Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


With clock input

Subclass of:

327 - Miscellaneous active electrical nonlinear devices, circuits, and systems

327100000 - SIGNAL CONVERTING, SHAPING, OR GENERATING

327185000 - Particular stable state circuit (e.g., tristable, etc.)

327199000 - Circuit having only two stable states (i.e., bistable)

327208000 - Including field-effect transistor

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
327212000 With clock input 20
20080218235SEMICONDUCTOR INTEGRATED CIRCUIT WITH FLIP-FLOP CIRCUITS MOUNTED THEREON - A plurality of flip-flop circuits, having different circuit configurations, which perform an identical digital signal processing are mixed on a single semiconductor substrate. A first flip-flop circuit among the plurality of flip-flop circuits receives a clock signal supplied from outside the flip-flop circuits, through at least two stage inverters, and operates with clock signals outputted from the inverters. A second flip-flop circuit receives the clock signal supplied from outside the flip-flop circuits through at least one inverter having a less number of stages than the number of stages of the inverter contained in the first flip-flop circuit, and operates with at least one of the clock signal and a clock signal outputted from the inverter.09-11-2008
20080224748DIFFERENTIAL LATCH, DIFFERENTIAL FLIP-FLOP, LSI, DIFFERENTIAL LATCH CONFIGURATION METHOD, AND DIFFERENTIAL FLIP-FLOP CONFIGURATION METHOD - A differential latch comprising a data holding transistor, the differential latch comprising: a resetting transistor that is connected to a gate electrode of the data holding transistor and is controlled by a reset signal; and a switching transistor that is connected to the gate electrode of the data holding transistor and is controlled by a switch signal, being an inverted version of the reset signal.09-18-2008
20080238514LEVEL-CONVERTED AND CLOCK-GATED LATCH AND SEQUENTIAL LOGIC CIRCUIT HAVING THE SAME - A level-converted and clock-gated latch includes a pulse generator, a level converting unit, and a latch circuit. The pulse generator is provided with a first power-supply voltage and generates a pulse signal having a first voltage level, in response to a clock signal. The level converting unit is provided with a second power-supply voltage and generates an intermediate clock signal having a second voltage level, in response to an inverted clock signal, the clock signal and an enable signal. The latch circuit is provided with the second power-supply voltage, latches the intermediate clock signal, and provides a gated clock signal having the second voltage level. An activation interval of the gated clock signal is controlled based on the enable signal.10-02-2008
20080290921Level converting flip-flop and method of operating the same - A level converting flip-flop may include a data input circuit, a clocking circuit, a current mirror circuit, and/or a latch circuit. The data input circuit may be configured to generate a pull-up current in response to an input data signal having one of an input supply voltage smaller than an output supply voltage and a ground voltage. The clocking circuit configured to provide the pull-up current to an internal node in response to a clock signal having the input supply voltage and the ground voltage. The current mirror circuit may be configured to pull-up an output node to the output supply voltage in response to the pull-up current provided to the internal node. The latch circuit may be configured to latch an output data signal generated at the output node.11-27-2008
20090108897SEMICONDUCTOR DEVICE AND TIMING CONTROL METHOD FOR THE SAME - A semiconductor device includes a power-supply control portion and a latch portion. The power-supply control portion supplies power to an internal circuit in response to an input signal synchronized with rising of clock. The latch portion latches the input signal in synchronization with falling of the clock and supplies the latched input signal to the internal circuit.04-30-2009
20090160517FLIP-FLOP - An apparatus comprises a first stage, a second stage, and a switch circuit. The first stage and the second stage are coupled between a first reference voltage and a second reference voltage. The first stage has a first input end for receiving an input signal and a first output end for outputting a first output signal. The second stage has a second input end for receiving the first output signal from the first output end of the first stage and a second output end for outputting a second output signal. The switch circuit is coupled between the second stage and at least one of the first reference voltage and the second reference voltage for receiving a power control signal and for turning on or turning off according to the power control signal such that the current leakage of the second stage is reduced.06-25-2009
20100283524SEMICONDUCTOR DEVICE - A shift register capable of supplying only a necessary clock signal to a necessary unit register with simple constitution. A semiconductor device is provided with a shift register in which a plurality of stages of unit registers is connected, in which the unit register comprises a flip-flop circuit, a first switch and a second switch, a first clock signal line is electrically connected to the flip-flop circuit through the first switch, a second clock signal line is electrically connected to the flip-flop circuit through the second switch, the first switch is controlled to be on/off by an output signal from the flip-flop circuit, and the second switch is controlled to be on/off by an input signal to the flip-flop circuit.11-11-2010
20120013379Charge-Injection Sense-Amp Logic - A flip-flop circuit includes a charge injection module, a sense amp module, and a latch module. The charge injection module is configured to, in response to a clock signal, selectively provide electrical charge from a power supply to a first node. The sense amp module is configured to adjust a voltage of a second node in response to detecting a voltage of the first node crossing a threshold while the charge injection module is providing the electrical charge to the first node. The latch module is configured to in response to the clock signal, store a value based on a voltage of the second node. The latch module is also configured to provide the value as an output of the flip-flop circuit.01-19-2012
20120019300SHIFT REGISTER AND SEMICONDUCTOR DISPLAY DEVICE - The invention provides a shift register which can operate normally while suppressing a delay of signal and a rounding of waveform. The shift register of the invention includes a plurality of stages of flip-flop circuits each of which includes a clocked inverter. The clocked inverter includes a first transistor and a second transistor which are connected in series, a first compensation circuit including a third transistor and a fourth transistor which are connected in series, and a second compensation circuit including a fifth transistor and a transmission gate. According to the first compensation circuit, a timing at which a signal outputted from the flip-flop circuit rises or falls can be controlled in synchronization with an output of two stages before. The second compensation circuit can control a clock signal input can be controlled.01-26-2012
20120025886SWITCH CONTROL DEVICE - The present invention relates to a switch control device.02-02-2012
20120139601FLIP-FLOP CIRCUIT - A flip-flop circuit includes an evaluation part connected to a first node and a second node to discharge the second node according to a voltage level of the first node, a conditional delay part connected to the second node to discharge a third node to have a voltage level different from a voltage level of the second node, and a keeper logic part connected to the second node and third node to maintain a voltage level of one of the second and third nodes being not discharged.06-07-2012
20140035645SYSTEM AND METHOD TO PERFORM SCAN TESTING USING A PULSE LATCH WITH A BLOCKING GATE - A system and method to perform scan testing using a pulse latch with a blocking gate is disclosed. In a particular embodiment, a scan latch includes a pulse latch operable to receive data while a pulse clock signal has a first logical clock value and a blocking gate coupled to an output of the pulse latch. The blocking gate is operable to propagate the data from the output of the pulse latch while the pulse clock signal has a second logical clock value.02-06-2014
20140118046STATE RETENTION POWER GATED CELL - A state retention power gated (SRPG) cell includes an input control circuit having an input coupled to an input signal and an output. The input control circuit includes has transistors configured as a first inverter transmission gate. The transistors also connect in series at least one transistor controlled by a power gating signal. A first latch has an input coupled to the output of the input control circuit and an output. A transmission gate has an input coupled to the output of the first latch and an output that is an output of the SRPG cell. A second latch has an input coupled to the output of the transmission gate and an output that also is an output of the SRPG cell. A second inverter transmission gate has an input coupled to the output of the second latch.05-01-2014
20140253197LOW LEAKAGE RETENTION REGISTER TRAY - A particular method includes receiving a retention signal. In response to receiving the retention signal, the method includes retaining state information in a non-volatile stage of a retention register and reducing power to a volatile stage of the retention register. The non-volatile stage may be powered by an external voltage source. The volatile stage may be powered by an internal voltage source.09-11-2014
20140306744STATIC SIGNAL VALUE STORAGE CIRCUITRY USING A SINGLE CLOCK SIGNAL - Signal value storage circuitry 10-16-2014
20140306745FLIP-FLOP HAVING SHARED FEEDBACK AND METHOD OF OPERATION - A method of operating a circuit includes receiving a first data signal at a first node. The first node is coupled to a second node to couple the first data signal to the second node. After coupling the first node to the second node, an inversion is enabled from the second node to a third node. An inversion from the third node to the fourth node is provided. After the enabling the inversion from the second node to the third node, the first node is decoupled from the second node. After the enabling the inversion from the second node to the third node, the second node is coupled to the third node. An inversion from the fourth node to the third node is enabled and the second node is decoupled from the fourth node.10-16-2014
20140312950DATA HOLDING CIRCUIT AND SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE - A circuit including: an input stage that includes a first input unit into which input data is input and a pair of first output units and is driven by a first power-supply voltage; a pair of first gate elements that includes first transistors, and is driven by a clock that includes a second power-supply voltage that is lower than the first power-supply voltage; a first latch circuit that includes a pair of second input units, and is driven by the first power-supply voltage; a pair of second gate elements that includes second transistors, and is driven by an inverted clock of the clock; and a second latch circuit that includes a pair of third input units, and a third output unit that outputs one of a pair of pieces of data, and is driven by the first power-supply voltage.10-23-2014
20150130524LOW LEAKAGE RETENTION REGISTER TRAY - A particular method includes receiving a retention signal. In response to receiving the retention signal, the method includes retaining state information in a non-volatile stage of a retention register and reducing power to a volatile stage of the retention register. The non-volatile stage may be powered by an external voltage source. The volatile stage may be powered by an internal voltage source.05-14-2015
327213000 Plural independent clock inputs (i.e., non complementary ) 2
20090167396HIGH PERFORMANCE CLOCKED LATCHES AND DEVICES THEREFROM - An integrated circuit (07-02-2009
20150061742Storage Circuit and Semiconductor Device - The storage circuit includes first and second logic circuits, first and second transistors whose channel formation regions include an oxide semiconductor, and a capacitor. The first and second transistors are connected to each other in series, and the capacitor is connected to a connection node of the first and second transistors. The first transistor functions as a switch that controls connection between an output terminal of the first logic circuit and the capacitor. The second transistor functions as a switch that controls connection between the capacitor and an input terminal of the second logic circuit. Clock signals whose phases are inverted from each other are input to gates of the first and second transistors. Since the storage circuit has a small number of transistors and a small number of transistors controlled by the clock signals, the storage circuit is a low-power circuit.03-05-2015
Website © 2025 Advameg, Inc.