Class / Patent application number | Description | Number of patent applications / Date published |
327383000 | Ensuring fully conducting state | 8 |
20080272823 | JFET Passgate Circuit and Method of Operation - A passgate circuit comprises a first depletion mode n-channel JFET, a depletion mode p-channel JFET, and a second depletion mode n-channel JFET. The first depletion mode n-channel JFET has a first terminal coupled to an input port, a second terminal that receives a first control signal, and a third terminal. The depletion mode p-channel JFET has a first terminal coupled to the third terminal of the first depletion mode n-channel JFET, a second terminal that receives a second control signal, and a third terminal. The second depletion mode n-channel JFET has a first terminal coupled to the third terminal of the depletion mode p-channel JFET, a second terminal that receives the first control signal, and a third terminal coupled to an output port. | 11-06-2008 |
20090146724 | SWITCHING CIRCUIT FOR MILLIMETER WAVEBAND CONTROL CIRCUIT - Provided is a switching circuit for a millimeter waveband control circuit. The switching circuit for a millimeter waveband control circuit includes a switching cell disposed on a signal port path to match an interested frequency and including at least one transistor coupled vertically to an input/output transmission line and a plurality of ground via holes disposed symmetrically in an upper portion and a lower portion of the input/output transmission line; capacitors for stabilizing a bias of the switching cell; and bias pads coupled in parallel to the capacitor to control the switching cell. Therefore, the switching circuit may be useful to improve its isolation by simplifying its design and layout through the use of symmetrical structure of optimized switching cells without the separate use of different switch elements, and also to reduce its manufacturing cost through the improved yield of the manufacturing process and the enhanced integration since it is possible to reduce a chip size of an integrated circuit in addition to its low insertion loss. | 06-11-2009 |
20090322406 | SEMICONDUCTOR INTEGRATED CIRCUIT - A semiconductor integrated circuit includes a core circuit, a power supply switch situated on a path providing a current to the core circuit and configured to control a state of current supply to the core circuit in response to a control signal applied to a control node, a clamp circuit configured to clamp a voltage of the control signal, and a switching circuit configured to control whether to enable or disable a clamp operation of the clamp circuit. | 12-31-2009 |
20100045361 | POWER CIRCUIT - A power circuit. One embodiment provides a circuit for driving a power transistor having a control electrode and a load path. The circuit includes a driver circuit configured to change the power transistor to a completely on or off state with the aid of a control signal supplied to the control electrode. A series circuit includes a semiconductor switching element and a capacitor. The series circuit is connected in parallel with the load path and the capacitor provides a supply voltage for the driver circuit. | 02-25-2010 |
20100308890 | CHARGE PUMP AND CONTROL SCHEME - A switch controller has a charge pump, a selector switch connected to the charge pump, and a pre-charge power supply input connectable to the input of the selector switch. For each of the output channels being controlled, a power control switch is connected to an output of the selector switch. In response to commands, output channels are enabled and disabled, causing corresponding actions in the power control switches. When an output channel is to be activated, the output channel is selected by the selector switch and the pre-charge power supply connected to the input of the selector switch. The charging is completed by the charge pump and the enabled status of the power control switch is maintained by the charge pump. | 12-09-2010 |
20120262218 | SYSTEM AND METHOD FOR CONTROLLING AT LEAST TWO POWER SEMICONDUCTORS CONNECTED IN PARALLEL - A system includes at least two power semiconductor chips being connected in parallel and including each a gate terminal for switching the power semiconductor chip in a blocking-state by a first gate voltage and for switching the power semiconductor chip in a conducting-state by a second gate voltage. The system includes further a control device adapted for applying the first or the second gate voltage to the gate terminals of the at least two power semiconductor chips. The control device is adapted for applying a third gate voltage to the gate terminal of the at least one remaining power semiconductor chip when a power semiconductor chip fails, and that the third gate voltage is higher than the second gate voltage. | 10-18-2012 |
20130249620 | METHODS AND CIRCUITS FOR OPERATING A PARALLEL DMOS SWITCH - A method and corresponding circuits for operating a parallel DMOS switch that includes a pair of P-type DMOS devices connected in series with each other and in parallel with a pair of N-type DMOS devices connected in series with each other. The method and circuits involve turning the switch on by applying gate signals to the DMOS device pairs which are generated using at least one source voltage of a DMOS device pair. The switch is turned off by setting the gate signals equal to the respective source voltages of the DMOS device pairs. | 09-26-2013 |
20140111268 | TRANSISTOR CONTROL CIRCUIT AND POWER SUPPLY DEVICE - A transistor control circuit includes: an electrode control circuit configured to apply a positive potential to a control electrode in a transistor that includes the control electrode between a gate and a drain. | 04-24-2014 |