Class / Patent application number | Description | Number of patent applications / Date published |
318400220 | Current or voltage limiting (e.g., over-voltage or over-current protection, etc.) | 85 |
20080297084 | Control Circuit for an Electronically Commutated Motor - A control circuit for an electronically commutated motor ( | 12-04-2008 |
20090045763 | Method and Arrangement For Monitoring Signals - The invention relates to a method and to an arrangement for monitoring signals which are guided to a multi-phase motor by an end stage and the pulse width thereof is controlled by a controller. The total of the pulse widths of the signals of each phase is measured by, respectively, a counter, respectively for a predetermined programme flow in the controller. The meter reading is read by a counter according to a predetermined period of time and an error signal is produced if the total amount of time exceeds a predetermined tolerance range. | 02-19-2009 |
20090058339 | ELECTRIC MOTOR DRIVE APPARATUS, HYBRID VEHICLE WITH THE SAME AND STOP CONTROL METHOD OF ELECTRIC POWER CONVERTING DEVICE - An ECU activates a shutdown permission signal and provides it to an AND gate when a shutdown signal is inactive. Thus, when an abnormality sensing device does not sense an abnormality, the ECU always keeps the shutdown permission signal active. The AND gate performs logical AND between a signal provided from the abnormality sensing device and the shutdown permission signal to provide the shutdown signal to inverters. When a limp-home run permission signal becomes active while the shutdown signal is active, the ECU inactivates the shutdown permission signal. | 03-05-2009 |
20090079373 | MOTOR CONTROLLER AND ELECTRIC POWER STEERING SYSTEM - A current sensor of a motor controller detects the current applied to a motor drive circuit and thus a phase where a failure cannot be detected would occur without taking any measures. However, an abnormal current monitor section contained in a microcomputer receives a voltage signal of an average value of the currents detected in the current sensor by allowing a signal to pass through a first LPF having a cutoff frequency sufficiently lower than the frequency of a PWM signal. Therefore, whether or not the value is within a predetermined normal range is checked, whereby whether or not some failure containing a failure of the current sensor occurs can be easily determined about every phase. | 03-26-2009 |
20090195199 | MOTOR DRIVE DEVICE - A controller ( | 08-06-2009 |
20090243525 | INVERTER CONTROL METHOD - Two current threshold values are adopted, which are larger than the upper limit of current of an operating region. When a rotating speed is smaller than a speed threshold value, the current threshold value is adopted as a criterion to judge whether an input current to an inverter is abnormal, and when the rotating speed Rot is larger than that, the other current threshold value is adopted as the criterion. | 10-01-2009 |
20100001672 | GENERATOR MOTOR FOR VEHICLE AND CONTROL METHOD FOR THE SAME - A vehicle generator motor has a generator motor that is connected to an internal combustion engine and plural sets of three-phase windings, plural sets of inverter portions connected to the respective sets of the three-phase windings, and a control circuit portion for controlling the inverter portions in accordance with the operation state of the generator motor. When the generator motor operates as a motor and a variation value of an output torque or power generation amount thereof exceeds a predetermined value, the control circuit portion controls the inverter portions so as to stop armature current flowing in at least one set in plural sets of three-phase windings. | 01-07-2010 |
20100007295 | OVER-TORQUE CONTROL CIRCUIT FOR BLDC MOTORS - A BLDC (brushless direct current) motor system of the present invention includes a control circuit, a sequencer, a driving circuit, and a BLDC motor. The control circuit determines the maximum torque and the maximum speed of the BLDC motor. The control circuit includes an over-current detection circuit to generate a reset signal in response to a switching current of the BLDC motor. The reset signal is generated when the switching current of the BLDC motor exceeds a threshold. A pulse width of the PWM signal is correlated to the level of a speed-control signal and the level of the torque-control signal. The pulse width of the PWM signal is also controlled by the reset signal generated by the over-current detection circuit. | 01-14-2010 |
20100026222 | Dynamo-electric machine control system and vehicle driving system including the same - A dynamo-electric machine control system including a dynamo-electric machine and an inverter that is interposed between a battery and the dynamo-electric machine and that controls a current flowing through the dynamo-electric machine, wherein a rotation speed and an output torque of the dynamo-electric machine are controlled by the inverter, the dynamo-electric machine control system includes a battery power deriving unit that derives a battery power to be supplied from the battery when the dynamo-electric machine is operated at the rotation speed and the output torque; a limit power determining unit that variably determines a limit power, which is a maximum allowable value of the battery power, in accordance with a battery voltage; and a torque limiting unit that limits the torque of the dynamo-electric machine such that the battery power derived by the battery power deriving unit does not exceed the limit power. | 02-04-2010 |
20100134057 | OVERVOLTAGE PROTECTION FOR A CONVERTER - The invention relates to a method for protecting against over voltage that is simple to produce, economical, compact and is simultaneously effective against over voltage for a converter ( | 06-03-2010 |
20110062908 | CONTROLLER OF MOTOR - In configuring a power conversion device to drive an alternating-current motor for an electric vehicle, the device is configured in a small size, light weight, and at a low cost, while avoiding size increase of a cooler. A current-command generating unit provided in a controller to control the alternating-current motor is adjusted not to increase a loss of an inverter in a state that the inverter as a main circuit within the power conversion device is outputting a maximum voltage that can be generated at an output voltage of a direct-current power source and when a torque command is reduced, and outputs a current command to cause the alternating-current motor to generate a torque based on the torque command. | 03-17-2011 |
20110156627 | MOTOR DRIVE AND ELECTRIC POWER STEERING APPARATUS USING THE SAME - In a multi-system motor drive apparatus, a power supply relay is interrupted when a first power supply system fails at time t | 06-30-2011 |
20110221369 | SYSTEMS AND METHODS FOR MONITORING CURRENT IN AN ELECTRIC MOTOR - Systems and methods are provided for monitoring current in an electric motor. An electrical system comprises a direct current (DC) interface, an electric motor, and an inverter module between the DC interface and the electric motor. A first current sensor is configured to measure a DC current flowing between the DC interface and the inverter module. A second current sensor is configured to measure a first phase current flowing through the first phase of the electric motor. A control module is coupled to the current sensors, and the control module is configured to determine an expected value for the first phase current based at least in part on the DC current measured by the first current sensor and take remedial action based on a difference between the expected value and the measured first phase current. | 09-15-2011 |
20110248657 | MOTOR CONTROL APPARATUS - An inverter circuit is provided for a plurality of coils and includes switching elements forming switching element pairs in correspondence to each phase of the coils. Current detection sensors detect currents flowing low-side FETs, respectively. A control circuit has a failure detection section, which detects arm short-circuit failure of the element pairs based on current values detected by the current detection sensors at timing when one or the other of all the low-side FETs and all the high-side FETs are turned on and turned off, respectively. | 10-13-2011 |
20110273122 | MOTOR DRIVE DEVICE - A motor drive device has an inverter circuit, in which at least three sets of a pair of upper and lower arms including a semiconductor switching element on an upper arm and a lower arm is arranged, for supplying voltage to a motor based on ON/OFF operation of each semiconductor switching element by a PWM (Pulse Width Modulation) signal, an inverter drive unit for outputting the PWM signal to each semiconductor switching element of the inverter circuit, a fail safe circuit, arranged between the inverter circuit and the motor, including a semiconductor switching element for shielding the voltage supply from the inverter circuit to the motor for each phase, and a fail safe drive unit for outputting a signal for turning ON/OFF the semiconductor switching element of the fail safe circuit. | 11-10-2011 |
20110285335 | MOTOR DRIVE DEVICE - A motor drive device includes an inverter circuit, a driver circuit for outputting a PWM signal to the inverter circuit, a booster circuit for boosting a power supply voltage supplied from a power supply circuit, a fail safe circuit arranged between the inverter circuit and the motor, and a fail safe drive unit for outputting a signal for turning ON/OFF a semiconductor switching element of the fail safe circuit. A boost voltage output from the booster circuit is supplied to the driver circuit and also supplied to the fail safe drive unit. The fail safe drive unit drives the semiconductor switching element of the fail safe circuit by such boost voltage. | 11-24-2011 |
20110316460 | VEHICLE CONTROL SYSTEM - A system and method for a vehicle control system is disclosed herein. The system includes an inverter circuit, a permanent magnet synchronous motor, and a crossover connected between the inverter circuit and the permanent magnet synchronous motor. The system may also include at least one current sensor installed between the inverter circuit and the permanent magnet synchronous motor. A contactor may also be connected between the inverter circuit and the permanent magnet synchronous motor and may pass or shut off electricity between the inverter circuit and the permanent magnet synchronous motor. The system may also include a control unit connected to the contactor and the current sensor. The control unit may detect a current abnormality using information from the current sensor and open the contactor if an abnormality is detected. | 12-29-2011 |
20120038300 | CONTROL DEVICE FOR AC ROTATING MACHINE - A control device for an AC rotating machine having a current limiting function of protecting the AC rotating machine and a driving unit such as an inverter from over-current, in which the control device has the reliable current limiting function in driving the AC rotating machine with known or unknown electrical constant. In the control device, a frequency correction value arithmetic unit has an amplification gain computing element for computing an amplification gain based on an electrical constant of the AC rotating machine and an amplifier for computing a frequency correction arithmetic value based on the amplification gain computed by the amplification gain computing element and the current of the AC rotating machine, in which the frequency correction arithmetic value is outputted as a frequency correction value in a predetermined running state of the AC rotating machine. | 02-16-2012 |
20120074885 | MOTOR CONTROL DEVICE - PROBLEMS TO BE SOLVED | 03-29-2012 |
20120086373 | Motor Drive Circuitry - A motor drive circuit includes a positive and a negative supply rail for connection to a battery ( | 04-12-2012 |
20120104983 | WORK MACHINE AND BRUSHLESS MOTOR - An electric grasscutter includes a motor ( | 05-03-2012 |
20120139463 | POWER SUPPLY MODULE FOR HALL SENSORLESS BRUSHLESS DIRECT CURRENT MOTOR - Disclosed is a power supply module for a hall sensorless BLDC motor, including: a high-voltage/large-current power device t applied with high voltage/large current and including a plurality of power devices driving the hall sensorless brushless direct current (BLDC) motor; a motor driving circuit sensing and controlling a positional signal or a velocity signal of the hall sensorless BLDC motor and generating a PWM control signal for controlling the hall sensorless BLDC motor; and a power device driving circuit driving the high-voltage/large-current power device according to the PWM control signal of the motor driving circuit, wherein the high-voltage/large-current power device, the power device driving circuit, and the motor driving circuit are CMOS-integrated on the same substrate. | 06-07-2012 |
20120200245 | BRUSHLESS DC MOTOR - A brushless DC motor having a plurality of electrical windings and a control circuit operatively connected thereto. The control circuit includes a plurality of switches configured for a time-dependent application of an electrical voltage from an external voltage supply to the windings. A measuring device is also provided for generating an electrical signal depending on the current flow I | 08-09-2012 |
20120256572 | Brushless Motor and Control Method Therefor - When a fault of any one of phases is detected by a fault detector, each of the phases is checked for fault on the basis of fault detection information input to a controller, and the phases of normal phase currents which have been judged to be not faulty by a faulty phase discriminator are varied such that a current vector obtained by decomposing the normal phase currents into orthogonal X- and Y-axis components to derive resultant currents and then combining the resultant currents follows a nearly circular locus. | 10-11-2012 |
20120256573 | MOTOR DRIVING DEVICE, AND CONTROL METHOD OF MOTOR DRIVING DEVICE - A data processing apparatus that controls an inverter circuit for a motor. The data processing apparatus including a control unit that monitors a potential of a power supply terminal to supply power to the inverter circuit, and obtains an information indicative of an amount of a driving current flowing in a motor winding of the motor in response to an amount of a current flowing in a resistive element included in the inverter circuit, to control a driving of the motor. The control unit makes the motor winding and the resistive element form a loop circuit, when the potential of the power supply terminal exceeds a predetermined value. | 10-11-2012 |
20130033210 | THREE-PHASE ROTARY MACHINE CONTROL APPARATUS - A first inverter and a second inverter supply two coil sets forming a three-phase motor with AC voltages, which are the same in amplitude but shifted by 30° in phase. Current detectors detect phase currents supplied from the inverters to the coil sets. Temperature estimation sections estimate temperatures of the inverters or the coil sets based on an integration value of the phase current detection values. A current command value limitation section limits upper limits of current command values of both coil sets based on the estimated temperatures Tm | 02-07-2013 |
20130038257 | MOTOR DRIVE DEVICE, BRUSHLESS MOTOR, AND MOTOR DRIVE METHOD - The disclosed device comprises a duty calculator for calculating a duty command value (Dty), a duty limiter for limiting the duty command value (Dty) to a value according to a limit value (L), a current flow monitor for determining that there is an overcurrent if a current value (Idet) flowing through a winding exceeds a predetermined threshold value (Ithr), and a limit value generator for generating the limit value (L). The limit value generator updates the limit value (L) at predetermined time intervals and for a value corresponding to a difference between the threshold value (Ithr) and the current value (Idet) at a time in order to decrease the current value (Idet) during a period in which the overcurrent is determined. | 02-14-2013 |
20130099705 | MOTOR DRIVING DEVICE HAVING REACTIVE CURRENT INSTRUCTION GENERATING UNIT - A motor driving device includes a converter that converts an input alternating current into a direct current, an inverter that inverts the direct current output by the converter into an alternating current for driving a motor, a voltage detecting unit that detects a voltage on a direct current output side of the converter, and a numerical control unit that causes the inverter to output a reactive current to increase electric power consumed in the motor, when the voltage detected by the voltage detecting unit exceeds a predetermined threshold. | 04-25-2013 |
20130119905 | DETERMINATION OF MAGNETIC FLUX AND TEMPERATURE OF PERMANENT MAGNETS IN WASHING MACHINE MOTOR - According to one illustrative embodiment, a washing machine comprises a motor including a plurality of coils and one or more permanent magnets, an inverter configured to supply current to the plurality of coils and to measure a back electromotive force (BEMF) waveform from the plurality of coils, and an electronic control unit (ECU) configured to (i) integrate the BEMF waveform to generate an integrated BEMF waveform, (ii) determine a magnetic flux of the one or more permanent magnets using an amplitude of the integrated BEMF waveform, and (iii) control the current supplied by the inverter based at least in part upon the determined magnetic flux. | 05-16-2013 |
20130119906 | METHODS AND APPARATUS FOR ELECTRIC MOTOR CONTROLLER PROTECTION - A method for monitoring input power to an electronically commutated motor (ECM) is described. The method includes determining, with a processing device, an average input current to the motor, the average input current based on a voltage drop across a shunt resistor in series with the motor, measuring an average input voltage applied to the motor utilizing the processing device, multiplying the average input current by the average voltage to determine an approximate input power, and communicating the average input power to an external interface. | 05-16-2013 |
20130169205 | MOTOR CONTROL APPARATUS - A MG-ECU is provided in a hybrid vehicle having an MG and an engine and starts the engine by controlling the MG. When the MG-ECU detects a disconnection in any one of three-phase power supply wires, which supply the MG with power, the MG-ECU permits driving of the MG on condition that the engine is requested to be started. The MG-ECU limits a command torque for the MG is limited to be equal to or less than a predetermined torque value than in a case of presence of no disconnection, when the MG is permitted to be driven. | 07-04-2013 |
20130181645 | DRIVE SYSTEM AND METHOD FOR OPERATING SUCH A DRIVE SYSTEM - A drive system for an electric motor includes a connection for a battery, and an inverter having an input side connected to an intermediate circuit and an output side having a connection for an electric motor. The intermediate circuit includes a first thyristor connected in parallel with an intermediate circuit capacitance. The drive system may also include a rectifier having an input side connected at the output side of the inverter in parallel with the electric motor, and a second thyristor connected an output side of the rectifier. The first/second thyristor are configured to be activated by a monitor incorporated in or assigned to the drive system. In the event of a malfunction, the input and/or output side of the inverter can be electrically isolated to allow a multiply redundant armature short circuit. | 07-18-2013 |
20130257328 | MOTOR DRIVE APPARATUS - When a failure detection part detects a failure in an inverter circuit in a first power supply system, a drive control part stops the inverter circuit from driving a motor. An on/off control part turns off a first power supply relay of a power supply on/off part. Under a state that the inverter circuit stops a motor driving operation, a first coil set of the motor generates an induced voltage by rotation caused by an external force. The induced voltage is regenerated to a battery from the inverter circuit through a second power supply relay and a parasitic diode of the first power supply relay. Thus, circuit elements in the power supply system, which is failing, are protected from breaking down. | 10-03-2013 |
20130278191 | MOTOR DRIVE CONTROL DEVICE - A motor drive control device is provided in which if any abnormality occurs in a drive control circuit, drive command signals the drive control circuit generates are interrupted at once, so that an AC motor can be stopped in safety. A monitor control circuit and drive command signal interruption circuit are provided to the drive control circuit that takes variable-speed control of the AC motor supplied with power from a DC drive power source via a semiconductor bridge circuit. If any abnormality occurs in the drive control circuit, the drive command signals the drive control circuit generates are interrupted at once. When starting operation, the drive control circuit and monitor control circuit cooperate with each other to conduct preliminary check as to whether or not the drive command signal interruption circuit operates normally, base on a predetermined time schedule, and stop the AC motor without fail if any abnormality occurs during operation. | 10-24-2013 |
20130300326 | MOTOR DRIVING DEVICE FOR PROTECTING INRUSH CURRENT - A motor driving device for protecting inrush current is disclosed, where the motor driving device includes a resistor, a capacitor, an electronic switch, a rectifier and a driving circuit. The capacitor is connected to the resistor in series. The electronic switch is connected to the resistor in parallel. The rectifier is connected to the resistor and the capacitor in parallel and is electrically connected to a power source. The driving circuit is connected to the resistor and the capacitor in parallel and is electrically connected to a motor. | 11-14-2013 |
20130314014 | METHOD AND CONTROLLER FOR AN ELECTRIC MOTOR WITH FAULT DETECTION - For each phase of a controller, semiconductor switches comprise a high side switch and a low side switch. A direct current voltage bus provides electrical energy to the semiconductor switches. A measuring circuit is adapted to measure the collector-emitter voltage or drain-source voltage for each semiconductor switch of the controller. A data processor determines that a short circuit in a particular semiconductor switch is present if the measured collector-emitter voltage or measured source-drain voltage for the particular semiconductor switch is lower than a minimum threshold and if an observed current associated with the particular semiconductor switch has an opposite polarity from a normal operational polarity. A driver simultaneously activates counterpart switches of like direct current input polarity that are coupled to other phase windings of the electric motor, other than the particular semiconductor switch, to protect the electric motor from potential damage associated with asymmetric current flow. | 11-28-2013 |
20130320895 | STEERING CONTROL APPARATUS - A steering control apparatus includes a direct current power source, a three-phase alternating current motor, and a motor driving circuit. An emergency switching element is provided on at least two phases of a three-phase power supply line connected to the three-phase alternating current motor within the motor driving circuit, and the emergency switching element is turned off when an abnormality occurs such that the motor driving circuit is disconnected from the three-phase alternating current motor. The emergency switching element is a MOSFET, and the MOSFETs are provided in pairs in each of the two phases of the three-phase power supply line. Further, parasitic diodes of the pairs of MOSFETs are disposed in opposite orientations to each other. | 12-05-2013 |
20130328511 | ELECTRIC AUTOMOBILE - An electric vehicle includes an inverter unit and an ECU. The inverter unit or the ECU includes a magnetic force estimator that estimates a magnetic force of a permanent magnet structure associated with a motor rotor of a motor unit. The inverter unit or the ECU may also include a determiner for the estimated magnetic force and an abnormalities-responsive motor drive limiter. The estimator is configured to estimate, according to a predefined rule, the magnetic force, based on at least two detection signals selected from a group consisting of a detection signal indicating a rotational frequency of the motor unit, a detection signal indicating a motor voltage of the motor unit and a detection signal indicating a motor current of the motor unit. | 12-12-2013 |
20140001990 | MOTOR DRIVE SYSTEM CONTROL APPARATUS | 01-02-2014 |
20140021892 | SEMICONDUCTOR DEVICE, DRIVING MECHANISM AND MOTOR DRIVING CONTROL METHOD - A semiconductor device that controls a motor driving device. The semiconductor device includes: a position detection section that detects changes in a turning position of a rotor provided at a motor and outputs detection signals corresponding to the changing turning position; a first switching section that, in accordance with the detection signals, outputs ground switching signals, which switch which end portion of a coil is connected to a ground side, to a first switching circuit; and a second switching section that, in accordance with the detection signals, outputs connection switching signals, which switch which end portion of the coil is connected to a driving power supply side, to a third switching circuit that controls the switching of connections between the end portions of the coil and the driving power supply side by a second switching circuit. | 01-23-2014 |
20140021893 | DRIVER FOR SWITCHING ELEMENT AND CONTROL SYSTEM FOR ROTARY MACHINE USING THE SAME - In a driver, a clamping module executes a clamping task that clamps an on-off control terminal voltage to be equal to or lower than a clamp voltage for a predetermined time during charging of the on-off control terminal of the switching element. The clamp voltage is lower than an upper limit of the voltage at the on-off control terminal of the switching element. A measuring module measures a parameter value correlated with a sense current correlated with a current flowing between input and output terminals of the switching element. A limiting module discharges the on-off control terminal to limit flow of the current between the input and output terminals if the value of the parameter exceeds a threshold. A setting module variably sets a length of the predetermined time as a function of the parameter value during charging of the switching element's on-off control terminal. | 01-23-2014 |
20140062362 | CONTROL DEVICE OF PERMANENT MAGNET SYNCHRONOUS MOTOR FOR PREVENTING IRREVERSIBLE DEMAGNETIZATION OF PERMANENT MAGNET AND CONTROL SYSTEM INCLUDING THE SAME - A maximum current value determination unit determines the maximum current value of a permanent magnet synchronous motor in order to prevent irreversible demagnetization of a permanent magnet of the permanent magnet synchronous motor that may occur by transient current occurring at the time of short-circuiting of three phases, based on one of a set of irreversible demagnetization causing current value corresponding to permanent magnet temperature and the transient current occurring at the time of the short-circuiting of three phases, and a set of irreversible demagnetization causing magnetic field intensity corresponding to the permanent magnet temperature and demagnetization field intensity of the permanent magnet of the permanent magnet synchronous motor occurring at the time of the short-circuiting of three phases. A current control unit controls the current of the permanent magnet synchronous motor so that the current value of the permanent magnet synchronous motor is less than the maximum current value. | 03-06-2014 |
20140070742 | SYSTEM AND METHOD FOR IMPLEMENTING A REMEDIAL ELECTRICAL SHORT - A vehicle includes a polyphase, permanent magnet synchronous electric machine, DC and AC buses, a battery module, a traction power inverter module (TPIM), and a controller. The controller, which is in communication with the TPIM, executes a method to detect a fault condition, fixes the pulse width modulation (PWM) duty cycles of all phases of the electric machine to 50% such that all phases switch simultaneously, and applies a polyphase OPEN state to the AC bus in response to the detected fault condition. The controller then transitions to a polyphase SHORT state by automatically inserting an adjustable deadtime at each PWM switching transition of the TPIM over a calculated ramp duration, thereby transitioning from an initial deadtime to a minimum deadtime over the calculated ramp duration. The transition reduces peak overshoot of the negative d-axis current of the machine during the fault condition. | 03-13-2014 |
20140070743 | MOTOR DRIVE DEVICE WITH ALARM LEVEL SETTING UNIT - A motor drive device includes a converter which mutually converts power between AC power and DC power, an inverter which converts the DC power into AC power for driving a motor to output to a motor side, and converts regenerated AC power from the motor side into DC power to output to the DC side, a DC link unit which connects a DC side of the converter and a DC side of the inverter, a voltage detecting unit which detects a DC voltage value, an alarm level setting unit which sets an alarm level of the DC voltage value, an alarm determining unit which determines whether or not the DC voltage value exceeds the alarm level, and an alarm reporting unit which instructs the inverter to stop conversion operation when it is determined that the voltage value exceeds the alarm level. | 03-13-2014 |
20140084828 | POWER SUPPLY SYSTEM FOR VEHICLE - When an earth faulting has occurred in a driving device for driving motor, an electric potential of a vehicle earth is changed. Therefore, in a DC/DC converter, a high-voltage noise intrudes a high-voltage detector through a connection node of a Y capacitor constituted by a pair of capacitors. When the earth faulting of the driving device has occurred, the control device lowers the direct-current side voltage of the inverter in the high-voltage system to reduce the quantity of the high-voltage noise intruding the high-voltage detector. | 03-27-2014 |
20140091742 | CONTROL DEVICE FOR AC MOTOR - A control device for a three-phase alternate current motor includes: an inverter for driving the motor; current sensors for sensing current in the motor; and a control means having a feedback control operation part for operating a voltage command of each phase and switching the inverter based on the voltage command. When an absolute value of a sum of the current sensed values of three phases is larger than a threshold, the control means: executes a provisional current sensor system abnormality determination; generates a variation visualizing state, in which a response of a feedback control with respect to a variation in the current sensed value caused by the abnormality is delayed or stopped; and performs a phase identification processing for identifying the current sensor on a phase, in which an absolute value of a current deviation is larger than a threshold. | 04-03-2014 |
20140091743 | CONTROL DEVICE FOR AC MOTOR - A control device for a three-phase AC motor includes: an inverter having switching elements; current sensors for sensing a current in the motor; and a control means having a feedback control operation part for operating a voltage command of each phase and switching the switching elements based on the voltage command. When a positive and negative offset abnormality occurs, the control means executes a positive and negative offset abnormality detection process that the control means compares a value, which is obtained by integrating a variation in a voltage command of each phase over a predetermined detection interval, with a predetermined abnormality threshold value, the voltage command being outputted by the feedback control operation part with respect to a variation in the current caused by the positive and negative offset abnormality. | 04-03-2014 |
20140091744 | CONTROL DEVICE FOR AC MOTOR - A control device for a three-phase alternate current motor includes: a control phase current acquisition means; a monitor phase current acquisition means; a rotation angle acquisition means; a two-phase control current value calculation means; a one-phase current estimated value estimation means; a voltage command value calculation means; an other phase current estimation means for calculating a monitor or a control phase current estimated value; an abnormality detection means for detecting an abnormality in a monitor phase or a control phase current sensor; a number-of-revolutions calculation means for the motor; a number-of-revolutions determination means for determining whether the number of revolutions is not larger than a predetermined determination value; and a switching means between a two-phase control mode when the number of revolutions is not larger than the determination value and a one-phase control mode when the number of revolutions is larger than the determination value. | 04-03-2014 |
20140111129 | UNIT COMPRISING AN ELECTRIC POWER SOURCE INCLUDING AT LEAST TWO ELEMENTS OF DIFFERENT TECHNOLOGIES AND AN INVERTER FOR CONTROLLING AN ALTERNATING-CURRENT ELECTRIC MOTOR - An installation for an electric motor includes an electrical energy source with elements of different technologies and an inverter for controlling an AC electric motor. The inverter includes an AC current generator for delivering current to a terminal strip to be connected to phases of the electric motor, a supply line, current sensors on certain phases supplying the electric motor, a current sensor on the supply line, an input for receiving information that includes a limit current of the source and a requested-torque setpoint, and a controller for controlling phase currents of the electric motor as a function of the setpoint while maintaining a current of the supply line at an acceptable value as a function of the limit current of the source. The installation makes it possible to impose a maximum current on the current generator without risk of impairing the current generator. | 04-24-2014 |
20140132190 | VEHICLE AND CONTROL METHOD OF VEHICLE - A vehicle converts DC power from a power storage device into AC power by an inverter to run by driving a three-phase motor generator. A switching unit is provided at a path electrically connecting the motor generator and the inverter. The switching unit includes a relay corresponding to each phase. Each relay is configured to connect a coil of a corresponding phase in the motor generator to a corresponding driving arm in the inverter, or to a connection node of capacitors connected in series between direct current side terminals of the inverter. When short-circuit failure is detected at a switching element of any one of the phases in the inverter, an ECU switches the relay of the corresponding phase in the switching unit to the side of the connection node. | 05-15-2014 |
20140139159 | MULTILEVEL INVERTER - In relation to a multilevel inverter of three levels or more, a decrease in safety due to breakdown is suppressed while avoiding destruction of switching elements. An inverter includes switching elements connected in series between a positive terminal and a negative terminal, reverse blocking switching elements connected one each between connection points of pairs of the switching elements and an intermediate terminal, alternating current output terminals, a control unit that generates control signals for switching between a turning on and turning off of the plurality of switching elements, a control signal interrupt circuit that, on an interrupt signal interrupting the output voltage of the alternating current output terminals being input, interrupts each of the control signals to the first switching elements and second switching elements, regardless of the state of the control signals, and a monitoring unit that diagnoses a breakdown of the control signal interrupt circuit. | 05-22-2014 |
20140159626 | MOTOR DRIVING APPARATUS - There is provided a motor driving apparatus in which a current is detected from a connection point between a PMOS transistor and an NMOS transistor of a motor driving circuit, thus reducing a voltage headroom loss due to a shunt resistor. The motor driving apparatus including: a driving unit including a first transistor unit and a second transistor unit connected in parallel between a driving power source terminal and a ground; and a motor driven according to switching of the first and second transistor units; and a detection unit detecting a current from a connection point between a PMOS transistor and an NMOS transistor of at least one of the first and second transistor units. | 06-12-2014 |
20140159627 | MOTOR DRIVING CONTROL APPARATUS AND METHOD, AND MOTOR USING THE SAME - There are provided a motor driving control apparatus and method and a motor using the same, the motor driving control apparatus including: a driving signal generating unit generating a driving control signal controlling a driving of a motor apparatus, a back-electromotive force detecting unit detecting back-electromotive force generated in the motor apparatus, and a controlling unit estimating a driving current of the motor apparatus using the back-electromotive force and adjusting a duty ratio of the driving control signal when the estimated driving current is an overcurrent. | 06-12-2014 |
20140159628 | SWITCH ARRANGEMENT - A switch arrangement for an electric motor or generator having a plurality of coil windings that during operation of the electric motor or generator are electrically coupled to form a star point connection and that are arranged to have different voltage phases applied across the respective coil windings, the switch arrangement comprising a rectifier arranged to be coupled to the respective plurality of coil windings, wherein the rectifier is arranged to rectify an alternating current flowing in the respective coil windings and provide the rectified AC current to a DC output; and a switch coupled across the rectifier DC output, wherein the switch is operable to electrically isolate the plurality of coil windings. | 06-12-2014 |
20140167665 | Safety Circuit and Emergency Power Supply for Gate Control Circuit - A power supply circuit can be used to provide an alternating-current supply voltage to an electric motor. The power supply circuit is supplied by line power. The power supply circuit includes a inverter including at least one pair of transistor for generating a corresponding phase of the plurality of power supply phases. The inverter includes a transistor control circuit for switching the low-side transistor to its conducting state and the high-side transistor to its non-conducting state in case an excess voltage is detected at the input of the inverter. | 06-19-2014 |
20140285129 | MOTOR CONTROL SYSTEM THAT DETECTS VOLTAGE SATURATION - A motor control system comprises a plurality of control apparatuses and a host control apparatus, wherein each of the control apparatuses include a position control unit controlling position based on a position command and commanded speed from the host control apparatus, a speed control unit controlling speed based on a speed command from the position control unit, a current control unit controlling current based on a current command from the speed control unit, and a current amplifier which amplifies motor driving current based on a voltage command from the current control unit, and wherein the current control unit includes a voltage saturation processing unit which determines whether the voltage command has exceeded supply voltage of the current amplifier, and which outputs the result of the determination, and a voltage saturation notifying unit which notifies the host control apparatus of the result of the determination made by the voltage saturation processing unit. | 09-25-2014 |
20140333245 | PROTECTIVE CIRCUITRY FOR INSULATION DAMAGE DUE TO FAILURE OF INTERMEDIATE CIRCUIT CAPACITORS - The present disclosure relates to an intermediate circuit for an EC motor, comprising at least two similar series-connected capacitors for the connection of an electronic commutation device of an EC motor for nominal operation at a nominal voltage. In each case, a varistor is connected in parallel to each series-connected capacitor, wherein all the varistors are designed similarly. The capacitors and the varistors are dimensioned so that the threshold voltage of the varistors is less than the breakdown voltage of the respective parallel-connected capacitor, and, in the case of the failure of a capacitor or of a varistor, the sum of the threshold voltages of the remaining varistors is smaller than/equal to the nominal voltage of the intermediate circuit, and the sum of the threshold voltages of the series-connected varistors is greater than the nominal voltage of the intermediate circuit. | 11-13-2014 |
20140346988 | ALTERNATING CURRENT ELECTRIC SYSTEM AND CONTROL METHOD THEREOF - When the current flowing through each electric terminal of an AC motor | 11-27-2014 |
20140361717 | SYSTEM AND METHOD FOR IMPLEMENTING A REMEDIAL ELECTRICAL SHORT - A method of implementing a remedial short in a rotating polyphase electric machine (EM) includes detecting a fault condition; and initially commanding a power inverter module (PIM) into an electrically-open state. Once in an open state, a controller may determine a phase angle of a current generated by the rotating EM, and may control the PIM to apply a voltage to the EM that is out-of-phase from the determined phase angle of the generated current. The magnitude of the applied voltage signal may ramped from a first voltage to zero over a period of time; whereafter the PIM may be commanded to electrically couple all of the electrical windings of the EM to each other. | 12-11-2014 |
20140361718 | VARIABLE SPEED CONTROL APPARATUS AND OPERATION METHOD - According to one embodiment, there is provided a variable speed control apparatus applied to a variable speed system of secondary excitation including a double feed synchronous machine and a frequency converter. The variable speed control apparatus includes a secondary current controller configured to control an output current from the frequency converter, and a secondary current limiter configured to limit an effective component current command and a reactive component current command of a secondary current for the secondary current controller by using a given secondary current limit value and output a limited result to the secondary current controller. | 12-11-2014 |
20140368143 | METHOD AND APPARATUS FOR OVERVOLTAGE PROTECTION AND REVERSE MOTOR SPEED CONTROL FOR MOTOR DRIVE POWER LOSS EVENTS - Apparatus and methods are presented for mitigating overvoltages and limiting reverse motor speeds for motor drive power loss events, in which a first power dissipation circuit is enabled at the motor drive output to limit reverse rotation of a driven motor load when motor drive power is lost, and a second power dissipation circuit in a DC bus circuit is used to mitigate over voltages following restoration of motor drive power. | 12-18-2014 |
20140368144 | THERMAL PROTECTION OF A BRUSHLESS MOTOR - A method of controlling a brushless motor. The method includes storing a power lookup table that comprises a control value for each of a plurality of voltages or speeds, measuring the magnitude of a supply voltage or the speed of the motor, and indexing the power lookup table using the measured voltage or speed to select a control value. The method further includes measuring a temperature of the motor and applying a compensation value to the selected control value in the event that the measured temperature exceeds a threshold. A winding of the motor is then excited with the supply voltage and the selected control value is used to define an attribute of excitation. The compensation value, when applied to the selected control value, causes a reduction in the input power of the motor. | 12-18-2014 |
20140375238 | OVERVOLTAGE ARRESTER FOR AN ELECTRICAL DRIVE - The invention relates to an overvoltage arrester for an electrical drive, especially a drive for a motor vehicle. The overvoltage arrester is designed to be connected to an on-board power supply system of a motor vehicle. The overvoltage arrester is designed to reduce any overvoltage produced in the on-board power supply system when a load is switched off. According to the invention, the overvoltage arrester is connected to a control unit for an electronically commutated electrical machine. The overvoltage arrester has an input for an on-board power supply system and is designed to detect when a pre-determined voltage value is exceeded and to produce an overvoltage signal depending on whether the voltage value is exceeded. The control unit is designed to transfer the electrical machine from an operating mode in which the machine generates power to an at least partial power-loss mode or to a mode in which it operates as a motor. | 12-25-2014 |
20150077029 | Electric Motor Control - A drive system for a motor includes a drive stage, a control structure arranged to control operation of the drive stage to control drive current to the motor, and a sensor arranged to generate a temperature output indicative of the temperature of a stationary component of the system. The control structure is further arranged to derive from a current indicator, indicative of at least a component of the drive current, and the temperature output, a rotor temperature indicator indicative of the temperature of the motor rotor. | 03-19-2015 |
20150108930 | Converter for an electric motor - A converter for an electric motor includes a semiconductor element connected at at least one contacting for converting a voltage, a voltage measuring device for measuring a voltage drop over the semiconductor component, and a control device for controlling the semiconductor component, the control device being configured to determine a state of the contacting based on the measured voltage drop. | 04-23-2015 |
20150115852 | OVER-CURRENT PROTECTION CIRCUIT AND MOTOR DRIVING DEVICE - An over-current protection circuit may include a preliminary driving unit driving a motor inverter in a start-up mode prior to a normal mode, a current level detecting unit detecting a level of a current flowing through the motor inverter and a motor according to driving of the motor inverter and providing a detection voltage, and an over-current reference voltage setting unit setting the detection voltage detected by the current level detecting unit as an over-current reference voltage in the start-up mode. | 04-30-2015 |
20150130382 | CONTROLLER FOR A BRUSHLESS DIRECT-CURRENT MOTOR - A controller for a brushless direct-current motor having an upstream converter, which has a half-bridge having a pair of switching means for each phase winding of the motor, includes a measuring device or has a signal connection to a measuring device. The measuring device is associated with a half-bridge and by means of the measuring device, the induced voltage, the counterelectromotive force of a phase winding, can be detected for rotor position detection in the current-free state, for which purpose the controller, in an operating mode that causes the braking and in which the switching means cause a short circuit of the phase windings, briefly opens the switching means associated with the measuring device in order to determine a rotor motion. | 05-14-2015 |
20150130383 | METHOD FOR DISCHARGING ENERGY STORED IN A STATOR OF AN ELECTRIC MOTOR - A method for discharging energy stored in a stator of an assisted steering electric motor of a motor vehicle is disclosed. The stator includes at least one electrical phase, where a state of disconnection of said phase with a control device of the stator is controlled by a switch device having at least one field effect transistor. The method involves keeping the field effect transistor in linear mode by controlling the voltage Vgs between the gate and the source of said transistor so as to keep the voltage Vds between the drain and the source of said transistor substantially equal to a reference voltage Vref. | 05-14-2015 |
20150145449 | ROTATING ELECTRIC MACHINE DRIVER AND ELECTRIC POWER STEERING DEVICE - A rotating electric machine driving apparatus includes a controller section that obtains an electric current detection value and generates instruction signals for switching ON and OFF of switching elements based on the electric current detection value. The rotating electric machine driving apparatus also includes an IC that is provided with a signal amplifier for outputting amplified signals, which are amplified instruction signals output from the controller section. When an abnormal state, in which one of an instruction signal and an amplified signal amplifying the instruction signal is an ON instruction and the other one of the instruction signal and the amplified signal is an OFF instruction, continues for at least an abnormality determination time, an abnormality detector determines an abnormality of the amplified signal, which realizes an appropriate detection of an abnormality of the amplified signal. | 05-28-2015 |
20150145450 | CONTROL CIRCUIT FOR A DC MOTOR - A control circuit for a DC motor, has: a first and second input ports for connection to a DC source; a H-bridge driving circuit, having first and second switches connected in series between the input ports, and third and fourth switches connected in series between the input ports, a first output port between the first and second switches and a second output port between the third and fourth switches, and a shunt circuit and/or a blocking circuit. The motor is connected between the first and second output ports. The shunt circuit is connected between the first second output ports and has a resistance that will decrease in response to BEMF generated by the motor. The blocking circuit is connected in series with the motor between the output ports and has a resistance that increases in response to BEMF generated by the motor. | 05-28-2015 |
20150295531 | SYSTEM AND METHOD FOR ESTIMATING TEMPERATURE OF ROTOR OF MOTOR - A system and method are provided for estimating temperature of a rotor of a motor configured to calculate temperature of the rotor using an actual measured data-based thermal model (thermal impedance model) and an energy loss model, and to estimate temperature of the rotor using the calculated temperature variation of the rotor. The method includes calculating, by a controller, an energy loss of the motor using driving conditions of the motor. The controller is also configured to calculate a temperature variation of the rotor in a predetermined reference temperature using the calculated energy loss and thermal resistances of the rotor and a stator of the motor. Further, the controller is configured to estimate a rotor temperature in the predetermined reference temperature using the temperature variation of the rotor. | 10-15-2015 |
20150303839 | MOTOR DRIVE - If a bus current a bus current detector | 10-22-2015 |
20150311834 | CONTROL CIRCUIT AND METHOD FOR CONTROLLING A MULTIPHASE MOTOR - A circuit for controlling a multiphase SRM motor, comprising for each winding a low-side and a high-side transistor, and a low-side and a high-side diode for, and at least one current sensor, e.g. a single current sensor, arranged in low-side or high-side implementation for measuring a current through a first and second winding, and a controller adapted for configuring the transistors such that: during a first time slot only the first winding is energized while the second winding is freewheeling via a selected freewheeling path, during a second time slot only the second winding is energized while the first winding is freewheeling via a selected freewheeling path, and measuring the first and second current in said time slots. A method of driving said transistors. | 10-29-2015 |
20150311838 | Improvements Relating to Electrical Power Assisted Steering Systems - An electric power assisted steering system comprises a motor adapted to apply an assistance torque to a portion of a steering shaft in response to a motor drive signal from a drive circuit, in which the motor comprises a synchronous wound field motor of the kind comprising a stator and a rotor, in which the rotor includes at least one pole and at least one coil winding associated with the pole and the stator comprises a number of phase windings, and in which the drive circuit which is configured to provide current in the coils of the stator and rotor during operation of the motor. | 10-29-2015 |
20150333668 | VARIABLE FREQUENCY DRIVE ACTIVE HARMONIC MITIGATION CONTROLS AND DIAGNOSTICS - Variable frequency drive active harmonic mitigation controls and diagnostics are disclosed. Exemplary controls and diagnostics include operating a variable frequency drive including converting an AC input line voltage to a DC voltage, generating a motor drive signal using the DC voltage, and driving an electric motor with the motor drive signal. A harmonic mitigation signal is provided to the drive configured to at least partially mitigate harmonics during the operation of the drive. The harmonic mitigation signal is inhibited based upon presence of an error condition associated with the drive input. The inhibiting is terminated based upon the absence of the error condition. A diagnostic fault condition based upon a number of occurrences of the error condition. | 11-19-2015 |
20150372624 | ELECTRIC MOTOR CONTROL SYSTEM - An electric motor control system includes an inverter, an element temperature observation data acquiring device, a rotational speed upper limit setting device, and a rotational speed limiter. The inverter includes switching elements. The element temperature observation data acquiring device is configured to acquire element temperature observation data indicating an observation value of a temperature of the switching elements of the inverter. The rotational speed upper limit setting device is configured to set a rotational speed upper limit of an electric motor in accordance with the observation value of the temperature of the switching elements so as to satisfy a first condition that a voltage applicable to the switching elements in a case where the electric motor is operated at the rotational speed upper limit is lower than or equal to a withstand voltage of the switching elements. | 12-24-2015 |
20160006342 | CONTROL CIRCUIT AND MOTOR DEVICE - A control circuit includes: an input terminal for receiving an input AC voltage; a voltage decreasing unit for decreasing the input AC voltage; an A-D converter for converting the decreasing AC voltage to a DC voltage; a driving unit for receiving the DC voltage and to driving a motor, a detecting unit for detecting the DC voltage; and a current shunt unit configured to be conductive to lower the DC voltage at the output terminal of the A-D converter to a voltage which is less than a threshold voltage when the detecting signal indicates that the detected DC voltage exceeds the threshold value. A motor device includes the control circuit and a motor. | 01-07-2016 |
20160036371 | ELECTRIC POWER STEERING SYSTEM AND VEHICLE CONTROL SYSTEM INCLUDING THE ELECTRIC POWER STEERING SYSTEM - An electric power steering system includes an electric power steering device. The electric power steering device includes an electric motor, a controller controlling the motor, and two power supply connectors that assist a steering operation of a vehicle. The electric power steering system also includes a first power supply supplying power to a first connector, a second power supply supplying power to a second connector and to other in-vehicle devices other than the electric power steering device, and a power switcher provided en route to the controller, to electrically connect the first power supply to the controller when power supply from the first power supply is normal, and to electrically connect the second power supply to the controller when the power supply from the first power supply is abnormal. | 02-04-2016 |
20160043711 | COMMUTATION CELL AND COMPENSATION CIRCUIT THEREFOR - The present disclosure relates to a commutation cell and to a compensation circuit for limiting overvoltage across the power electronic switch of the commutation cell and for limiting a recovery current in a freewheel diode of the commutation cell. The power electronic switch has a parasitic emitter inductance. A variable gain compensation circuit generates a feedback from a voltage generated across the parasitic inductance of the emitter of the power switch at turn-on or turn-off of the power electronic switch. The compensation circuit provides the feedback to a control of the power electronic switch to reduce the voltage generated on the parasitic emitter inductance. A power converter including the commutation cell with the compensation circuit is also disclosed. | 02-11-2016 |
20160065114 | DEVICE FOR CONTROLLING A MULTI-PHASE MOTOR - An electronic device is for controlling motor drive circuits for driving a multi-phase motor in a force assisted system. Each motor drive circuit selectively permitting current to flow into or out of a respective phase of the multi-phase motor connected to the motor drive circuit in response to being driven by respective control signals. A motor control circuit generates the control signals. A fault processor detects at least one fault condition causing a fault current in a first motor drive circuit. In the event of the fault condition being detected, at least one alternative control signal is generated for at least one motor drive circuit for permitting at least one compensation current to flow for reducing a faulty force due to the fault current. | 03-03-2016 |
20160111984 | POWER TOOL - It is an object of the invention to provide a power tool capable of preventing damage of a switching element while maintaining drive power of a motor even when being connected to a power supply of different voltage. An impact driver | 04-21-2016 |
20160118918 | DRIVE CONTROLLER AND MOTOR DRIVE SYSTEM - A drive controller that controls a drive of a motor. The drive controller performs a collision force moderation control during a motor start time, during which a collision force in a collision between a shaft outwall with an impeller hole inwall for a positioning is moderated, by changing a power supply at a stage transition time of transiting from a position detection to a position determination. The maximum value of a first output value during a position detection time is set to be greater than a first threshold that at least causes a rotation number of the motor to yield a detectable induction voltage. A second output value during a position determination time is set to be lower than a second threshold that causes a wear or a breakage of an impeller by the collision force. | 04-28-2016 |
20160126883 | FAILURE DIAGNOSTIC APPARATUS AND METHOD FOR CURRENT SENSORS OF 3-PHASE BRUSHLESS AC MOTOR - A failure diagnostic apparatus for current sensors of a 3-phase brushless AC (BLAC) motor may include: a 3-phase BLAC motor; current sensors each configured to measure a phase current of the 3-phase BLAC motor; a motor driving unit configured to drive the 3-phase BLAC motor; and a control unit configured to drive the 3-phase BLAC motor through the motor driving unit, periodically calculate a phase current error using the phase current fed back through each of the current sensors, and diagnose that a failure occurred in the current sensor of the corresponding phase, when an error count accumulated during a preset time reaches a preset value, based on the phase current error. | 05-05-2016 |
20160375774 | PERMANENT MAGNET-EXCITED ELECTRIC MACHINE - A method for controlling a multiphase frequency converter for controlling an electric machine which is suitable as a traction drive of a vehicle. The frequency converter includes power circuit pairs with series-connected first and second power switches. The first power switch is connected to a DC voltage and the second power switch is connected to a ground of the DC voltage. Each node between the first power switch and the second power switch is connected to the respective phase conductor of the electric machine. The method includes ascertaining whether a fault is present, if a fault is present and a control signal at the first and/or the second power switch is not active: assessing whether the frequency converter should be switched into the short-circuit mode or into the freewheeling mode based on the phase conductor currents and/or based on the position of the rotor of the electric machine. | 12-29-2016 |
20220140694 | ELECTRIC TOOL, CONTROL METHOD, AND PROGRAM - An electric tool includes a motor and a motor control device. The motor control device is configured to update a command value of a speed of the motor based on a parameter relating to at least one of a voltage of a direct-current power supply for the motor or a magnitude of a load applied to the motor during rotation of the motor. | 05-05-2022 |