amplifier is temperature stabilized by generating a signal having the form H log H where H is a function of temperature such as T/T | 09-30-2010 |
20100253416 | SEMICONDUCTOR INTEGRATED CIRCUIT - A semiconductor integrated circuit includes a delay characteristic compensating circuit that is provided in a logic area including an inside and a surface of a chip. The delay characteristic compensating circuit includes a heat generating circuit that heats the semiconductor integrated circuit, a temperature sensor that measures a junction temperature, a voltage monitor that measures a power supply voltage, and a control circuit that actuates the heat generating circuit when the junction temperature does not reach a reference temperature and when the power supply voltage is lower than a reference voltage and stops actuating the heat generating circuit when the junction temperature reaches the reference temperature. | 10-07-2010 |
20100264980 | TEMPERATURE-COMPENSATED VOLTAGE COMPARATOR - A temperature-compensated voltage comparator ( | 10-21-2010 |
20100277223 | Voltage/current reference using thermal electric feedback - Voltage and current reference sources capable of providing an output signal level which is insensitive to temperature variations, radiation, and to variations in the input voltage supplied to the reference circuit. The reference output level is used to vary the temperature of at least one resistor that is in a resistor bridge network. By applying resistor temperature variation as negative feedback the voltage and current reference sources output voltage level is maintained at a relatively constant level. | 11-04-2010 |
20100283530 | Semiconductor Temperature Sensor Using Bandgap Generator Circuit - A combined bandgap generator and temperature sensor for an integrated circuit is disclosed. Embodiments of the invention recognize that bandgap generators typically contain at least one temperature-sensitive element for the purpose of cancelling temperature sensitivity out of the reference voltage the bandgap generator produces. Accordingly, this same temperature-sensitive element is used in accordance with the invention as the means for indicating the temperature of the integrated circuit, without the need to fabricate a temperature sensor separate and apart from the bandgap generator. Specifically, in one embodiment, a voltage across a temperature-sensitive junction from a bandgap generator is assessed in a temperature conversion stage portion of the combined bandgap generator and temperature sensor circuit. Assessment of this voltage can be used to produce a voltage- or current-based output indicative of the temperature of the integrated circuit, which output can be binary or analog in nature. | 11-11-2010 |
20100301923 | MONOLITHIC VOLTAGE REFERENCE DEVICE WITH INTERNAL, MULTI-TEMPERATURE DRIFT DATA AND RELATED TESTING PROCEDURES - A testing procedure may determine whether a monolithic voltage reference device meets a temperature drift specification. A first non-room temperature output voltage of the monolithic voltage reference device may be measured while the monolithic voltage reference device is at a first non-room temperature which is substantially different than room temperature. First non-room temperature information may be stored in a memory within the monolithic voltage reference device which is a function of the first non-room temperature output voltage. A second non-room temperature output voltage of the monolithic voltage reference device may be measured while the monolithic voltage reference device is at a second non-room temperature which is substantially different than the room temperature and the first non-room temperature. Second non-room temperature information may be stored in the memory without destroying the first non-room temperature information which is a function of the second non-room temperature output voltage. A determination may be made whether the monolithic voltage reference device meets the temperature drift specification based on a computation that is a function of both the first non-room temperature information and the second non-room temperature information. | 12-02-2010 |
20100301924 | SEMICONDUCTOR INTEGRATED CIRCUIT AND OPERATION METHOD FOR THE SAME - The semiconductor integrated circuit is provided, in which an external temperature control or temperature monitoring is possible, with little influence by the noise of a system board which mounts the semiconductor integrated circuit. The semiconductor integrated circuit includes the temperature detection circuit which detects the chip temperature, and the functional module which flows a large operating current. An external terminal which supplies operating voltage, and an external terminal which supplies ground voltage are coupled to the functional module. The temperature detection circuit generates a temperature detection signal and a reference signal. The reference signal and the temperature detection signal are led out to the exterior of the semiconductor integrated circuit via a first external output terminal and a second external output terminal, respectively, and are supplied to an external temperature control/monitoring circuit which has a circuitry type of a differential amplifier circuit. | 12-02-2010 |
20100321093 | REFERENCE VOLTAGE OUTPUT CIRCUIT - A first output section of a reference voltage output circuit outputs a negative gradient voltage of a first magnitude. An amplifier includes a non-inverting input terminal connected to the first output section, an inverting input terminal, and an output terminal. One end of a first resistor connected to the output terminal and the other end connected to the inverting input terminal. One end of a second resistor is connected to the other end of the first resistor. A second output section connected to the other end of the second resistor outputs a negative gradient voltage of a second magnitude having an absolute value greater than the first magnitude. A resistance value ratio of the first and second resistors is set such that a temperature gradient of the voltage applied to the first resistor is a positive gradient having an absolute value of the same magnitude as the first magnitude. | 12-23-2010 |
20100321094 | METHOD AND CIRCUIT IMPLEMENTATION FOR REDUCING THE PARAMETER FLUCTUATIONS IN INTEGRATED CIRCUITS - This invention provides a method for reducing the effects of process, supply voltage and temperature variations in integrated circuits and its circuit implementation. The disclosed method builds up a detecting-feedback loop with a plurality of target MOS transistors in main circuits, an induction MOS transistor and a current-to-voltage conversion circuit, and performs a body modulation to effectively reduce the parameter fluctuations of the target MOS transistors in a sub-threshold region or a saturated region due to process, supply voltage and temperature variations. A body-modulated circuit achieves the disclosed method with only a few circuit elements, which effectively improves the stability, reliability and product yield of integrated circuits, especially sub-threshold integrated circuits, without significantly increasing the circuit complexity and power consumption. | 12-23-2010 |
20100327952 | Electronic System Capable of Compensating Process, Voltage and Temperature Effects - An electronic system includes an integrated circuit, powered by a first voltage, with a first device provided therein; a detection device coupled to the first device to detect an output deviation of the first device attributed to process, voltage and temperature (PVT) effects; and a compensation device coupled to the detection device, adjusting the first voltage in response to the output deviation and outputting the first voltage to the integrated circuit to compensate for the PVT effects. The electronic system further comprises a conversion device, coupled between the detection device and the compensation device, to generate an indication signal corresponding to the output deviation for the compensation device to adjust the first voltage. In addition, the compensation device may compare and amplify a difference between a voltage level of the indication signal and a reference to linearly adjust the first voltage for compensating for the PVT effects. | 12-30-2010 |
20110001547 | THRESHOLD VOLTAGE DIGITIZER FOR ARRAY OF PROGRAMMABLE THRESHOLD TRANSISTORS - A system includes a voltage generator, current sensing amplifiers, and a control module. The voltage generator outputs a first voltage, which is generated based on received codewords, to a first word line that communicates with N transistors each having programmable threshold voltages, where N is an integer greater than 1. The current sensing amplifiers sense currents through the N transistors via N bit lines, respectively, and generate control signals when current through a corresponding one of the N transistors is greater than or equal to a predetermined current. The control module generates measured values of the threshold voltages of the N transistors by compensating the ones of the codewords based on at least one of a position of the corresponding ones of the N transistors and a temperature. | 01-06-2011 |
20110006831 | DEVICES AND METHODS FOR REDUCING EFFECTS OF DEVICE MISMATCH IN TEMPERATURE SENSOR CIRCUITS - A temperature sensor having one or more mirror circuits output temperature dependent output signals is disclosed in one embodiment. The temperature sensor includes a sampling circuit coupled to receive a clock signal that samples the output signals for a duration of a predetermined number of clock cycles. The temperature sensor additionally includes a phase control circuit that receives the clock signal and generates a control signal that enables subsequent sampling operations. Each subsequent sampling operation has a duration of the predetermined number of clock cycles. The control signal from the phase control circuit further enables input and output terminals of respective circuit components in the mirror circuits to be switched for each subsequent sampling operation. | 01-13-2011 |
20110018609 | TEMPERATURE COMPENSATION IN OUTPUT FEEDBACK OF A FLYBACK POWER CONVERTER - A secondary circuit of a flyback power converter has a resistor network to monitor the output current of the flyback power converter, so as to generate a voltage to apply to a base of a bipolar junction transistor to thereby provide a collector signal for output feedback. The resistor network has a temperature-dependent resistance to compensate the temperature dependence of the base-emitter voltage imparted to the output current and thereby stable the output current. | 01-27-2011 |
20110050324 | INTEGRATED SMART POWER SWITCH - A device including a controllable semiconductor, sensor, and controller is provided. The controllable semiconductor is associated with a first operating parameter and a second operating parameter, wherein at least the first operating parameter is controllable. The sensor is in communication with the controllable semiconductor device and acquires data relating to the second operating parameter of the controllable semiconductor device. The controller is in communication with the controllable semiconductor device and the sensor, and the controller is configured to access device data associated with the controllable semiconductor, control the first operating parameter of the controllable semiconductor, and receive data from the first sensor relating to the second operating parameter. The controller determines a first predicted value dependent on the device data, compares the data relating to the second operating parameter with the first predicted value, and, if a first condition is detected based on this comparison, dynamically modifies the first operating parameter. | 03-03-2011 |
20110109373 | TEMPERATURE COEFFICIENT MODULATING CIRCUIT AND TEMPERATURE COMPENSATION CIRCUIT - In the conventional temperature compensation circuit, the thermal resistor is used to perform the temperature compensation, but the provided compensation range is limited due to the temperature coefficient of the thermal resistor. The embodiment of the invention provides a temperature coefficient modulating circuit capable of amplifying the temperature coefficient of the thermal resistor, so as to provide a wider compensation range in different applications. | 05-12-2011 |
20110169553 | TEMPERATURE COMPENSATED CURRENT REFERENCE CIRCUIT - A temperature compensated current reference circuit has a differential amplifier and a first feedback transistor with a gate coupled to the differential amplifier output. The first feedback transistor couples a supply voltage line to an inverting input of the differential amplifier. There is also a second feedback transistor with a gate coupled to the differential amplifier output, which couples the supply voltage line to a non-inverting input of the differential amplifier. A first temperature dependent conductor couples the inverting input to ground. A primary reference resistor and a second temperature dependent conductor are connected in series and couple the non-inverting input to ground. An output current control transistor has a gate and one other electrode coupled together and a third electrode coupled to the supply voltage line. A secondary reference resistor and a conductivity change sensing transistor are connected in series and couple the gate of the output current control transistor to ground. The conductivity change sensing transistor has a gate coupled to the second one of the two differential inputs. There is a temperature compensation current reference output circuit that has a current reference transistor, an input coupled to the differential amplifier output and another input is coupled to the gate of the output current control transistor. | 07-14-2011 |
20110187441 | Temperature Compensation Via Power Supply Modification to Produce a Temperature-Independent Delay in an Integrated Circuit - A method and circuitry for adjusting the delay of a variable delay line (VDL) in a delay locked loop (DLL) or other delay element or subcircuit on an integrated circuit is disclosed. Such delay circuitry will inherently have a delay which is a function of temperature. In accordance with embodiments of the invention, such temperature-dependent delays are compensated for by adjusting the power supply voltage of the VDL, delay element, or subcircuit. Specifically, a temperature sensing stage is used to sense the temperature of the integrated circuit, and hence the VDL, delay element, or subcircuit. Information concerning the sensed temperature is sent to a regulator which derives the local power supply voltage from the master power supply voltage, Vcc, of the integrated circuit. If the temperature sensed is relatively high, which otherwise would increase the delay though the VDL, delay element, or subcircuit, the regulator increases the local power supply voltage, thus decreasing the delay and offsetting the increase in delay due to temperature. Through this scheme, and assuming the temperature sensing stage is properly tuned, temperature-dependent delays can be reduced to approximately zero. | 08-04-2011 |
20110204958 | METHOD AND SYSTEM FOR OPEN LOOP COMPENSATION OF DELAY VARIATIONS IN A DELAY LINE - The present invention provides a method and system for open loop compensation of delay variations in a delay line. The method includes sensing the Process, Voltage, Temperature (PVT) variations in the delay line using a sensing circuit. A first and second sensitive current are generated based on the PVT variations. The first and second sensitive currents are mirrored currents from the sensing circuit. Then, a first compensation current is generated based on the first sensitive current and a first summing current. The first summing current is a reference current independent of the PVT variations. Further, the first compensation current is mirrored as a second summing current and a second compensation current is generated from the second sensitive current and the second summing current. The second compensation current compensates the delay variations and has a sensitivity based on the sensitivities of the first and second sensitive currents. | 08-25-2011 |
20110221508 | SEMICONDUCTOR DEVICE - A semiconductor device includes: a first reference voltage generator for generating a first reference voltage; a first band gap circuit for dividing a voltage at a second reference voltage output node to produce a first and a second band gap voltages having a property relative to temperature variations; a first comparator for receiving the first reference voltage as a bias input and comparing the first band gap voltage with the second band gap voltage; and a first driver for pull-up driving the second reference voltage output node in response to an output signal of the first comparator. | 09-15-2011 |
20110234301 | CIRCUIT ARRANGEMENT WITH TEMPERATURE COMPENSATION - A circuit arrangement having at least one analog switch, which is operated by a supply voltage and which comprises a switching signal contact and a pair of switch contacts, whereby applied to the switching signal contact is an electrical switching signal depending on which an electrical connection can be switched between the switch contacts whose internal on-resistance is temperature dependent, whereby the circuit arrangement has in the vicinity of the at least one analog switch at least one additional similar reference analog switch, which is operated with the same common supply voltage and which is controlled such that the switch contacts thereof are/can be connected continuously via the internal temperature-dependent on-resistance thereof, whereby at least one comparison circuit is provided by means of which depending on the comparison of the internal on-resistance of the at least one reference analog switch with at least one external reference resistance or an otherwise setpoint setting of the reference analog switch(es), at least one control signal can be/is generated, by means of which the internal on-resistance of the at least one reference analog switch can be kept constant by changing the common supply voltage of all analog switches depending on the control signal, particularly can be adjusted to the at least one reference resistance, or the otherwise formed setpoint setting of the reference analog switch(es). | 09-29-2011 |
20110248772 | TRIMMED THERMAL SENSING - A trimmed thermal sensing system can include a temperature sensitive circuit configured to provide an output that varies as a function of temperature and in response to a trimmed bandgap reference signal. A trim network is coupled to the temperature sensitive circuit. The trim network trims the temperature sensitive circuit in an opposite direction of trimming implemented to provide the trimmed bandgap reference signal, such that temperature tolerance of the temperature sensitive circuit is reduced. | 10-13-2011 |
20110254613 | VARIABLE GATE FIELD-EFFECT TRANSISTOR AND ELECTRICAL AND ELECTRONIC APPARATUS INCLUDING THE SAME - Provided are a variable field effect transistor (FET) designed to suppress a reduction of current between a source and a drain due to heat while decreasing a temperature of the FET, and an electrical and electronic apparatus including the variable gate FET. The variable gate FET includes a FET and a gate control device that is attached to a surface or a heat-generating portion of the FET and is connected to a gate terminal of the FET so as to vary a voltage of the gate terminal. A channel current between the source and drain is controlled by the gate control device that varies the voltage of the gate terminal when the temperature of the FET increases above a predetermined temperature. | 10-20-2011 |
20110260778 | Semiconductor Temperature Sensor Using Bandgap Generator Circuit - A combined bandgap generator and temperature sensor for an integrated circuit is disclosed. Embodiments of the invention recognize that bandgap generators typically contain at least one temperature-sensitive element for the purpose of cancelling temperature sensitivity out of the reference voltage the bandgap generator produces. Accordingly, this same temperature-sensitive element is used in accordance with the invention as the means for indicating the temperature of the integrated circuit, without the need to fabricate a temperature sensor separate and apart from the bandgap generator. Specifically, in one embodiment, a voltage across a temperature-sensitive junction from a bandgap generator is assessed in a temperature conversion stage portion of the combined bandgap generator and temperature sensor circuit. Assessment of this voltage can be used to produce a voltage- or current-based output indicative of the temperature of the integrated circuit, which output can be binary or analog in nature. | 10-27-2011 |
20110291741 | Current Control Using Thermally Matched Resistors - A semiconductor chip includes a semiconductor body having an upper surface. At least one power semiconductor component is integrated in the semiconductor chip together with other circuitry. Two or more vertically spaced metallization layers are arranged on the surface of the semiconductor body. The top metallization layer includes terminals establishing an electrical connection to load terminals of the power semiconductor component. A current measurement resistor is formed by a portion of the top metallization layer for sensing a load current of the power semiconductor component. A temperature measurement resistor is formed by a portion of at least one of the vertically spaced metallization layers, electrically isolated from current measurement resistor but thermally coupled thereto such that the current measurement resistor and the temperature measurement resistor have the same temperature. | 12-01-2011 |
20110291742 | OUTPUT BUFFER WITH PROCESS AND TEMPERATURE COMPENSATION - An output buffer with process and temperature compensation comprises an enable terminal, a clock generator, a PMOS threshold voltage detector, an NMOS threshold voltage detector, a first comparator, a second comparator, a first compensation code generator, a second compensation code generator and an output buffer stage, wherein the output buffer stage has an output stage, the output buffer stage means for controlling a drive current generated by the output stage, wherein the output stage has a first voltage output terminal, and the modulated drive current is capable of compensating slew rate of the first voltage output terminal. | 12-01-2011 |
20110298529 | Temperature independent reference circuit - A temperature independent reference circuit includes first and second bipolar transistors with commonly coupled bases. First and second resistors are coupled in series between the emitter of the second bipolar transistor and ground. The first and second resistors have first and second resistance values, R | 12-08-2011 |
20120007659 | Temperature Compensated Current Source - A temperature compensated current source forms an uncompensated source current that is proportional to a reference voltage applied to an impedance, wherein the impedance varies with temperature. A temperature compensation current is formed that is proportional to absolute temperature (IPTAT). The uncompensated source current and the temperature compensation current is combined to form a temperature compensated source current and provided as an output of the current source. | 01-12-2012 |
20120119819 | CURRENT CIRCUIT HAVING SELECTIVE TEMPERATURE COEFFICIENT - There is provided a current circuit having a selective temperature coefficient. The current circuit may include: a first current generating unit generating a first current having a positive temperature characteristic which increases depending on temperature; a second current generating unit generating a second current having a negative temperature characteristic which decreases depending on temperature; a multiplying unit multiplying and outputting each of the first current and the second current; and a switching unit selectively synthesizing and outputting a plurality of currents outputted from the multiplying unit depending on on/off control signals. Therefore, it is possible to prevent performance from being deteriorated by temperature and easily and efficiently adjust a temperature coefficient through a simple switching logic. | 05-17-2012 |
20120139617 | Process and Temperature Insensitive Inverter - The transition frequency of an inverter can vary with the transconductance of its internal transistors as a function of temperature and bias level. To maintain consistent transition frequency across temperatures, and therefore reduce the phase noise variation introduced by the inverter, systems, methods, and circuits are disclosed for biasing the inverter with a temperature varying current such that the transconductance of transistors remains constant across temperatures, while maintaining the lowest possible power consumption to do so. Various embodiments can include using current sources that have proportional-to-absolute-temperature (PTAT) devices. | 06-07-2012 |
20120161852 | POWER SWITCH CURRENT ESTIMATOR AT GATE DRIVER - A power switch current estimator for a solid state power switch. The power switch includes a control terminal, an input current power terminal, and an output current power terminal. The power switch is further configured with at least one sense terminal. One or more parasitic elements define an electrical pathway between a power terminal and a corresponding sense terminal. A driver unit that selectively turns the power switch on and off is connected to the control terminal and a sense terminal. A current estimator generates an estimated level of current circulating through the solid state power switch in real time in response to one or more switching events of the power switch. The estimated level of current is based on values of at least one of the parasitic elements such that the estimated level of load current substantially corresponds to an actual level of load current circulating through the solid state power switch. | 06-28-2012 |
20120161853 | CIRCUIT AND METHOD FOR TEMPERATURE COMPENSATION OF A SENSOR - A circuit for temperature compensation is connected to a sensor. The circuit includes an impedance element and a voltage controller. The impedance element has one terminal connected to a second terminal of the sensor, and the other terminal connected to a low voltage source. The voltage controller has an input terminal connected to the second terminal of the sensor to receive a to-be-measured voltage, a reference terminal receiving a reference voltage, and an output terminal is connected to the first terminal of the sensor to adjust a voltage level of the high voltage source. When the sensor output voltage varies due to change of an environment temperature, the voltage controller compares the reference voltage with the varied to-be-measured voltage to adjust the voltage level of the high voltage source, thereby restoring the varied sensor output voltage to a voltage level before being varied. | 06-28-2012 |
20120212284 | TEMPERATURE COMPENSATION CIRCUIT - In one embodiment, a temperature compensation circuit includes a bias circuit configured to output a bias current having a current value increasing in proportion to an absolute temperature in a low-temperature region, and having a greater current value than the current value proportional to the absolute temperature in a high-temperature region, and a transistor which is supplied with the bias current. The bias circuit includes first to third transistors, a fourth transistor through which a first current flows, a fifth transistor, a sixth transistor through which a second current flows, and a control circuit having a connection terminal capable of being connected with an external resistor for adjusting a magnitude of the second current. The bias circuit generates a third current by adding the first current to the second current, and outputs the bias current that is the third current or a fourth current depending on the third current. | 08-23-2012 |
20120218026 | METHOD OF GENERATING MULTIPLE CURRENT SOURCES FROM A SINGLE REFERENCE RESISTOR - A differential voltage controlled current source generating one or more output currents is based upon a single external resistor. The differential voltage controlled current source may generate an output current that is proportional to a received differential voltage and a bias current with the use of a single external resistor. The technique may be used to generate multiple accurate and process independent current sources. The current sources may be a zero temperature coefficient (ZTC) current, a proportional to absolute temperature (PTAT) current, or an inversely proportional to absolute temperature (NTAT) current. The output of the current sources may be inversely proportional to the resistance of the external resistor. | 08-30-2012 |
20120218027 | System and Methods for Improving Power Handling of an Electronic Device - There is provided an electronic device that includes a heatsink and a set of IGBTs coupled to the heatsink and configured to deliver power to a field exciter and a battery. The electronic device also includes a temperature sensor disposed in the heatsink and a controller. The controller is configured to receive a temperature reading from the temperature sensor and, based on the temperature reading, determine a junction temperature for at least one of the IGBTs of the set of IGBTs. The controller is also configured to de-rate an output power provided by each of the IGBTs based, at least in part, on the junction temperature. | 08-30-2012 |
20120223764 | ON-CHIP CONTROL OF THERMAL CYCLING - A method, system, and computer program product for on-chip control of thermal cycling in an integrated circuit (IC) are provided in the illustrative embodiments. A first circuit is configured on the IC for adjusting a first voltage being applied to a first part of the IC. A first temperature of the first part is measured at a first time. A determination is made that the first temperature is outside a temperature range defined by an upper temperature threshold and a lower temperature threshold. The first voltage is adjusted by reducing the first voltage when the first temperature exceeds the upper temperature threshold and by increasing the first voltage when the first temperature is below the lower temperature threshold, thereby causing the first temperature of the first part to attain a value within the temperature range. | 09-06-2012 |
20120293239 | Device for Generating a Reference Current Proportional to Absolute Temperature, with Low Power Supply Voltage and Large Power Supply Rejection Rate - The device for generating a reference current proportional to absolute temperature comprises processing means connected to the terminals of a core and designed to equalize the voltages across the terminals of the core, the core being designed to then be traversed by an internal current proportional to absolute temperature, and an output module designed to deliver to an output terminal the said reference current on the basis of the said internal current; the processing means comprise a self-biased amplifier possessing at least one first stage arranged according to a folded setup and comprising first PMOS transistors arranged in a setup of the common-gate type, and a feedback stage whose input is connected to the output of the amplifier and whose output is connected to the input of the first stage as well as to at least one terminal of the core. | 11-22-2012 |
20130021088 | SOLID STATE DRIVE AND CONTROLLING METHOD THEREOF - A controlling method is provided for preventing a solid state drive from being operated at a high temperature. The solid state drive includes a controlling circuit, a temperature detecting circuit and a plurality of dies. The dies are divided into n groups and accessed by the controlling circuit through n IO buses. The controlling circuit is in communication with the temperature detecting circuit for detecting a temperature of the solid state drive. The controlling method includes the following steps. Firstly, a judging step is performed to judge whether the temperature of the solid state drive is higher than a predetermined temperature. If the temperature of the solid state drive is higher than the predetermined temperature, the frequencies of n clock signals in the n IO buses are decreased. | 01-24-2013 |
20130027116 | TEMPERATURE COMPENSATION CIRCUIT AND TEMPERATURE COMPENSATED METAL OXIDE SEMICONDUCTOR TRANSISTOR USING THE SAME - A temperature compensation circuit, applied on a metal oxide semiconductor (MOS) transistor, with a threshold voltage varying with respect to a temperature value of the MOS transistor, for having the MOS transistor corresponding to an equivalent threshold voltage substantially with a constant value throughout a temperature range, comprises a voltage generator. The voltage generator provides a voltage proportional to absolute temperature (VPTAT) to drive the body of the MOS transistor in such way that a variation of the threshold voltage due to temperature variation of the MOS transistor is substantially compensated with a variation of the threshold voltage due to body-source voltage variation of the MOS transistor, so that the MOS transistor corresponds to the equivalent threshold voltage that is temperature invariant. | 01-31-2013 |
20130027117 | Precision voltage clamp with very low temperature drift - A precision voltage clamp is provided that displays virtually no temperature dependence, and maintains a clamp voltage that varies by about 1 my for input voltages ranging from the onset of clamping to several volts above this input. In particular, a current mirror is used to ensure that the current densities in the clamping transistor, and the bias correcting transistor, are very close to equal once the clamping action begins. A small current may be injected into the programming side of the mirror which will turn on the mirror and the biasing transistor, making it much easier for the clamp to clamp and settle. | 01-31-2013 |
20130063201 | REFERENCE VOLTAGE CIRCUIT - Provided is a reference voltage circuit for generating a low constant voltage (1.25 V or lower) having less temperature dependence. The reference voltage circuit includes: a bandgap voltage generation circuit including two PN junctions, for outputting a voltage (Vk) which is based on any one of the two PN junctions and a current (Ik) which is based on a voltage difference between the two PN junctions; and a voltage divider circuit for dividing the voltage (Vk). The voltage divider circuit corrects a divided voltage based on the current (Ik) input thereto, and outputs the corrected divided voltage as a reference voltage. | 03-14-2013 |
20130088280 | HIGH POWER SEMICONDUCTOR ELECTRONIC COMPONENTS WITH INCREASED RELIABILITY - An electronic component includes a depletion-mode transistor, an enhancement-mode transistor, and a resistor. The depletion-mode transistor has a higher breakdown voltage than the enhancement-mode transistor. A first terminal of the resistor is electrically connected to a source of the enhancement-mode transistor, and a second terminal of the resistor and a source of the depletion-mode transistor are each electrically connected to a drain of the enhancement-mode transistor. A gate of the depletion-mode transistor can be electrically connected to a source of the enhancement-mode transistor. | 04-11-2013 |
20130120050 | LOW-POWER VOLTAGE REFERENCE CIRCUIT - Methods and apparatus for a providing temperature-compensated reference voltage are provided. In an example, a temperature-compensated voltage reference circuit includes a current mirror portion and a temperature-compensated output portion coupled to the current mirror portion. The temperature-compensated output portion comprises a very low threshold voltage (Vt) transistor coupled in series with a negative temperature coefficient transistor. The output portion can further include a positive temperature coefficient element coupled in series with the very low Vt transistor. The positive temperature coefficient element can be an adjustable resistive element. The output portion can further include an output transistor having a gate coupled to the current mirror portion and coupled between a supply voltage and the positive temperature coefficient element. The very low Vt transistor can be a substantially zero Vt n-channel metal-oxide-semiconductor (NMOS) transistor, and can be coupled in a diode configuration. | 05-16-2013 |
20130120051 | CIRCUIT AND METHOD FOR GENERATING CLOCK SIGNAL - A circuit includes a comparator, a first circuit, and a second circuit. The comparator includes a first input node, a second input node, and an output node. The first circuit is configured to generate a temperature-dependent reference current at the second input node of the comparator. The second circuit is coupled with the second input node of the comparator. The second circuit is configured to increase a voltage level at the second input node of the comparator in response to the temperature-dependent reference current when a signal at the output node of the comparator indicates a first comparison result, and decrease the voltage level at the second input node of the comparator when the signal at the output node of the comparator indicates a second comparison result. | 05-16-2013 |
20130169347 | Temperature Management Circuit, System on Chip Including the Same and Method of Managing Temperature - In managing temperature in a system on chip (SOC), a main temperature signal is generated using a main sensor, where the main temperature signal is a signal having a value corresponding to a main temperature of the SOC. Subsidiary temperature signals are generated using subsidiary sensors, where the subsidiary temperature signals are pulse signals having frequencies corresponding to subsidiary temperatures of subsidiary blocks in the SOC, respectively. An operation of the SOC is controlled based upon the main temperature signal and the subsidiary temperature signals. | 07-04-2013 |
20130234781 | ADJUSTABLE SECOND-ORDER-COMPENSATION BANDGAP REFERENCE - A voltage reference is produced from PTAT, CTAT, and nonlinear current components generated in isolation from each other and combined to create the voltage reference. | 09-12-2013 |
20130257517 | CURRENT CORRECTION CIRCUIT FOR POWER SEMICONDUCTOR DEVICE AND CURRENT CORRECTION METHOD - A current-voltage conversion circuit of a current correcting unit having a current detecting terminal connected to a sense terminal of a power semiconductor device converts a sense current into a voltage and detects the voltage. A temperature detecting unit detects the ambient temperature of the power semiconductor device, and a correction unit performs a predetermined operation for correcting a characteristic difference due to the temperature on the basis of the detected temperature and outputs a control signal to a variable voltage source. The variable voltage source changes an output voltage on the basis of the output control signal and adjusts the potential of the sense terminal of the power semiconductor device on the basis of the changed voltage value. In this way, the characteristic difference between a main region and a sense region of the power semiconductor device is corrected. | 10-03-2013 |
20130328615 | SEMICONDUCTOR DEV ICE HAVING VOLTAGE GENERATION CIRCUIT - The present invention provides a voltage generation circuit which outputs high-precision output voltage in a wide temperature range. A semiconductor device has a voltage generation circuit. The voltage generation circuit has a reference voltage generation circuit which outputs reference voltage, and a plurality of correction circuits for generating a correction current and making it fed back to the reference voltage generation circuit. The correction circuits generate sub correction currents which monotonously increase from predetermined temperature which varies among the correction circuits toward a low-temperature side or a high-temperature side. The correction current is sum of a plurality of sub correction currents. | 12-12-2013 |
20130335136 | TEMPERATURE COMPENSATION CIRCUIT - A temperature compensation circuit is disclosed. A temperature compensation circuit may include a temperature coefficient generator configured to generate a first signal and a second signal, wherein the first signal is proportional-to-absolute-temperature (ptat) and the second signal is negatively-proportional-to-absolute-temperature (ntat), a first programmable element configured to multiply at a first programmable ratio an amplitude of a third signal having a negative temperature coefficient from a first temperature to a second temperature, and a second programmable element configured to multiply at a second programmable ratio an amplitude of a fourth signal having a positive temperature coefficient from the second temperature to a third temperature. | 12-19-2013 |
20140022003 | SEMICONDUCTOR INTEGRATED CIRCUIT - Electronic apparatus that can suppress the operating voltage of an incorporated semiconductor integrated circuit to a low voltage is provided. Electronic apparatus | 01-23-2014 |
20140028376 | PRECISION CMOS VOLTAGE REFERENCE - A system provides for a voltage reference having a small temperature coefficient spread. The voltage reference includes a PTAT voltage trimming circuit that accurately trims the CTAT voltage component of the bandgap type voltage reference. The voltage trimming circuit includes two bipolar transistors that are biased by biasing currents to create a specific base-emitter voltage difference at an output. The bias currents can be digitally trimmed by a current digital-to-analog (“DAC”) converter. This may result in the ability to trim the voltage reference at a single temperature, without the need to trim at two or more temperatures. | 01-30-2014 |
20140028377 | AUTONOMOUS THERMAL CONTROLLER FOR POWER MANAGEMENT IC - Techniques for autonomous thermal management of a power-management integrated circuit (PMIC). In an exemplary embodiment, an embedded microcontroller is provided on the PMIC to store instructions for implementing a thermal controller. The thermal controller may manage in real-time the current scaling factors of a plurality of modules coupled to corresponding off-chip power entities. The thermal controller may include registers that are programmable by an off-chip entity such as a microprocessor to specify parameters such as module priorities and a minimum current scaling factor for each module. Power entities that may be controlled by the autonomous thermal controller include, e.g., a battery charger, and/or one or more user-interface entities such as a back light display driver, a flash LED driver, or an audio amplifier. | 01-30-2014 |
20140070874 | APPARATUS AND METHOD FOR OUTPUTTING SIGNAL - There is provided an apparatus for outputting a signal, including: a reference signal generating unit outputting a first temperature coefficient signal having a positive temperature coefficient and a second temperature coefficient signal having a negative temperature coefficient; and an output unit outputting an output signal having a plurality of temperature coefficients, based on the first temperature coefficient signal and the second temperature coefficient signal. | 03-13-2014 |
20140077865 | ANTENNA LNA FILTER FOR GNSS DEVICE - Low-noise amplifier (LNA) filters and processes for filtering global navigation satellite system (GNSS) signals are disclosed. The LNA filters can be used to down-convert a received GNSS signal to a lower frequency, filter the GNSS signal at the lower frequency, and up-convert the GNSS signal to the original frequency of the GNSS signal. The down-converted frequency can be selected based on a temperature of the GNSS signal to compensate for shifts in the frequency response of the filter due to temperature changes. | 03-20-2014 |
20140084989 | REFERENCE VOLTAGE GENERATING CIRCUIT - A reference voltage generating circuit comprises a pair of variable resistors connected to a pair of bipolar transistors. A differential amplifier amplifies the band gap voltage difference between the bipolar transistors and outputs a reference voltage to an output terminal. An output stage resistor is connected to the output terminal and a resistance dividing circuit. The generating circuit includes temperature compensating circuits that receive tap voltages from resistance dividing circuit and a current proportional to the temperature, then output correction currents. The generating circuit additionally includes a current mirror circuit that outputs a mirror current depending on each correction current. The reference voltage generating circuit thus corrects the temperature dependence of the reference voltage. | 03-27-2014 |
20140132334 | SEMICONDUCTOR INTEGRATED CIRCUIT AND AN OPERATING METHOD THEREOF, A TIMING VERIFYING METHOD FOR A SEMICONDUCTOR INTEGRATED CIRCUIT AND A TEST METHOD OF A SEMICONDUCTOR INTEGRATED CIRCUIT - A semiconductor integrated circuit which includes a control circuit; and a power management integrated circuit (IC) configured to supply an operating voltage to the control circuit. The control circuit includes a clock generator; a processor unit; a temperature sensor; a body bias generator; and a controller. The controller controls the power management IC and the clock generator when temperature data indicates a temperature higher than a high temperature and controls the power management IC or the body bias generator when the temperature data indicates a temperature lower than a low temperature. The high temperature is lower than a hot temperature of the control circuit and the low temperature is higher than a cold temperature of the control circuit and lower than the high temperature. | 05-15-2014 |
20140139283 | EXTREME ENVIRONMENT COMPENSATION CONTROLLER FOR INTEGRATED CIRCUITS - A circuit monitors an electronic circuit for the effects of extreme temperatures, high Total Ionizing Dose (TID), very low (down to sub-threshold) supply voltages, process variations, and other performance altering phenomena. The circuit then generates signals that are applied to the electronic circuit to compensate for these effects. The design generates voltages that are applied to either body terminals of semiconductor technologies (e.g. MOSFET, CMOS, SOI, and others) or bottom gates of independently double gated technologies to provide compensation. The design includes a reference circuit that is adjusted until its performance is restored. The signals found that compensate the reference circuit are applied throughout the IC. | 05-22-2014 |
20140159800 | Simplified Adaptive Voltage Scaling Using Lookup-Table and Analog Temperature Sensor to Improve Performance Prediction Across Temperature - A method of adaptive voltage scaling is shown incorporating a lookup table holding manufacturing characterization data in conjunction with one or more precision analog temperature sensors used for correcting for temperature effects. | 06-12-2014 |
20140159801 | Performance Adaptive Voltage Scaling with Performance Tracking Sensor - Power consumption is reduced by the use of a plurality of parameter reference targets, optimized for a subset of the complete temperature range. The prediction accuracy of the performance tracking sensor is optimized by using small segments of the operating temperature range. | 06-12-2014 |
20140184311 | TEMPERATURE DETECTING CIRCUIT, TEMPERATURE COMPENSATING CIRCUIT, AND BUFFER CIRCUIT - A temperature detecting circuit includes a first rectifying element with a cathode at a first reference voltage and an anode connected to a first node, a first impedance element connected in series with a second rectifying element between the first rectifying element and a second reference voltage, a third rectifying element with a cathode at the first reference voltage and an anode connected to a second node, a second impedance element and a fourth rectifying element connected in series between the third rectifying element and the second reference voltage, and a differential amplifier that outputs a differential signal pair corresponding to the difference in potential between the first node and the second node. The differential signals in the pair vary in magnitude in opposite directions in response to temperature changes. | 07-03-2014 |
20140184312 | SEMICONDUCTOR DEVICES AND METHODS OF CONTROLLING TEMPERATURE THEREOF - An example embodiment relates to a semiconductor device including a semiconductor package in which a semiconductor chip is mounted on the package substrate. The semiconductor package may include a temperature measurement device and a temperature control circuit. The temperature measurement device may measure a temperature of the semiconductor package. The temperature control circuit may change an operation speed of the semiconductor package on the basis of the temperature of the semiconductor package measured by the temperature measurement device. | 07-03-2014 |
20140191794 | METHOD FOR PERFORMING ADAPTIVE VOLTAGE SCALING (AVS) AND INTEGRATED CIRCUIT CONFIGURED TO PERFORM AVS - An integrated circuit (IC) includes an adaptive voltage scaling (AVS) controller configured to control a voltage supplied to a portion of the IC and at least one sensor configured to sense at least one state of the IC and to provide an output signal indicative of the at least one sensed state to the AVS controller, the IC having a first setting and a second setting, the AVS controller being configured to use the output signal to control the voltage in the first setting and the AVS controller being configured to control the voltage independently of the output signal in the second setting. Also a method of performing AVS is provided. | 07-10-2014 |
20140232450 | Circuit For Canceling Errors Caused By Parasitic And Device-Intrinsic Resistances In Temperature Dependent Integrated Circuits - In one embodiment, a circuit includes at least one transistor with a base and collector being electrically connected to a ground, and at least one current source being configured to apply four different currents (A, B, C, and D) to the emitter. A sum of the currents A and C are substantially equivalent to a sum of the currents B and D, or a sum of the currents A and D are substantially equivalent to a sum of the currents B and C. The circuit outputs first, second, third, and fourth voltage potentials between the emitter and the base during application of the currents A, B, C, and D, respectively. | 08-21-2014 |
20140240032 | Adaptive Voltage Scaling Method, Chip, and System - Embodiments of the present invention provide an adaptive voltage scaling method, chip, and device. An aging effect-related state parameter in a chip is obtained at a first voltage adjustment time point. The first voltage adjustment time point is one of multiple voltage adjustment time points set for the chip. An aging compensation voltage corresponding to the first voltage adjustment time point is determined according to the state parameter. A minimum operating voltage of the chip is compensated for according to the aging compensation voltage, so as to adjust an operating voltage of the chip. | 08-28-2014 |
20140247086 | System and Method for Operating Low Power Circuits at High Temperatures - A system includes first circuitry including first elements for operating in a low power mode; second circuitry including second elements for operating in a high-temperature mode; and one or more switching elements for selecting between the low power mode and the high temperature mode.. | 09-04-2014 |
20140266405 | MANAGEMENT OF EXTERIOR TEMPERATURES ENCOUNTERED BY USER OF A PORTABLE ELECTRONIC DEVICE BY REDUCING HEAT GENERATION BY A COMPONENT - Described embodiments include a portable electronic device. The device includes a shell housing components of the portable electronic device and a heat-generating component. The device includes a contact sensor configured to determine a user touch to the shell. The device includes a temperature sensor configured to determine an exterior temperature of the shell. The device includes a thermal manager configured to reduce the exterior shell temperature by regulating heat generation by the heat-generating component. The regulating heat generation is responsive to the determined user touch and the measured determined temperature of the shell. | 09-18-2014 |
20140300408 | SEMICONDUCTOR DEVICE HAVING A COMPLEMENTARY FIELD EFFECT TRANSISTOR - A method for controlling power supply current in a CMOS circuit, the method including applying a first predetermined voltage to a diode connected n-channel replica transistor, the n-channel replica transistor operating in weak inversion, applying a first substrate voltage to the substrate of the n-channel replica transistor so that the current flowing in the n-channel replica transistor equals a first predetermined target current, and applying the first substrate voltage to substrates of n-channel transistors in the CMOS circuit | 10-09-2014 |
20140312960 | SEMICONDUCTOR DEVICE AND OPERATING METHOD THEREOF - A substrate including a plurality of transistors, and a piezoelectric formed to be contacted with the substrate. The piezoelectric is formed heat-expendably in a direction parallel to a gate direction of the transistors. | 10-23-2014 |
20140312961 | SEMICONDUCTOR DEVICE COMPENSATING FOR NEGATIVE BIAS TEMPERATURE INSTABILITY EFFECTS AND RELATED METHODS OF OPERATION - A semiconductor device comprises a metal oxide semiconductor (MOS) transistor circuit configured to receive a body bias voltage, and a negative bias temperature instability compensation (NBTIC) circuit configured to measure a negative bias temperature instability level on the MOS transistor circuit using an operating timing variation measuring unit and to adaptively compensate for a bias according to the measured value. | 10-23-2014 |
20140368258 | SENSING ELEMENT FOR SEMICONDUCTOR - An embodiment relates to a device comprising a high-side semiconductor, a low-side semiconductor, a first sensing element arranged adjacent to the high-side semiconductor. The first sensing element is isolated from the high-side semiconductor and the first sensing element is directly connectable to a processing device. | 12-18-2014 |
20150035588 | SEMICONDUCTOR DEVICE HAVING VOLTAGE GENERATION CIRCUIT - The present invention provides a voltage generation circuit which outputs high-precision output voltage in a wide temperature range. A semiconductor device has a voltage generation circuit. The voltage generation circuit has a reference voltage generation circuit which outputs reference voltage, and a plurality of correction circuits for generating a correction current and making it fed back to the reference voltage generation circuit. The correction circuits generate sub correction currents which monotonously increase from predetermined temperature which varies among the correction circuits toward a low-temperature side or a high-temperature side. The correction current is sum of a plurality of sub correction currents. | 02-05-2015 |
20150048877 | Apparatus and Method of Adjusting Analog Parameters for Extended Temperature Operation - A circuit includes a temperature sensor configured to determine a circuit temperature and includes an analog circuit including one or more controllable circuit elements. The analog circuit includes at least one adjustable parameter. The circuit further includes a controller coupled to the temperature sensor and configured to select a threshold temperature. The controller is configured to control the analog circuit in response to the circuit temperature to selectively adjust at least one adjustable parameter of the analog circuit when the temperature exceeds the selected threshold temperature. | 02-19-2015 |
20150048878 | Apparatus and Method of Background Temperature Calibration - A circuit includes a controller configured to determine a calibration state of a circuit, to determine an active mode state of the circuit, and to select a type of calibration operation based on the calibration state. The controller is configured to control timing of the selected type of calibration operation in response to determining the calibration state to correspond to a time when the circuit is not active. | 02-19-2015 |
20150061754 | Corner-Case Emulation Tool for Thermal Power Testing - The various aspects provide for an IC design and methods for utilizing the IC design to emulate corner case ICs during power/thermal testing of a test system by installing a specially chosen IC on the test system. The chosen IC may be a fully functioning IC that also includes a leakage-add controller and a current leak circuit. The current leak circuit may simulate additional current leakage on the IC and may be driven by the leakage-add controller. The chosen IC may also include a programmable voltage table for adjusting the chosen IC's operational voltage. The chosen IC may emulate the thermal characteristics of various corner-case ICs while performing normal IC activities on the test system during power/thermal testing, thereby eliminating current limitations in thermal/power testing of test systems due to the difficulty of providing corner-case ICs and testing those corner-case ICs on various test systems. | 03-05-2015 |
20150084686 | COMPENSATED VOLTAGE REFERENCE GENERATION CIRCUIT AND METHOD - In accordance with an embodiment, a method of compensating for the temperature coefficient of a reference voltage includes generating a reference voltage that varies over temperature. A temperature compensated reference voltage is generated that compensates for a temperature variation in the voltage value of the reference voltage. In accordance with another embodiment, a temperature compensation circuit that compensates for temperature variation of a reference voltage is includes a reference voltage generator circuit having an output. A first impedance branch is coupled to the output of the reference voltage generator circuit and a second impedance branch is coupled to the output of the reference voltage generator circuit. A transconductance generation circuit having a first terminal connected to the first impedance branch and a second terminal connected to the second impedance branch. | 03-26-2015 |
20150109049 | Electronic Device with PVT Delay Compensation and Related Method - An electronic device includes a first circuit, and a delay circuit electrically connected to the first circuit. The delay circuit includes a resistor, a capacitor, and a process, voltage or temperature (PVT) compensation circuit electrically connected to the capacitor. | 04-23-2015 |
20150116027 | UNIFIED BANDGAP VOLTAGE CURVATURE CORRECTION CIRCUIT - A unified bandgap voltage waveform compensation amplifier is arranged having shared input transistor pairs, a shared load resistor, and shared current sources. For example, a first amplifier structure is arranged to produce a negative-going bias correction signal when a bandgap voltage reference increases as operating temperatures rise and a second amplifier structure is arranged to produce a positive-going bias correction signal when the bandgap voltage reference increases as operating temperatures rise. The unified amplifier is arranged to combine the positive- and negative-going signals to generate a combined compensation current that is used to compensate for temperature instability of the bandage voltage reference. | 04-30-2015 |
20150130531 | SYSTEM AND METHOD FOR REMOTE TEMPERATURE SENSING WITH ROUTING RESISTANCE COMPENSATION - An integrated circuit die includes multiple temperature sensor units each for measuring the temperature of respective regions of a semiconductor substrate of the integrated circuit die. The temperature sensor units are each coupled to a multiplexer by respective groups of signal lines. The signal lines include resistance compensation areas for maintaining a particular ratio of resistances of the signal lines of each group. | 05-14-2015 |
20150145588 | BI-DIRECTIONAL CURRENT SENSOR - A bidirectional current sensor circuit can be configured to generate a scaled version of a load current using a first transistor from a power regulator output stage and a second transistor that can be a mirror or scaled version of the first transistor. A trim circuit can be provided to correct gain errors under current sinking or current sourcing conditions. In an example, the bidirectional current sensor circuit can be configured to detect a polarity or a magnitude of a current signal that is used to operate a thermoelectric device. | 05-28-2015 |
20150333754 | METHOD AND CONTROL DEVICE FOR RECOVERING NBTI/PBTI RELATED PARAMETER DEGRADATION IN MOSFET DEVICES - The invention provides a method for recovering NBTI/PBTI related parameter degradation in MOSFET devices. The method includes operating the at least one MOSFET device in a standby mode, exiting the at least one MOSFET device from the standby mode, holding the at least one MOSFET device in an active state for a predetermined time span after exiting the standby mode, and operating the at least one MOSFET device in an operational mode after the predetermined time span has elapsed. | 11-19-2015 |
20150333757 | SEMICONDUCTOR DEVICE AND AUTOMOBILE - A semiconductor device includes a semiconductor element having a gate and controlled with a gate voltage, a gate drive circuit which controls the gate voltage, an electrode connected to the semiconductor element, a principal current in the semiconductor element flowing through the electrode, a temperature sensing part which senses the temperature of the electrode, a generation section which generates, on the basis of the temperature sensed by the temperature sensing part, a first control signal for giving a maximum amount of energization to the semiconductor element in such a range that the temperature of the electrode does not exceed a predetermined temperature, and a comparison section which compares the first control signal and a second control signal transmitted from the outside for the purpose of controlling the gate voltage, and selects a selective control signal which is one of the control signals with which the temperature of the electrode can be limited. The gate drive circuit controls the gate voltage according to the selective control signal. | 11-19-2015 |
20150338864 | SUPPLY VOLTAGE REGULATION WITH TEMPERATURE SCALING - A supply voltage regulation system for an IC including a temperature sensor that detects temperature of the IC, a scaling resistor coupled between a power grid and a feedback node of the IC, a regulator amplifier that compares a voltage of the feedback node with a reference voltage for developing a supply voltage for the IC, and a temperature scaling circuit that drives a scaling current to the scaling resistor via the feedback node to adjust the supply voltage based on temperature. The temperature scaling circuit may include one or more comparators that compare a temperature signal with corresponding temperature thresholds for selectively applying one or more bias currents to the scaling resistor. The scaling resistor may be coupled to a hot point of the power grid. A voltage difference between a hot point of a ground grid may be converted to a bias current applied to the scaling resistor. | 11-26-2015 |
20150346744 | Method and Apparatus for Compensating PVT Variations - A method and device for compensating PVT (process, voltage temperature) variations are disclosed. In some embodiments an integrated circuit includes a buffer circuit and a PVT (process, temperature, voltage) compensation circuit configured to compensate a PVT variation of the buffer circuit, wherein the PVT compensation circuit includes adders and subtractors. | 12-03-2015 |
20150346745 | THERMALLY-ADAPTIVE VOLTAGE SCALING FOR SUPPLY VOLTAGE SUPERVISOR POWER OPTIMIZATION - Aspects of an integrated circuit (IC) using a scaling voltage are provided. The IC includes a chip section configured to operate using a scaled supply voltage. The IC also includes a sensor configured to measure a temperature of the chip section. The IC also includes an adjustment circuit configured to adjust a supply voltage to a scaled supply voltage, wherein the scaled voltage is based on the measured temperature. Aspects of a testing device for a chip are also provided. The testing device includes a sensor configured to measure an operating frequency of a section of the chip when operating at a defined temperature. The testing device also includes a memory device comprising a scaled voltage table, the scaled voltage table configured to store as an entry the measured operating frequency and the defined temperature. | 12-03-2015 |
20150372674 | Circuit For Canceling Errors Caused By Parasitic And Device-Intrinsic Resistances In Temperature Dependent Integrated Circuits - In one embodiment, a circuit includes at least one transistor with a base and collector being electrically connected to a ground, and at least one current source being configured to apply four different currents (A, B, C, and D) to the emitter. A sum of the currents A and C are substantially equivalent to a sum of the currents B and D, or a sum of the currents A and D are substantially equivalent to a sum of the currents B and C. The circuit outputs first, second, third, and fourth voltage potentials between the emitter and the base during application of the currents A, B, C, and D, respectively. | 12-24-2015 |
20150378376 | SEMICONDUCTOR DEVICE DRIVE METHOD - A semiconductor device drive method achieves a balance between a lifetime and a detection sensitivity which are required for a temperature detection diode formed via an insulating film on a substrate on which an active element is formed. The semiconductor device drive method includes energizing the temperature detection diode with a constant current, the constant current having a current density value between an upper limit defined based on the lifetime of the temperature detection diode, and a lower defined based on a variation allowable voltage of an output voltage of the temperature detection diode with respect to a standard deviation. | 12-31-2015 |
20160006440 | SYSTEMS AND METHODS FOR CONFIGURING A SEMICONDUCTOR DEVICE - A system for configuring a semiconductor device to generate an output signal. The system includes a temperature sensor configured to sense a plurality of operating temperatures of the semiconductor device, the plurality of operating temperatures including at least a first operating temperature and a second operating temperature. A controller is configured to determine a plurality of operating frequencies of the output signal at respective operating temperatures of the plurality of operating temperatures. The plurality of operating frequencies include a first operating frequency of the output signal when the semiconductor device is at the first operating temperature and a second operating frequency of the output signal when the semiconductor device is at the second operating temperature. Memory is configured to store calibration information that associates each of the plurality of operating temperatures of the semiconductor device with respective operating frequencies of the plurality of operating frequencies. | 01-07-2016 |
20160098048 | APPARATUS AND METHOD OF TEMPERATURE DRIFT COMPENSATION - Practical electronics such as amplifiers or voltage references can have circuit imbalances due to manufacturing imperfections. For example, amplifiers can have an undesirable offset voltage. The offset voltage might also drift with temperature making the design of these devices difficult. Disclosed are techniques which decrease the amount of offset voltage which provide predictability of device parameters over a range of temperatures. | 04-07-2016 |
20160124444 | VOICE COIL MOTOR TEMPERATURE SENSING CIRCUIT TO REDUCE CATASTROPHIC FAILURE DUE TO VOICE COIL MOTOR COIL SHORTING TO GROUND - An electrical circuit includes: a controlled switch; one or more temperature sensors in thermal contact with the controlled switch; and a control unit configured to: receive a temperature signal from the one or more temperature sensors; compare the received temperature signal to a predetermined threshold; and in response to the received temperature signal exceeding the predetermined threshold, render the controlled switch inoperative. | 05-05-2016 |
20160126935 | CIRCUIT AND METHOD FOR COMPENSATING FOR EARLY EFFECTS - Early effects are intrinsically present in bipolar junction transistors (BJTs). Described are examples of complimentary to absolute temperature (CTAT) and proportional to absolute temperature (PTAT) cells that reduce errors associated with the Early effects that would otherwise be present. | 05-05-2016 |
20160149574 | Temperature Compensation Circuit, Temperature Compensation Method and Liquid Crystal Display - Disclosed are a temperature compensation circuit for a display panel, a temperature compensation method and a liquid crystal display. The temperature compensation circuit comprises: a temperature detection unit configured to detect a variation in the temperature; a temperature conversion unit configured to convert the detected variation in the temperature into a voltage compensation value; and a compensation signal generation unit configured to process the voltage compensation value to generate a compensation signal. According to the embodiments of the present disclosure, the common electrode voltage of the display panel can be adjusted in real-time when the temperature varies, so that an amount of flickers presented on the display panel with an polarity inversion can be maintained at minimum, and thus a displaying of picture can be more stable and a visual experience of a viewer can be enhanced. | 05-26-2016 |
20160179113 | Temperature Independent Reference Current Generation For Calibration | 06-23-2016 |
20160380637 | TEMPERATURE STABILIZATION OF AN ON-CHIP TEMPERATURE-SENSITIVE ELEMENT - Disclosed is an integrated circuit (IC) chip incorporating a temperature-sensitive element and temperature stabilization circuitry for ensuring that the temperature of the temperature-sensitive element (TSE) remains essentially constant. The IC chip comprises a temperature-sensitive element and, within at least one region adjacent to the temperature-sensitive element, a first circuit that radiates a first heat amount to the TSE and a second circuit that radiates a second heat amount to the TSE. The second circuit senses changes in a first current amount in the first circuit and, thereby changes in the first heat amount. In response to those changes, the second circuit also automatically adjusts a second current amount in the second circuit and, thereby the second heat amount in order to ensure that the total heat amount radiated by the first circuit and the second circuit, in combination, to the TSE remains constant. Also disclosed is an associated method. | 12-29-2016 |