Class / Patent application number | Description | Number of patent applications / Date published |
326029000 | Pulse shaping (e.g., squaring, etc.) | 8 |
20080290893 | LOCAL CLOCK BUFFER (LCB) WITH ASYMMETRIC INDUCTIVE PEAKING - A Local Clock Buffer (LCB), an IC chip including registers, some of which may include master/slave latches, locally clocked by the LCB, e.g., providing a launch clock and a capture clock each with an identified critical edge. The LCB includes asymmetrically inductively peaked series connected logic gates (e.g., inverters and/or NAND gates), each with an inductor between gate devices and supply (V | 11-27-2008 |
20090096480 | IO DRIVER WITH SLEW RATE BOOST CIRCUIT - An IO driver utilizes a slew rate boost circuit coupled to an IO driver circuit to improve the slew rate of the driver during transitions on the output of the driver. One or more additional output stages are coupled in parallel with a primary output stage of the driver, and are temporarily activated responsive to a transition in an input signal to the driver to effectively decrease the output impedance and boost the pull-up and pull-down time response characteristics of the driver during the transition of the output. The additional output stages are active only for a small part of a cycle, so the slew rate is thereby increased while the effective output impedance during most of the cycle is essentially unaffected. | 04-16-2009 |
20090201046 | OUTPUT BUFFER AND METHOD HAVING A SUPPLY VOLTAGE INSENSITIVE SLEW RATE - An output buffer includes a final driver formed by first and second MOSFET transistors that alternately couple an output terminal to respective supply voltages. The output terminal is biased to a bias voltage intermediate the supply voltages. The slew rate at which the MOSFET transistors transition the output terminal to the supply voltages is affected by the magnitude of at least one of the supply voltages. The output buffer is driven by a pre-driver coupling first and second control signals to the first and second MOSFET transistors, respectively. The pre-driver adjusts the delay between generating one of the control signals to turn off the MOSFET transistor and generating the other of the control signals to turn on the other MOSFET transistor as a function of the supply voltage magnitude to make the slew rate of the resulting transition substantially insensitive to variations in power supply voltage. | 08-13-2009 |
20100253385 | EDGE DETECT RECEIVER CIRCUIT - A digital signal detector detects digital signals by only sensing the rising and falling edges of a received digital signal and latches the logic state between the detected edges. Such edges contain very high frequencies that are much higher than the fundamental frequency of the digital signal train. A small high pass filter filters out at least the DC component and the fundamental frequency of the received digital signal. A filtered edge appears as a spike that goes either positive or negative depending on whether the edge is a rising or falling edge. A memory element, such as comprising an RS flip flop, is triggered by the positive and negative spikes. A positive spike triggers the flip flop to output a logical one, and a negative spike triggers the latch to output a logical zero. In this way, the digital signal is recreated without the original digital signal itself being required to pass through the high pass filter. | 10-07-2010 |
20120025867 | Device for storing pulse latch with logic circuit - A device for storing pulse latch with logic circuit and thus having signal maintaining function is provided, wherein the device is composed of a data signal, a scan data input signal, a stored signal, a choosing data input signal, a time clock signal, a restoring signal, a first signal channel, a scan latch, a second signal channel, a pulse latch, a normal output signal, an output signal, a first OR gate, a second OR gate, a third OR gate, a AND gate and an inverter connecting to one another. The device may store the data when being switch off and restore the data when being switch on again. | 02-02-2012 |
20120299616 | CIRCUIT AND METHOD TO CONTROL SLEW RATE OF A CURRENT-MODE LOGIC OUTPUT DRIVER - A method is provided for selecting at least one of a plurality of slew rate control settings based at least upon a speed of data transmission and receiving input data where the input data is received at the data transmission speed. The method also includes switching the received input data in accordance with the selected at least one of a plurality of slew rate control settings and sending output data at the data transmission speed. Also provided is data driver device that includes at least one activation portion comprising one or more slew rate controls, a voltage-mode driver portion and at least a first current-mode driver portion. Also provided is a computer readable storage device encoded with data for adapting a manufacturing facility to create the data driver device. Also provided is a system including the data driver device, a data storage device and a processor device. | 11-29-2012 |
20130154684 | BIAS COMPENSATION METHOD AND SYSTEM FOR MINIMIZING PROCESS, VOLTAGE AND TEMPERATURE CORNER VARIATIONS - A system and method for calibrating bias in a data transmission system including a calibrated bias having impedance calibration for accommodating parameter variations in the data transmission system. A current mirror receives and balances bias currents between the calibrated bias and an output driver from the data transmission system. A digital compensation logic circuit is connected to the calibrated bias to adjust the calibrated bias for variations in parameters causing a current tail effect. A calibration logic circuit adjusts calibration due to variations in operational parameters, such that the tail current variations are minimized. | 06-20-2013 |
20140077836 | METHOD TO CONTROL SLEW RATE OF A CURRENT-MODE LOGIC OUTPUT DRIVER - A method is provided for selecting at least one of a plurality of slew rate control settings based at least upon a speed of data transmission and receiving input data where the input data is received at the data transmission speed. The method also includes switching the received input data in accordance with the selected at least one of a plurality of slew rate control settings and sending output data at the data transmission speed. Also provided is data driver device that includes at least one activation portion comprising one or more slew rate controls, a voltage-mode driver portion and at least a first current-mode driver portion. Also provided is a computer readable storage device encoded with data for adapting a manufacturing facility to create the data driver device. Also provided is a system including the data driver device, a data storage device and a processor device. | 03-20-2014 |