Class / Patent application number | Description | Number of patent applications / Date published |
324431000 | With temperature compensation of measured condition | 17 |
20080211509 | Battery capacity monitoring system and method of displaying capacity thereof - A system for monitoring the battery capacitor is disclosed. The system comprises an ADC (analog to digital converter), a CPU, a ROM, a clock generator, a SMbus (smart management bus) interface. A series of RTC interrupt signals are generated by the clock generator and feeds to the CPU. When the CPU receives a RTC interrupt, the CPU runs a program in said ROM to calculate the remaining capacity of the battery and stores it into register or RAM according to the digital signal outputs from the ADC, which converts an analog signal of the battery into a digital signal. The SM bus interface then fetches the calculated results from the CPU and displays them by LED in terms of lighting, dark and flashing. | 09-04-2008 |
20090237086 | MODULAR HEAVY LOAD BATTERY TEST SYSTEM - A modular heavy load battery test system is provided. The system includes a heavy load module and a battery tester. The heavy load module includes a housing, first and second lengths of high-resistivity, large-gauge wire arranged on respective upper and lower surfaces of a heat-resistant support plate, a switch and at least one cooling fan. The battery tester includes a housing, a microcontroller and a set of battery charging wires. The microcontroller selects the configuration of the first and second wires and provides the control signal to the heavy load module, while the switch selectively connects the first and second wires to the battery tester based upon the control signal. | 09-24-2009 |
20100019773 | BATTERY MONITORING DEVICE - A battery monitoring device includes a probe for insertion into a valve of a lead acid battery. The probe includes an electrolyte monitoring probe connected to an electrolyte level sensor, and a temperature probe connected to a temperature sensor. The battery monitoring device also includes a display for communicating the temperature and electrolyte level of the lead acid battery, and an LED for indicating that the electrolyte level is low. At appropriate intervals, the battery monitoring device can deliver pulses of electricity to the lead acid battery and counteract sulfation, in order to enhance battery performance and extend the useful lifetime of the battery. | 01-28-2010 |
20110115491 | METHOD FOR DETECTING ICE BLOCKING OF FUEL CELL STACK AND CONTROLLING FUEL CELL VEHICLE USING THE SAME - The present invention provides a method for determining the occurrence of ice blocking in an electrode surface in real time by analyzing minimum cell voltages of a fuel cell stack and, at the same time, distinguishing the occurrence of ice blocking in an anode from the occurrence of ice blocking in a cathode. | 05-19-2011 |
20120086457 | TEMPERATURE COMPENSATION FOR MAGNETIC DETERMINATION METHOD FOR THE STATE OF CHARGE OF A BATTERY - An exemplary embodiment includes a method of determining a state of charge of a battery system including determining a temperature dependent magnetic property value of a magnetic material proximate a battery cell; determining a temperature compensated value of said determined magnetic property value; and, using said temperature compensated value as an input to a state of charge (SOC) estimator to determine a state of charge (SOC) of said battery system. | 04-12-2012 |
20120119746 | SYSTEMS AND METHODS FOR INTELLIGENT, ADAPTIVE MANAGEMENT OF ENERGY STORAGE PACKS - Systems and methods for intelligent, adaptive management of energy storage packs are disclosed. A method comprises receiving a first current measurement of a first energy storage cell electrically connected to a first converter circuit. The first converter circuit controls the charge and discharge of the first energy storage cell. A first voltage measurement of the first energy storage cell is received. A first temperature measurement of the first energy storage cell is received. The first current measurement, the first voltage measurement, and the first temperature measurement are translated into a state of charge of the first energy storage cell. | 05-17-2012 |
20130038333 | DETERIORATION DEGREE CALCULATING APPARATUS FOR SECONDARY BATTERY, VEHICLE EQUIPPED WITH THE APPARATUS, AND DETERIORATION DEGREE CALCULATING METHOD FOR SECONDARY BATTERY - A deterioration degree calculating apparatus for a secondary battery of the invention includes: obtaining a voltage value at a stop time of charge and discharge of a target secondary battery; obtaining a voltage value at a first start time of charge and discharge after that; obtaining an SOC of the target secondary battery at the stop time or at the start time; obtaining a length of an unused period from the stop time to the start time (an elapsed time); obtaining a self-discharge slope of the target secondary battery by dividing an absolute value of a difference between the voltage value at the start time and the voltage value at the stop time by the elapsed time; obtaining a temperature during an unused period by use of a self-discharge map in which the SOC and the self-discharge slope is recorded for each temperature; calculating a progress degree of deterioration of the target secondary battery during the unused period based on the obtained temperature and elapsed time; and accumulating the calculated deterioration progress degree to accurately calculate the deterioration degree of the secondary battery without continuously consuming electric power during the unused period. | 02-14-2013 |
20130214789 | CIRCUITS AND METHODS FOR MEASURING A CELL VOLTAGE IN A BATTERY - A circuit measures a cell voltage of a cell in a battery. The circuit includes a measurement circuit and a current generator. The measurement circuit includes a first terminal coupled to a positive terminal of a cell via a first resistive element and includes a second terminal coupled to a negative terminal of the cell via a second resistive element. The measurement circuit consumes a first current. The current generator generates a first compensation current according to the first current. The first current and the first compensation current flow from the positive terminal through the first resistive element to the first terminal. The measurement circuit calculates the cell voltage according to a first voltage difference between the first and second terminals when the first compensation current is disabled and according to a second voltage difference between the first and second terminals when the first compensation current is enabled. | 08-22-2013 |
20140111215 | ANALOGUE MEASUREMENT DATA DETECTION SYSTEM AND BATTERY VOLTAGE DETECTION SYSTEM - An analogue measurement data detection system according to the present invention includes: a reference voltage generation circuit configured to generate and output a reference voltage; an analogue/digital converter configured to compare an analogue signal with the reference voltage outputted from the reference voltage generation circuit, and based on a differential voltage between the analogue signal and the reference voltage, generate and output a digital signal corresponding to the analogue signal. The reference voltage generation circuit is configured to cause the reference voltage to have such a temperature characteristic as to compensate for temperature characteristics of at least the analogue/digital converter and the reference voltage generation circuit. | 04-24-2014 |
20140210481 | BATTERY TARGET TEMPERATURE METHODS AND SYSTEMS - Methods and systems for determining a target temperature and/or adjusting a temperature associated with a battery, such as a vehicle battery. In some implementations of such methods, a temperature-scaled battery capacity of at least a portion of a battery may be determined at a measured temperature. The temperature-scaled battery capacity may be compared with a capacity threshold and, upon determining that the temperature-scaled battery capacity is below the capacity threshold, a target battery temperature for the at least a portion of the battery may be determined and/or set. | 07-31-2014 |
20150293180 | INTEGRATED BATTERY SENSOR FOR MULTIPLE BATTERY MODULES - The present disclosure includes a method that includes receiving, via a processor disposed within a lithium ion battery module, a voltage signal associated with a resistor coupled to a negative terminal of the lithium ion battery module. The negative terminal of the lithium ion battery module is coupled to a negative terminal of a lead acid battery module. The method also includes determining, via the processor, one or more properties associated with the lead acid battery module based on the voltage signal. | 10-15-2015 |
20160018473 | Non-Intrusive Correlating Battery Monitoring System and Method - There is disclosed a system and method for determining whether a battery or battery system has encountered a thermal failure and/or end of service life condition. The battery monitoring system is configured to generate a plurality of alarms based on the occurrence of a number of conditions in the battery system. | 01-21-2016 |
20160018474 | SEMICONDUCTOR DEVICE, BATTERY MONITORING SYSTEM, AND METHOD OF MONITORING BATTERY - A semiconductor device includes a voltage generation circuit configured to generate a specific voltage; a first terminal configured to output the specific voltage; a second terminal configured to receive a temperature sensitive voltage; an analog/digital conversion circuit configured to convert the specific voltage and the temperature sensitive voltage to digital values; a storage unit configured to store the specific voltage and the temperature sensitive voltage; and a third terminal configured to transmit the specific voltage and the temperature sensitive voltage to an external semiconductor device. | 01-21-2016 |
20160084916 | APPARATUS AND METHOD FOR CONTROLLING CONVERTER - An apparatus and method for controlling a converter are provided. The apparatus includes a battery and a sensor configured to sense the battery to generate sensor state of battery information. A converter controller is configured to acquire the sensor state of battery information and vehicle state information received from a vehicle controller to calculate calibrated state of battery information based on whether a correction execution condition on the sensor state of battery information is satisfied. In addition, the converter controller uses the calibrated state of battery information and the sensor state of battery information to calculate an error correction value and uses the error correction value to calculate actual state of battery information. A converter is then configured to supply power to the battery based on the sensor state of battery information or the actual state of battery information. | 03-24-2016 |
20160124052 | BATTERY SYSTEM PACK LIFE ESTIMATION SYSTEMS AND METHODS - System and methods for estimating a life of a battery pack are presented. In certain embodiments, a method for estimating a life of a battery pack may include generating cell-level test data that includes measured parameters a of battery cell included in the battery pack in response to a plurality of test conditions. One or more first thermal response parameters associated with the battery cells of the battery pack may be determined. A battery cell aging model may be generated based, at least in part, on the cell-level test data and the one or more first thermal response parameters. Second thermal response parameters associated with the battery pack may be determined, and an estimated life of the battery pack may be determined based, at least in part, on the battery cell aging model and the second thermal response parameters. | 05-05-2016 |
20160146899 | METHOD AND APPARATUS FOR MEASURING CAPACITY OF BATTERY - A method and an apparatus for measuring a capacity of a battery are provided. The apparatus comprises a battery status measuring module, a coulometer, and a calculating module. The battery status measuring module is used for monitoring a battery status of a battery. The coulometer is used for measuring an output quantity of electricity of the battery to obtain a coulometer capacity. The calculating module is coupled to the battery status measuring module and the coulometer to receive the battery status and the coulometer capacity. The calculating module looks into a lookup table according to the battery status to obtain a measuring a capacity of the battery, dynamically determines a weight value according to the battery status, and adjusts the measuring capacity of the battery and the coulometer capacity to calculate a displaying capacity of the battery. | 05-26-2016 |
20160178705 | METHOD OF USING A FIELD-EFFECT TRANSISTOR AS A CURRENT SENSING DEVICE | 06-23-2016 |