Class / Patent application number | Description | Number of patent applications / Date published |
327387000 | Control signal derived from or responsive to input signal | 11 |
20090108906 | CABLE DRIVER USING SIGNAL DETECT TO CONTROL INPUT STAGE OFFSET - A system, apparatus and method are arranged for monitoring an input signal for a line driver and determining if a valid data signal is present. When the input signal is determined to be an invalid data signal, an offset is introduced into the input stage of the line driver to prevent noise induced toggling of the output of the line driver. When the input signal is determined to be a valid data signal, the offset is removed from the input stage since inclusion of the offset can introduce undesirable duty cycle distortion in the output of the line driver. By dynamically adding or removing the offset from the input stage of the line driver, invalid signals are prevented from toggling the output of the line driver while preserving a clean data transmission for valid signals. | 04-30-2009 |
20090108907 | SIGNAL DETECTOR OUTPUT FOR CABLE DRIVER APPLICATIONS - The present disclosure relates to a system, apparatus and method for a line driver circuit to generate a signal detect (SD) signal when an invalid data signal is detected at its input. An invalid signal may be present either when no signal is available or when the line driver circuit or another component in the system (e.g., a crosspoint switch, a multiplexer, etc.) fails. The SD signal is coupled to an external controller that can either power down the line driver circuit to save power when no signal is available, or change over to a different line driver circuit or other component of the system when a failure is identified. When the input signal is determined to be a valid data signal via the SD signal, the line driver circuit can be enabled for operation. The described systems, apparatus and methods can save the user from having to directly control the line driver power state, especially in systems with large router configurations that may include hundreds of line drivers. | 04-30-2009 |
20090115489 | SWITCH ARRANGEMENT, INTEGRATED CIRCUIT, ACTIVATION SYSTEM - A switch arrangement for providing a drive signal at an output comprises a drive switch coupled to the output of the switch arrangement and a regulating element coupled in series between the drive switch and a power supply input of the switch arrangement. The drive switch is operable to provide the drive signal at the output. The switch arrangement is characterised in that the regulating element is coupled in a cascode arrangement with the drive switch such that in operation the regulating element limits the voltage drop across the drive switch to a predetermined level. | 05-07-2009 |
20110316607 | SWITCHING CONTROL CIRCUIT AND SWITCHING POWER SUPPLY CIRCUIT - A switching-control circuit, which causes a first transistor, having an input electrode to be applied with an input voltage and an output electrode connected to an inductor and a diode, to be turned on and kept on for a predetermined time period, includes: a comparison circuit to compare a feedback voltage corresponding to an output voltage with a reference voltage; a detecting circuit to detect a switching period of the first transistor; and a driving circuit to turn off a second transistor connected in parallel to the diode as well as turn on the first transistor to be kept on for the predetermined time period, and thereafter, turn off the first and second transistors, when the feedback voltage becomes lower than the reference voltage, and turn off the first transistor as well as turn on the second transistor, when the switching period becomes longer than a predetermined period. | 12-29-2011 |
20120161847 | SWITCHING DEVICE AND METHOD FOR PREVENTING MALFUNCTION OF THE SAME - The present invention provides a switching device and a method for preventing malfunction of the same. The switching device includes: a controller for outputting a plurality of digital control signals; a protecting unit connected to the controller for protecting all signals when the plurality of digital control signals outputted from the controller are simultaneously received at a state of ON; a gate driver connected to the protecting unit for generating a switch control signal by converting the control signal passed through the protecting unit; and a plurality of switches connected to the gate driver for individually performing ON•OFF operations according to each of the switching control signals. | 06-28-2012 |
20130181765 | DECOUPLING CIRCUIT AND SEMICONDUCTOR INTEGRATED CIRCUIT - A decoupling circuit includes an inverter. The inverter includes i (i is an integer of 1 or more) PMOS transistors each having a first gate electrode, and j (j is an integer of 0 or more) PMOS transistors each having a second gate electrode. The inverter includes m (m is an integer of 1 or more) NMOS transistors each having a third gate electrode, and n (n is an integer of 0 or more) NMOS transistors each having a fourth gate electrode. The first to fourth gate electrodes are coupled to an input end of the inverter. A total area of the first and second gate electrodes is different from a total area of the third and fourth gate electrodes. | 07-18-2013 |
20130187701 | SEMICONDUCTOR DEVICE AND DRIVING METHOD OF THE SAME - In the case of reducing an effect of variations in current characteristics of transistors by inputting a signal current to a transistor in a pixel, a potential of a wiring is detected by using a precharge circuit. In the case where there is a difference between a predetermined potential and the potential of the wiring, a charge is supplied to the wiring to perform a precharge by charging rapidly. When the potential of the wiring reaches the predetermined potential, the supply of charge is stopped and a signal current only is supplied. Thus, a precharge is performed only in a period until the potential of the wiring reaches the predetermined potential, therefore, a precharge can be performed for an optimal period. | 07-25-2013 |
20140043090 | OUTPUT BUFFER AND SIGNAL PROCESSING METHOD - An output buffer comprises a series connection of a first field effect transistor and a second field effect transistor, wherein the first field effect transistor is connected to a first supply potential terminal and the second field effect transistor is connected to a second supply potential terminal. An output terminal is connected to a common connection of the first transistor and the second transistor. The output buffer has a series connection of a resistive element and a capacitive element, wherein the capacitive element is connected to the output terminal, and a control circuit, to which an input signal is provided. The control circuit controls the transistors in such a way that turning off of a transistor is performed immediately, while turning on of a transistor is performed depending on the charging or discharging of the capacitive element, thus achieving a defined slew rate of the output signal at the output terminal. | 02-13-2014 |
20140097883 | SEMICONDUCTOR DEVICE AND DRIVING METHOD OF THE SAME - In the case of reducing an effect of variations in current characteristics of transistors by inputting a signal current to a transistor in a pixel, a potential of a wiring is detected by using a precharge circuit. In the case where there is a difference between a predetermined potential and the potential of the wiring, a charge is supplied to the wiring to perform a precharge by charging rapidly. When the potential of the wiring reaches the predetermined potential, the supply of charge is stopped and a signal current only is supplied. Thus, a precharge is performed only in a period until the potential of the wiring reaches the predetermined potential, therefore, a precharge can be performed for an optimal period. | 04-10-2014 |
20150381163 | DEVICES WITH SIGNAL CHARACTERISTIC DEPENDENT CONTROL CIRCUITRY AND METHODS OF OPERATION THEREFOR - An embodiment of a device includes a terminal, an active transistor die electrically coupled to the terminal, a detector configured to sense a signal characteristic on the terminal, and control circuitry electrically coupled to the active transistor die and to the detector, wherein the active transistor die, detector, and control circuitry are coupled to a package. The control circuitry may include a control element and a control device. Based on the signal characteristic, the control circuitry controls which of multiple operating states the device operates. A method for controlling the operating state of the device includes sensing, using the detector, a signal characteristic at the terminal, and determining, using the control device, whether the signal characteristic conforms to a pre-set criteria, and when the signal characteristic does not conform to the pre-set criteria, modifying the state of the control element to alter the operating state of the device. | 12-31-2015 |
327388000 | Additional external control signal | 1 |
20090315612 | Switch driver with low impedance initial drive and higher impedance final drive - A driver circuit (for example, in a switching power supply or in a Class-D switching amplifier) drives a gate of a switch during a transition with a low output impedance during an initial period and then for the remainder of the transition drives the gate with a midrange output impedance. The switch in turn switches current flow through an inductor. The driver circuit includes a “Drive Node Voltage Dependent Impedance Circuit” (DNVDIC) that couples the gate to a supply voltage node. In one embodiment, there are two resistive current paths through the DNVDIC. A non-linear device in the first current path switches from having a small to a large impedance when a voltage drop across the device falls below a threshold voltage. The resulting increase in impedance of the first current path decreases voltage edge rates and reduces noise, whereas the low initial impedance reduces transition power losses. | 12-24-2009 |