Entries |
Document | Title | Date |
20080217708 | Integrated passive cap in a system-in-package - According to an exemplary embodiment, a system-in-package includes at least one semiconductor die situated over a package substrate. The system-in-package further includes a wall structure situated on the at least one semiconductor die. The system-in-package further includes an integrated passive cap situated over the wall structure, where the integrated passive cap includes at least one passive component. The wall structure and the integrated passive cap form an air cavity over the at least one semiconductor die. The system-in-package can further include at least one bond pad situated on a cap substrate. The at least one bond pad on the cap substrate of the integrated passive cap can be electrically connected to a substrate bond pad on the package substrate. | 09-11-2008 |
20080217709 | MEMS PACKAGE HAVING AT LEAST ONE PORT AND MANUFACTURING METHOD THEREOF - A plurality of individual MEMS packages are formed as a contiguous unit and each of the plurality of individual MEMS packages include at least one acoustic port. One or more separation boundaries from where to separate adjacent ones of the plurality of individual MEMS packages are determined. Each of the plurality of individual MEMS packages are subsequently separated from the others according to the one or more separation boundaries to provide separate and distinct individual MEMS packages. Each acoustic port disposed within each separate and distinct individual MEMS package is exposed due to the separating so as to allow sound energy to enter each separate and distinct individual MEMS package. | 09-11-2008 |
20080230858 | Multi-layer Package Structure for an Acoustic Microsensor - A multi-layer package structure for an acoustic microsensor, the package structure mainly utilizes a stack of multiple substrates for housing and protecting circuit elements such that integrated circuit element and acoustic microsensor arranged in recessions of a substrate can reduce volume of the package structure. By adding various sound hole designs, the problem of larger package volume can be effectively solved and sensing frequency of the acoustic microsensor can be increased simultaneously. | 09-25-2008 |
20080283944 | PHOTOSTRUCTURABLE GLASS MICROELECTROMECHANICAL (MEMs) DEVICES AND METHODS OF MANUFACTURE - A Film Bulk Acoustic (FBA) MEMS device in a wafer level package including a photostructurable glass material and methods of manufacture are described. | 11-20-2008 |
20080283945 | SEMICONDUCTOR DEVICE - A lower electrode is formed over a semiconductor substrate via an insulator film, first and second insulator films are formed to cover the lower electrode, an upper electrode is formed over the second insulator film, third to fifth insulator films are formed to cover the upper electrode and a void is formed between the first and second insulator films between the lower and upper electrodes. An ultrasonic transducer comprises the lower electrode, the first insulator film, the void, the second insulator film and the upper electrode. A portion of the first insulator film contacting with the lower electrode is made of silicon oxide, a portion of the second insulator film contacting with the upper electrode is made of silicon oxide and the first or second insulator film includes a silicon nitride film positioned between the upper and lower electrodes and not in contact with the upper and lower electrodes. | 11-20-2008 |
20080296709 | Chip assembly - The present invention provides an integrated circuit chip assembly and a method of manufacturing the same. The assembly includes a package element having a top surface and an integrated circuit chip having a top surface, a bottom surface, edge surface between the top and bottom surfaces, and contacts exposed at the top surface. The package element is disposed below the chip with the top surface of the package element facing toward the bottom surface of the chip. At least one spacer element resides between the top surface of the package element and the bottom surface of the chip. According to one embodiment, the at least one spacer element may form a substantially closed cavity between the package element and the integrated circuit chip. According to another embodiment, first conductive features may extend from the contacts of the chip along the top surface, and at least some of said first conductive features extend along at least one of the edge surfaces of the chip. | 12-04-2008 |
20090026561 | Micromechanical component and corresponding method for its manufacture - A micromechanical component having a conductive substrate, an elastically deflectable diaphragm including at least one conductive layer, which is provided over a front side of the substrate, the conductive layer being electrically insulated from the substrate, a hollow space, which is provided between the substrate and the diaphragm and is filled with a medium, and a plurality of perforation openings, which run under the diaphragm through the substrate, the perforation openings providing access to the hollow space from a back surface of the substrate, so that a volume of the medium located in the hollow space may change when the diaphragm is deflected. Also described is a corresponding manufacturing method. | 01-29-2009 |
20090045474 | MEMS sensor and production method of MEMS sensor - The MEMS sensor includes a substrate, a lower thin film, opposed to a surface of the substrate at an interval, having a plurality of lower through-holes formed to pass through the lower thin film in the thickness direction thereof, an upper thin film, opposed to the lower thin film at an interval on the side opposite to the substrate, having a plurality of upper through-holes formed to pass through the upper thin film in the thickness direction thereof, and a plurality of protrusions irregularly provided on a region of the surface of the substrate opposed to the lower thin film. | 02-19-2009 |
20090101998 | ELECTRO-ACOUSTIC SENSING DEVICE - An electro-acoustic sensing device including a sensing chip, a carrier chip and a sealing element is provided. The sensing chip is for electro-acoustic transducing and thereby outputting an electrical signal. The carrier chip disposed below the sensing chip has at least one second connecting point, at least one electrical channel and at least one channel connecting point. The second connecting point is electrically contacted with the first connecting point. The second connecting point and the channel connecting point are located at different surfaces of the carrier chip. The electrical channel passes through the carrier chip and electrically connects the second connecting point and the channel connecting point. The electrical signal is transmitted to the channel connecting point via the first and the second connecting points and the electrical channel. The sealing element is disposed between the sensing chip and the carrier chip for air-tight coupling the two chips. | 04-23-2009 |
20090101999 | ELECTRONIC DEVICE ON SUBSTRATE WITH CAVITY AND MITIGATED PARASITIC LEAKAGE PATH - An electronic device. The electronic device includes a first electrode and a coating layer. The electronic device is fabricated on a substrate; the substrate has a cavity created in a top surface of the substrate; and the first electrode is electrically coupled to the substrate. The coating layer coats at least part of a substrate surface in the cavity, and the presence of the coating layer results in a mitigation of at least one parasitic leakage path between the first electrode and an additional electrode fabricated on the substrate. | 04-23-2009 |
20090115010 | PACKAGE FOR STRAIN SENSOR - The invention relates to a package for a strain sensor. The package includes a base part ( | 05-07-2009 |
20090140357 | High-temperature electrostatic transducers and fabrication method - A high temperature micromachined ultrasonic transducer (HTCMUT) is provided. The HTCMUT includes a silicon on insulator (SOI) substrate having a doped first silicon layer, a doped second silicon layer, and a first insulating layer disposed between the first and second silicon layers. A cavity is disposed in the first silicon layer, where a cross section of the cavity includes a horizontal cavity portion on top of vertical cavity portions disposed at each end of the horizontal cavity portion, and the vertical cavity portion spans from the first insulating layer through the first silicon layer, such that a portion of the first silicon layer is isolated by the first insulating layer and the cavity. A membrane layer is disposed on the first silicon layer top surface, and spans across the cavity. A bottom electrode is disposed on the bottom of the second silicon layer. | 06-04-2009 |
20090152655 | MEMS DEVICE - A method of fabricating a micro-electrical-mechanical system (MEMS) apparatus on a substrate ( | 06-18-2009 |
20090218642 | MICROELECTROMECHANICAL SYSTEMS COMPONENT AND METHOD OF MAKING SAME - A microelectromechanical systems (MEMS) component | 09-03-2009 |
20090273043 | Micro-electro-mechanical system device and method for making same - According to the present invention, a micro-electro-mechanical system (MEMS) device comprises: a thin film structure including at least a metal layer and a protection layer deposited in any order; and a protrusion connected under the thin film structure. A preferred thin film structure includes at least a lower protection layer, a metal layer and an upper protection layer. The MEMS device for example is a capacitive MEMS acoustical sensor. | 11-05-2009 |
20090278216 | MEMS sensor - An MEMS sensor is described. The MEMS sensor may include a substrate, a lower thin film provided in contact with a surface of the substrate, and an upper thin film opposed to the lower thin film at an interval on the side opposite to the substrate. | 11-12-2009 |
20090289314 | MICRO-ELECTROMECHANICAL RESONANCE DEVICE WITH PERIODIC STRUCTURE - A Micro Electro Mechanical Systems resonance device includes a substrate, and an input electrode, connected to an alternating current source having an input frequency. The device also includes an output electrode, and at least one anchoring structure, connected to the substrate. The device further includes a vibratile structure connected to an anchoring structure by at least one junction, having a natural acoustic resonant frequency. The vibration under the effect of the input electrode, when it is powered, generates, on the output electrode, an alternating current wherein the output frequency is equal to the natural frequency. The vibratile structure and/or the anchoring structure includes a periodic structure. The periodic structure includes at least first and second zones different from each other, and corresponding respectively to first and second acoustic propagation properties. | 11-26-2009 |
20090309174 | SENSOR MODULE AND SEMICONDUCTOR CHIP - A sensor module and semiconductor chip. One embodiment provides a carrier. A semiconductor chip includes a first recess and a second recess and a main surface of the semiconductor chip. The semiconductor chip is mounted to the carrier such that the first recess forms a first cavity with the carrier and the second recess forms a second cavity with the carrier. The first cavity is in fluid connection with the second cavity. | 12-17-2009 |
20100025785 | FLIP-CHIP INTERCONNECTION THROUGH CHIP VIAS - An acoustic assembly that includes an integrated circuit package having an electrically conductive via configured to pass from an active portion of the integrated circuit package through a bottom portion of the integrated circuit package. The bottom portion is a bottom side of a substrate of the integrated circuit package. An acoustic element is positioned on the bottom side of the substrate and the via is arranged to electrically couple the active portion of the integrated circuit package to the acoustic element. In one embodiment, the acoustic element is an acoustic stack and the integrated circuit package is an ASIC. The assembly microbeamformed transducer. | 02-04-2010 |
20100038733 | MICROELECTROMICHANICAL SYSTEM PACKAGE WITH STRAIN RELIEF BRIDGE - A strain absorption bridge for use in a MEMS package includes a first substrate that is configured to be attachable to a circuit board. A first elastically deformable element is coupled to the first substrate and the first elastically deformable element is configured to be attachable to a MEMS device. Alternatively, the MEMS device may be attached to the first substrate. The elastically deformable element at least partially absorbs and dissipates mechanical strain communicated from the circuit board before the mechanical strain can reach the MEMS device. | 02-18-2010 |
20100038734 | VIBRATION SENSOR AND METHOD FOR MANUFACTURING THE VIBRATION SENSOR - A method for manufacturing a vibration sensor including forming a sacrifice layer at one part of a front surface of a semiconductor substrate of monocrystalline silicon with a material isotropically etched by an etchant for etching the semiconductor substrate, forming a thin film protective film with a material having resistance to the etchant on the sacrifice layer and the front surface of the semiconductor substrate at a periphery of the sacrifice layer, forming a thin film of monocrystalline silicon, polycrystalline silicon, or amorphous silicon on an upper side of the sacrifice layer, opening a backside etching window in a back surface protective film having resistance to the etchant for etching the semiconductor substrate formed on a back surface of the semiconductor substrate, forming a through-hole in the semiconductor substrate by etching the semiconductor substrate anisotropically by using crystal-oriented etching by applying the etchant from the back surface window, then etching the sacrifice layer isotropically by the etchant after the etchant reaches the front surface of the semiconductor substrate, and then etching the semiconductor substrate anisotropically by using crystal-oriented etching from a front side by the etchant spread to a space formed after the sacrifice layer is removed, and forming a holder for supporting the thin film on an upper surface of the semiconductor substrate by removing the thin film protective film partially. | 02-18-2010 |
20100052082 | MICRO-ELECTRO-MECHANICAL SYSTEMS (MEMS) PACKAGE AND METHOD FOR FORMING THE MEMS PACKAGE - A micro-electro-mechanical systems (MEMS) package includes a MEMS microphone device. The MEMS microphone device has a first substrate and at least a sensing element on the first substrate wherein a first chamber in the MEMS microphone device is connected to the sensing element. A second substrate is disposed over the MEMS microphone device to provide a second chamber in the second substrate over the sensing element opposite to the first chamber. | 03-04-2010 |
20100065931 | MICRO-ELECTROMECHANICAL SYSTEM MICROPHONE STRUCTURE AND METHOD OF FABRICATING THE SAME - A method of fabricating a micro-electromechanical system microphone structure is disclosed. First, a substrate defining a MEMS region and a logic region is provided, and a surface of the substrate has a dielectric layer thereon. Next, at least one metal interconnect layer is formed on the dielectric layer in the logic region, and at least one micro-machined metal mesh is simultaneously formed in the dielectric layer of the MEMS region. Therefore, the thickness of the MEMS microphone structure can be effectively reduced. | 03-18-2010 |
20100065932 | MEMS DEVICE, MEMS DEVICE MODULE AND ACOUSTIC TRANSDUCER - A MEMS device includes a first insulating film formed on a semiconductor substrate, a vibrating film formed on the first insulating film, and a fixed film above the vibrating film with an air gap being interposed therebetween. The semiconductor substrate has a region containing N-type majority carriers. A concentration of N-type majority carriers in a portion of the semiconductor substrate where the semiconductor substrate contacts the first insulating film, is higher than a concentration of N-type majority carriers in the other portion of the semiconductor substrate. | 03-18-2010 |
20100084723 | MEMS STRUCTURE AND METHOD OF MANUFACTURING THE SAME - An MEMS structure and a method of manufacturing the same are provided. The MEMS structure includes a substrate and at least one suspended microstructure located on the substrate. The suspended microstructure includes a plurality of metal layers, at least one dielectric layer, and at least one peripheral metal wall. The dielectric layer is sandwiched by the metal layers, and the peripheral metal wall is parallel to a thickness direction of the suspended microstructure and surrounds an edge of the dielectric layer. | 04-08-2010 |
20100117168 | MEMS Microphone with Single Polysilicon Film - An integrated circuit structure includes a capacitor, which further includes a first capacitor plate formed of polysilicon, and a second capacitor plate substantially encircling the first capacitor plate. The first capacitor plate has a portion configured to vibrate in response to an acoustic wave. The second capacitor plate is fixed and has slanted edges facing the first capacitor plate. | 05-13-2010 |
20100140724 | EMBEDDED MICROELECTROMECHANICAL SYSTEMS (MEMS) SEMICONDUCTOR SUBSTRATE AND RELATED METHOD OF FORMING - An embedded MEMS semiconductor substrate is set forth and can be a starting material for subsequent semiconductor device processing. A MEMS device is formed in a semiconductor substrate, including at least one MEMS electrode and a buried silicon dioxide sacrificial layer has been applied for releasing the MEMS. A planarizing layer is applied over the substrate, MEMS device and MEMS electrode. A polysilicon protection layer is applied over the planarizing layer. A polysilicon nitride capping layer is applied over the polysilicon protection layer. A polysilicon seed layer is applied over the polysilicon nitride capping layer. The MEMS device is released by removing at least a portion of the buried silicon dioxide sacrificial layer and an epitaxial layer is grown over the polysilicon seed layer to be used for subsequent semiconductor wafer processing. | 06-10-2010 |
20100148285 | MEMS Component and Method for Production - A MEMS component includes a chip that has a rear side having a low roughness of less than one tenth of the wavelength at the center frequency of an acoustic wave propagating in the component. Metallic structures for scattering bulk acoustic waves are provided on the rear side of the chip and a material of the metallic structures is acoustically matched to a material of the chip. | 06-17-2010 |
20100155863 | METHOD FOR MANUFACTURING A MICROELECTRONIC PACKAGE COMPRISING A SILICON MEMS MICROPHONE - A method for manufacturing a microelectronic package comprising a silicon MEMS microphone comprises the following steps: providing a basic panel ( | 06-24-2010 |
20100155864 | MEMS PROCESS AND DEVICE - A MEMS device, for example a capacitive microphone, comprises a flexible membrane | 06-24-2010 |
20100164025 | METHOD AND STRUCTURE OF MONOLITHETICALLY INTEGRATED MICROMACHINED MICROPHONE USING IC FOUNDRY-COMPATIABLE PROCESSES - A monolithically integrated MEMS and CMOS substrates provided by an IC-foundry compatible process. The CMOS substrate is completed first using standard IC processes. A diaphragm with stress relief corrugated structure is then fabricated on top of the CMOS. Air vent holes are then etched in the CMOS substrate. Finally, the microphone device is encapsulated by a thick insulating layer at the wafer level. The monolithically integrated microphone that adopts IC foundry-compatible processes yields the highest performance, smallest form factor, and lowest cost. Using this architecture and fabrication flow, it is feasible and cost-effective to make an array of Silicon microphones for noise cancellation, beam forming, better directionality and fidelity. | 07-01-2010 |
20100176467 | SEMICONDUCTOR PACKAGE - A semiconductor package includes a chip base material; a capacitor formed on the base material; and a cover formed over the base material to cover the capacitor, and having a side portion and an upper portion. The base material is provided with a bonding pattern connecting the base material and the cover to cover the capacitor. The bonding pattern includes a region A having a substantially uniform pattern width A, and at least one region B having a pattern width B which is larger than the width pattern width A. | 07-15-2010 |
20100187646 | ULTRA LOW PRESSURE SENSOR AND METHOD OF FABRICATION OF SAME - A sensor including: a backplate of electrically conductive or semi-conductive material, the backplate including a plurality of backplate holes; a diaphragm of electrically conductive or semi-conductive material that is connected to, and insulated from the backplate, the diaphragm defining a flexible member and an air gap associated with the flexible member; a bond pad formed on an area of the backplate surrounding the cavity; and a bond pad formed on an area of the diaphragm surrounding the air gap; wherein the flexible member and air gap defined by the diaphragm extend beneath the plurality of backplate holes. | 07-29-2010 |
20100193885 | CONDENSER MICROPHONE - Provided is a condenser microphone that can reduce the size of a product by disposing a support member over a sound hole of a PCB and mounting a chip on the support member. The condenser microphone includes a micro electro mechanical system (MEMS) chip converting a sound into an electrical signal, a substrate including a sound hole through which the sound is introduced, the MEMS chip being mounted to the substrate, a support member over the sound hole, and a semiconductor chip processing the electrical signal converted through the MEMS chip. | 08-05-2010 |
20100193886 | MEMS SENSOR, AND MEMS SENSOR MANUFACTURING METHOD - MEMS sensor including substrate, lower thin film confronting one face of the substrate with a space therebetween and having lower through holes extending in the thickness direction thereof, and upper thin film arranged on the opposite side of the substrate confronting the lower thin film with a space therebetween and having upper through holes extending in the thickness direction. A MEMS sensor manufacturing method includes forming a first sacrificing layer on one face of a substrate, forming a lower thin film on the first sacrificing layer with lower through holes individually extending in the thickness direction, forming a second sacrificing layer on the lower thin film, forming an upper thin film on the second sacrificing layer with upper through holes individually extending in the thickness direction, removing the second sacrificing layer through the upper through holes by etching, and removing the first sacrificing layer through the upper and lower through holes by etching. | 08-05-2010 |
20100219489 | NANOWIRE SENSOR DEVICE - The invention concerns a sensor device, of nanowire type, comprising at least one nanowire comprising a first conductive region ( | 09-02-2010 |
20100244162 | MEMS DEVICE WITH REDUCED STRESS IN THE MEMBRANE AND MANUFACTURING METHOD - A MEMS device comprises a membrane layer and a back-plate layer formed over the membrane layer. The membrane layer comprises an outer portion and an inner portion raised relative to the outer portion and a sidewall for connecting the inner portion and the outer portion. The sidewall is non-orthogonal to the outer portion. | 09-30-2010 |
20100264499 | MEMS DEVICE AND METHOD OF FABRICATING THE SAME - A MEMS device includes a chip carrier having an acoustic port extending from a first surface to a second surface of the chip carrier, a MEMS die disposed on the chip carrier to cover the acoustic port at the first surface of the chip carrier, and an enclosure bonded to the chip carrier and encapsulating the MEMS die. | 10-21-2010 |
20100270631 | MEMS MICROPHONE - A MEMS microphone ( | 10-28-2010 |
20100289097 | Integrated Microphone - A method of forming a microphone having a variable capacitance first deposits high temperature deposition material on a die. The high temperature material ultimately forms structure that contributes to the variable capacitance. The method then forms circuitry on the die after depositing the deposition material. The circuitry is configured to detect the variable capacitance. | 11-18-2010 |
20100295139 | MEMS PACKAGE - An apparatus and method for manufacturing a micro-electrical mechanical system (MEMS) package comprising a first molded body having a first acoustic port, a second molded body connected to the first molded body, a leadframe at least partially integral with at least one of the first and second molded bodies, a die cavity provided on at least one of the first and second molded bodies and having a second acoustic port, a MEMS die provided on the die cavity, a channel connecting the first and second acoustic ports, the first molded body sealing at least a portion of the channel, and a lid attached to the second molded body and sealing at least a portion of the die cavity. | 11-25-2010 |
20100308425 | MEMS DEVICE AND PROCESS - A MEMS device comprises a back-plate ( | 12-09-2010 |
20110006381 | MEMS PACKAGE AND METHOD FOR THE PRODUCTION THEREOF - An MEMS package is proposed, wherein a chip having MEMS structures on its top side is connected to a rigid covering plate and a frame structure, which comprises a polymer, to form a sandwich structure in such a way that a closed cavity which receives the MEMS structures is formed. Solderable or bondable electrical contact are arranged on the rear side of the chip or on the outer side of the covering plate which faces away from the chip, and are electrically conductively connected to at least one connection pad by means of an electrical connection structure. | 01-13-2011 |
20110006382 | MEMS sensor, silicon microphone, and pressure sensor - An MEMS sensor includes: a semiconductor substrate having an opening extending therethrough; a vibration diaphragm opposed to the opening in an opposing direction and capable of vibrating in the opposing direction; and a piezoelectric element or a strain gage provided in association with the vibration diaphragm. | 01-13-2011 |
20110012212 | MEMS SENSOR AND PRODUCTION METHOD OF MEMS SENSOR - An MEMS sensor of the present invention includes a substrate, a lower thin film provided on a surface of the substrate, an upper thin film opposed to the lower thin film at an interval on the side opposite to the substrate, and a wall portion surrounding the lower thin film and the upper thin film and protruding on the side opposite to the lower thin film with respect to the upper thin film. | 01-20-2011 |
20110024851 | MICRO-ELECTROMECHANICAL SYSTEM MICROPHONE STRUCTURE - A method of fabricating a micro-electromechanical system microphone structure is disclosed. First, a substrate defining a MEMS region and a logic region is provided, and a surface of the substrate has a dielectric layer thereon. Next, at least one metal interconnect layer is formed on the dielectric layer in the logic region, and at least one micro-machined metal mesh is simultaneously formed in the dielectric layer of the MEMS region. Therefore, the thickness of the MEMS microphone structure can be effectively reduced. | 02-03-2011 |
20110042762 | MEMS PACKAGE - The present invention provides a MEMS package, the MEMS package comprising a substrate which comprises a recess, and a MEMS device, situated in the recess. | 02-24-2011 |
20110042763 | MEMS DEVICE, MEMS DEVICE MODULE AND ACOUSTIC TRANSDUCER - A MEMS device includes a first insulating film formed on a semiconductor substrate, a vibrating film formed on the first insulating film, and a fixed film above the vibrating film with an air gap being interposed therebetween. The semiconductor substrate has a region containing N-type majority carriers. A concentration of N-type majority carriers in a portion of the semiconductor substrate where the semiconductor substrate contacts the first insulating film, is higher than a concentration of N-type majority carriers in the other portion of the semiconductor substrate. | 02-24-2011 |
20110042764 | APPARATUS COMPRISING A DEVICE AND METHOD FOR PRODUCING SAME - An apparatus comprises a device layer structure, a device integrated into the device layer structure, an insulating carrier substrate and an insulating layer being continuously positioned between the device layer structure and the insulating carrier substrate, the insulating layer having a thickness which is less than 1/10 of a thickness of the insulating carrier substrate. An apparatus further comprises a device integrated into a device layer structure disposed on an insulating layer, a housing layer disposed on the device layer structure and housing the device, a contact providing an electrical connection between the device and a surface of the housing layer opposed to the device layer structure and a molding material surrounding the housing layer and the insulating layer, the molding material directly abutting on a surface of the insulating layer being opposed to the device layer structure. | 02-24-2011 |
20110062533 | Device package substrate and method of manufacturing the same - A device package substrate includes: a substrate having a cavity formed on a top surface thereof, the cavity having a chip mounting region; a first interconnection layer formed to extend to the inside of the cavity; a second interconnection layer formed to be spaced apart from the first interconnection layer; a chip positioned in the chip mounting region so as to be connected to the first and second interconnection layers; an insulating layer formed to cover the first and second interconnection layers and the chip and having a contact hole exposing a part of the second interconnection layer; and a bump pad formed in the contact hole so as to be connected to external elements. | 03-17-2011 |
20110062534 | ELECTRONIC COMPONENT - An electronic component includes: a first substrate having a through-hole; a second substrate opposite the first substrate; a sealing member surrounding a sealing space formed between the first substrate and the second substrate; a functional element having at least a part thereof disposed in the sealing space, and a through-electrode filling the through-hole, the through-hole penetrating the first substrate. The sealing member includes an elastic core part on the first substrate. A metal film is on a surface of the core part and is bonded to the second substrate. | 03-17-2011 |
20110068421 | Integrated MEMS and ESD protection devices - An electronic apparatus is provided that has a core, an electronic circuit in the core and a lid. An ESD protection device is in the lid. The ESD protection device is coupled to the electronic circuit. | 03-24-2011 |
20110068422 | Mems coupler and method to form the same - A MEMS coupler and a method to form a MEMS structure having such a coupler are described. In an embodiment, a MEMS structure comprises a member and a substrate. A coupler extends through a portion of the member and connects the member with the substrate. The member is comprised of a first material and the coupler is comprised of a second material. In one embodiment, the first and second materials are substantially the same. In one embodiment, the second material is conductive and is different than the first material. In another embodiment, a method for fabricating a MEMS structure comprises first forming a member above a substrate. A coupler comprised of a conductive material is then formed to connect the member with the substrate. | 03-24-2011 |
20110073967 | APPARATUS AND METHOD OF FORMING A MEMS ACOUSTIC TRANSDUCER WITH LAYER TRANSFER PROCESSES - A method of forming a MEMS microphone forms circuitry and first MEMS microstructure on a first wafer in a first process, and second MEMS microstructure on a second wafer in a second process. The first process is thermally isolated from the second process. The method also layer transfers the second MEMS microstructure onto the first wafer. The first MEMS microstructure and second MEMS microstructure thus form a variable capacitor that communicates with the circuitry on the first wafer. | 03-31-2011 |
20110073968 | ELEMENT ARRAY, ELECTROMECHANICAL CONVERSION DEVICE, AND PROCESS FOR PRODUCING THE SAME - An element array comprises a plurality of elements having a first electrode and a second electrode with a gap therebetween; the first electrode being separated for each of the elements by grooves, an insulating connection substrate being bonded to the first electrode, and a wiring being made from each of the respective first electrodes separated for each of the elements through the connection substrate to the side opposite to the first electrodes. | 03-31-2011 |
20110089504 | MEMS PROCESS AND DEVICE - A method of fabricating a micro-electrical-mechanical system (MEMS) transducer comprises the steps of forming a membrane ( | 04-21-2011 |
20110115037 | ACOUSTIC DEVICE WITH LOW ACOUSTIC LOSS PACKAGING - A device includes: a substrate having an aperture therethrough from a first side of the substrate to a second side of the substrate; a semiconductor die having an acoustic transducer, the semiconductor die being provided on the first side of the substrate such that the acoustic transducer is aligned with the aperture in the substrate; and a dual in-line package having a recess formed therein. The substrate is disposed such that the first side of the substrate faces the recess of the dual in-line package, and the semiconductor die is disposed between the first side of the substrate and the bottom surface of the recess in the dual in-line package. | 05-19-2011 |
20110121413 | MICROELECTROMECHANICAL SYSTEMS MICROPHONE PACKAGING SYSTEMS - This document discusses, among other things, a conductive frame, a silicon die coupled to the conductive frame, the silicon die including a vibratory diaphragm, the die having a silicon die top opposite a silicon die bottom, with a silicon die port extending through the silicon die to the vibratory diaphragm, with a silicon die terminal in electrical communication with the conductive frame and an insulator affixed to the conductive frame and the silicon die, with the insulator extending through interstices in the conductive frame to a conductive frame bottom of the conductive frame, and around an exterior of the silicon die to the silicon die top, with the insulator physically affixed to the silicon die and to the conductive frame, with the silicon die port exposed and with a conductive frame terminal disposed at the conductive frame bottom in electrical communication with the silicon die terminal. | 05-26-2011 |
20110121414 | Encapsulation, MEMS and Method of Selective Encapsulation - The invention relates to an encapsulation ( | 05-26-2011 |
20110127623 | MEMS Microphone Packaging and MEMS Microphone Module - A method for producing a microphone module includes arranging a MEMS microphone structure on a first surface of a first substrate, the first substrate further including a second surface, which is opposite to the first surface. Furthermore, a cap is arranging on the first surface of the first substrate such that the cap and the first surface enclose the MEMS microphone structure. A readout device for the MEMS microphone structure is arranged on a first surface of a second substrate which further includes a second surface, which is opposite to the first surface. The second surface of the first substrate is attached to the second surface of the second substrate. | 06-02-2011 |
20110127624 | MEMS SENSOR - An MEMS sensor is described. The MEMS sensor may include a substrate, a lower thin film provided in contact with a surface of the substrate, and an upper thin film opposed to the lower thin film at an interval on the side opposite to the substrate. | 06-02-2011 |
20110133296 | SEMICONDUCTOR DEVICE, AND COMMUNICATION APPARATUS AND ELECTRONIC APPARATUS HAVING THE SAME - Provided is a package structure of a semiconductor device, capable of further reducing a planar size. The semiconductor device comprises a first package | 06-09-2011 |
20110133297 | SEMICONDUCTOR COMPONENT AND METHOD FOR PRODUCING SEMICONDUCTOR COMPONENTS - A semiconductor is disclosed. In one embodiment, the semiconductor includes a semiconductor substrate having an active area region, a covering configured to protect the active area region, and a carrier. An interspace is located between the carrier and the covering. The interspace is filled with an underfiller material is disclosed. | 06-09-2011 |
20110140212 | ELECTROMECHANICAL TRANSDUCER AND METHOD OF MANUFACTURING THE SAME - An electromechanical transducer includes: a conductive substrate; multiple elements which are disposed on a first face side of the substrate and which contain cells; grooves; and insulating films. The substrate has a second face which is opposite from the first face. The grooves run from the second face of the substrate to the first face of the substrate in a manner that electrically isolate the multiple elements from one another, thereby dividing the substrate and forming first electrodes. The insulating films are formed on opposing outer side walls of every two adjacent first electrodes across one of the grooves. The width between the insulating films is narrower on the second face side of the substrate than on the first face side of the substrate. The insulating films are thicker on the second face side than on the first face side. | 06-16-2011 |
20110140213 | CAPACITIVE VIBRATION SENSOR - A hollow part is formed in a silicon substrate through the front and the back. A vibration electrode plate is arranged on an upper surface of the silicon substrate to cover the opening on the upper surface. A fixed electrode plate covers the upper side of the vibration electrode plate while maintaining a microscopic gap with the vibration electrode plate, where the peripheral part is fixed to the upper surface of the silicon substrate. The fixed electrode plate has the portion facing the upper surface of the silicon substrate through a space supported by a side wall portion arranged on an inner edge of the portion fixed to the upper surface of the silicon substrate without interposing a space. The outer surface of the side wall portion of the fixed electrode plate is covered by a reinforcement film made of metal such as Au, Cr, and Pt. | 06-16-2011 |
20110156179 | Silicon Microphone with Integrated Back Side Cavity - An integrated circuit containing a capacitive microphone with a back side cavity located within the substrate of the integrated circuit. Access holes may be formed through a dielectric support layer at the surface of the substrate to provide access for etchants to the substrate to form the back side cavity. The back side cavity may be etched after a fixed plate and permeable membrane of the capacitive microphone are formed by providing etchants through the permeable membrane and through the access holes to the substrate. | 06-30-2011 |
20110163398 | METHOD FOR MANUFACTURING SEPARATED MICROMECHANICAL COMPONENTS SITUATED ON A SILICON SUBSTRATE AND COMPONENTS MANUFACTURED THEREFROM - A method for manufacturing separated micromechanical components situated on a silicon substrate includes the following steps of a) providing separation trenches on the substrate via an anisotropic plasma deep etching method, b) irradiating the area of the silicon substrate which forms the base of the separation trenches using laser light, the silicon substrate being converted from a crystalline state into an at least partially amorphous state by the irradiation in this area, and c) inducing mechanical stresses in the substrate. In one specific embodiment, cavities are etched simultaneously with the etching of the separation trenches. The etching depths can be controlled via the RIE lag effect. | 07-07-2011 |
20110186943 | MEMS Package and Method for the Production Thereof - A micro electro-mechanical systems (MEMS) package is described herein. The package includes a carrier substrate having a top side, a MEMS chip mounted on the top side of the carrier substrate, and at least one chip component on or above the top side of the carrier substrate or embedded in the carrier substrate. The package also includes a thin metallic shielding layer covering the MEMS chip and the chip component and forming a seal with the top side of the carrier substrate. | 08-04-2011 |
20110198713 | MICROMECHANICAL COMPONENT HAVING A REAR VOLUME - In a method for manufacturing a micromechanical component, a cavity is produced in the substrate from an opening at the rear of a monocrystalline semiconductor substrate. The etching process used for this purpose and the monocrystalline semiconductor substrate used are controlled in such a way that a largely rectangular cavity is formed. | 08-18-2011 |
20110198714 | PACKAGES AND METHODS FOR PACKAGING MEMS MICROPHONE DEVICES - Microelectromechanical systems (MEMS) microphone devices and methods for packaging the same include a package housing, an interior lid, and an integrated MEMS microphone die. The package housing includes a sound port therethrough for communicating sound from outside the package housing to an interior of the package housing. The interior lid is mounted to an interior surface of the package housing to define an interior lid cavity, and includes a back volume port therethrough. The MEMS microphone die is mounted on the interior lid over the back volume port, and includes a movable membrane. The back volume port is configured to allow the interior lid cavity and the MEMS movable membrane to communicate, thereby increasing the back volume of the MEMS microphone die and enhancing the sound performance of the packaged MEMS microphone device. | 08-18-2011 |
20110204456 | PACKAGED DEVICE WITH ACOUSTIC TRANSDUCER AND AMPLIFIER - A device includes: a lead frame having an aperture in a central portion thereof; at least one acoustic transducer mounted on the lead frame above the aperture and configured to convert between acoustic energy and an electrical signal with low signal losses; a housing connected to the lead frame and including a base portion on a same side of the lead frame as the acoustic transducer; an amplifier is provided on a base portion of the housing in close proximity to the acoustic transducer; and a lid configured together with the base portion of the housing to define a cavity, wherein the acoustic transducer and the amplifier are closely positioned within the MEMS device cavity. | 08-25-2011 |
20110204457 | SEMICONDUCTOR DEVICE - A semiconductor device has a semiconductor element having a base, a cavity having a polygonal horizontal cross-section penetrating vertically through the base, a diaphragm arranged on the base to cover the cavity, and a substrate formed with a die bonding pad. A lower surface of the semiconductor element is adhered on the die bonding pad with a die bonding resin. The die bonding pad is formed so as not to contact a lower end of a valley section formed by an intersection of wall surfaces of an inner peripheral surface of the cavity of the semiconductor element. | 08-25-2011 |
20110210409 | Surface Mount Silicon Condenser Microphone Package - The present invention relates to a surface mount package for a silicon condenser microphone. The inventive package uses a limited number of components which simplifies manufacturing and lowers costs, and features a substrate which performs functions for which multiple components were traditionally required, including providing an interior surface on which the silicon condenser die is mechanically attached, providing an interior surface for making electrical connections between the die and the package, and providing an exterior surface for making electrical connections between package and a user's printed circuit board. In some embodiments, the acoustic port is located in the substrate directly under the silicon condenser die which decreases the thickness of the inventive package. | 09-01-2011 |
20110227177 | MEMS sensor - The MEMS sensor according to the present invention includes a diaphragm. In the diaphragm, an angle formed by two straight lines connecting supporting portions and the center of a main portion with one another respectively is set to satisfy the relation of the following formula (1): | 09-22-2011 |
20110233692 | MICROPHONE UNIT AND VOICE INPUT DEVICE USING SAME - A microphone unit converts voice into an electric signal based on the vibration of a diaphragm contained in an MEMS chip. The microphone unit includes a substrate on which the diaphragm is mounted (the MEMS chip is mounted); a cover member, having sound holes, that is disposed above the substrate so that the diaphragm is contained within the inner space formed between the cover member and the substrate; and a holding member that holds only the substrate or both of the substrate and the cover member. | 09-29-2011 |
20110248364 | Wafer Level Package of MEMS Microphone and Manufacturing Method thereof - A wafer level package of micro electromechanical system (MEMS) microphone includes a substrate, a number of dielectric layers stacked on the substrate, a MEMS diaphragm, a number of supporting rings and a protective layer. The MEMS diaphragm is disposed between two adjacent dielectric layers. A first chamber is between the MEMS diaphragm and the substrate. The supporting rings are disposed in some dielectric layers and stacked with each other. An inner diameter of the lower supporting ring is greater than that of the upper supporting ring. The protective layer is disposed on the upmost supporting ring and covers the MEMS diaphragm. A second chamber is between the MEMS diaphragm and the protective layer. The protective layer defines a number of first through holes for exposing the MEMS diaphragm. The wafer level package of MEMS microphone has an advantage of low cost. | 10-13-2011 |
20110254111 | PACKAGED ACOUSTIC TRANSDUCER DEVICE WITH SHIELDING FROM ELECTROMAGNETIC INTERFERENCE - A device includes: a housing structure; lid configured together with the housing structure to define a cavity therein; and at least one acoustic transducer disposed within the cavity, wherein the lid shields the at least one acoustic transducer from exposure to electromagnetic interference from electromagnetic radiation originating outside the device. In some embodiments, the housing structure includes some electrically conductive leads, including a ground lead, and the lid is directly connected to the ground lead. | 10-20-2011 |
20110260268 | Micro-Electro-Mechanical System Device and Method for Making Same - According to the present invention, a micro-electro-mechanical system (MEMS) device comprises: a thin film structure including at least a metal layer and a protection layer deposited in any order; and a protrusion connected under the thin film structure. A preferred thin film structure includes at least a lower protection layer, a metal layer and an upper protection layer. The MEMS device for example is a capacitive MEMS acoustical sensor. | 10-27-2011 |
20110266640 | ACOUSTIC SENSOR AND METHOD OF MANUFACTURING THE SAME - An acoustic sensor lengthens the portion of the beam portion not fixed with the anchor without lowering the strength of the beam portion and the supporting strength of the diaphragm. On an upper surface of a silicon substrate, a beam portion made of polysilicon is formed through a second sacrifice layer made of silicon dioxide film on an extended portion of a first sacrifice layer made of polysilicon. The extended portion is formed under a region excluding a distal end of the beam portion. The extended portion is removed by etching from a back chamber arranged in the silicon substrate to form a hollow portion in a region excluding the distal end of the lower surface of the beam portion, and then the second sacrifice layer is removed by etching. The second sacrifice layer remaining on the lower surface of the distal end of the beam portion forms an anchor. | 11-03-2011 |
20110266641 | SILICON CONDENSER MICROPHONE HAVING AN ADDITIONAL BACK CHAMBER AND A FABRICATION METHOD THEREFOR - A fabrication method of a silicon condenser microphone having an additional back chamber. The method includes applying an adhesive on a substrate and mounting a chamber container thereon by using a mounter; curing the adhesive holding the chamber container; applying an adhesive on the chamber container and mounting a micro electro mechanical system (MEMS) chip thereon by using a mounter; curing the adhesive holding the MEMS chip; and attaching the substrate on which devices are mounted to a case, wherein a back chamber formed by the chamber container is added to a back chamber of the MEMS chip. Therefore, a silicon condenser microphone fabricated by using the method may have improved sensitivity by increasing the small back chamber space of the a micro electro mechanical system (MEMS) chip itself and reduced noise including total harmonic distortion (THD). | 11-03-2011 |
20110272769 | MEMS MICROPHONE PACKAGE AND PACKAGING METHOD - A MEMS microphone package having improved acoustic properties, and to a packaging method, which involve adding a vent path in the packaging process to improve equilibrium between internal and external air pressure. The MEMS microphone package includes a MEMS microphone chip, in which a back plate and a diaphragm structure are formed in a body by using MEMS process techniques; a substrate for mounting the MEMS microphone chip thereon; a vent path which is formed between the MEMS microphone chip and the substrate by applying an adhesive only to a portion of the substrate and adhering the MEMS microphone chip to the substrate; and a case which is adhered to the substrate and forms a space for accommodating the MEMS microphone chip, wherein acoustic properties of the MEMS microphone package are improved as air pressure inside the MEMS microphone chip and air pressure outside the MEMS microphone chip form air equilibrium via the vent path. | 11-10-2011 |
20110278683 | ACOUSTIC SENSOR AND METHOD OF MANUFACTURING THE SAME - In an acoustic sensor, a diaphragm arranged on an upper side of a silicon substrate includes a back chamber, and an anchor supports the diaphragm. An insulating plate portion fixed to an upper surface of the silicon substrate covers the diaphragm with a gap. A conductive fixed electrode film arranged on a lower surface of the plate portion configures a back plate. The change in electrostatic capacitance between the fixed electrode film and the diaphragm outputs to the outside from a fixed side electrode pad and a movable side electrode pad as an electric signal. A protective film is arranged continuously with the plate portion at an outer periphery of the plate portion. The protective film covers the outer peripheral part of the upper surface of the silicon substrate, and the outer periphery of the protective film coincides with the outer periphery of the upper surface of the silicon substrate. | 11-17-2011 |
20110278684 | ACOUSTIC SENSOR - A diaphragm for sensing sound pressure faces a back plate including a plate portion and a fixed electrode film to form a capacitance type acoustic sensor. The back plate is opened with acoustic holes for passing vibration, and is arranged with a plurality of stoppers in a projecting manner on a surface facing the diaphragm. The stopper arranged in an outer peripheral area of the back plate has a small diameter, and the stopper arranged in an internal area has a large diameter. Thus, sticking of the diaphragm is prevented, and the diaphragm is less likely to break by impact when the sensor is dropped. | 11-17-2011 |
20110284976 | SOLID-STATE IMAGE PICKUP APPARATUS, METHOD FOR MANUFACTURING SAME, AND ELECTRONIC DEVICE - A solid-state image pickup apparatus includes a substrate, a solid-state image pickup device, and a Micro Electro Mechanical Systems (MEMS) device. The solid-state image pickup device and the MEMS device are configured to be formed on the same substrate. | 11-24-2011 |
20110291207 | TRANSDUCER DEVICES HAVING DIFFERENT FREQUENCIES BASED ON LAYER THICKNESSES AND METHOD OF FABRICATING THE SAME - A transducer array on a common substrate includes a membrane and first and second transducer devices. The membrane is formed on the common substrate, and includes a lower layer and an upper layer. The first transducer device includes a first resonator stack formed on at least the lower layer in a first portion of the membrane, the upper layer having a first thickness in the first portion of the membrane. The second transducer device includes a second resonator stack formed on at least the lower layer in a second portion of the membrane, the upper layer having a second thickness in the second portion of the membrane, where the second thickness is different from the first thickness, such that a first resonant frequency of the first transducer device is different from a second resonant frequency of the second transducer device. | 12-01-2011 |
20110303994 | MEMS DEVICE AND PROCESS - A micro-electrical-mechanical system (MEMS) transducer comprises a layer of dielectric material having an electrode formed in the layer of dielectric material. A region of the layer of the dielectric material is adapted to provide a leakage path which, in use, removes unwanted charge from the layer of dielectric material. | 12-15-2011 |
20110316100 | MEMS MICROPHONE AND METHOD FOR MANUFACTURING SAME - A micro electro mechanical systems (MEMS) microphone, and a method of manufacturing the MEMS microphone having an interval between a membrane and a back plate, the interval being correctly adjusted by forming the membrane and the back plate after an air-gap forming portion on a silicon substrate. Since the membrane and/or the back plate are/is formed by electroless plating, a sacrificial layer is easily planarized, and a residual stress is easily removed or controlled. The MEMS microphone includes a silicon substrate in which a back chamber is formed and on which an air-gap forming portion is formed above the chamber by etching the silicon substrate to a predetermined depth above the chamber; a membrane formed on the air-gap forming portion of the silicon substrate or the silicon substrate; and a back plate that is formed on the air-gap forming portion or the silicon substrate so as to be spaced apart from the membrane, wherein an air gap is formed between the membrane and the back plate. | 12-29-2011 |
20120001276 | APPARATUS INTEGRATING MICROELECTROMECHANICAL SYSTEM DEVICE WITH CIRCUIT CHIP AND METHODS FOR FABRICATING THE SAME - One embodiment discloses an apparatus integrating a microelectromechanical system device with a circuit chip which comprises a circuit chip, a microelectromechanical system device, a sealing ring, and a lid. The circuit chip comprises a substrate and a plurality of metal bonding areas. The substrate has an active surface with electrical circuit area, and the metal bonding areas are disposed on the active surface and electrically connected to the electrical circuits. The microelectromechanical system device comprises a plurality of bases and at least one sensing element. The bases are connected to at least one of the metal bonding areas. The at least one sensing element is elastically connected to the bases. The sealing ring surrounds the bases, and is connected to at least one of the metal bonding areas. The lid is opposite to the active surface of the circuit chip, and is connected to the sealing ring to have a hermetic chamber which seals the sensing element and the active surface of the circuit chip. | 01-05-2012 |
20120018820 | SEMICONDUCTOR DEVICE - A semiconductor device includes a converter that converts an acoustic pressure into an electrical signal and an amplifier element that includes an amplifier circuit that amplifies the electrical signal outputted from the converter. The converter includes a pedestal including a cavity formed from an upper face to a lower face thereof, and a vibration film located so as to cover an opening of the cavity on the side of the upper face. The vibration film vibrates in accordance with the acoustic pressure to thereby convert the acoustic pressure into an electrical signal. The amplifier element is located under the converter so as to cover the cavity. | 01-26-2012 |
20120025334 | MEMS CAPACITIVE MICROPHONE - The present invention discloses an MEMS capacitive microphone including a rigid diaphragm arranged on an elastic element. When a sound wave acts on the rigid diaphragm, the rigid diaphragm is moved parallel to a normal of a back plate by elasticity of the elastic element. Thereby the variation of the capacitance is obtained between the rigid diaphragm and the back plate. | 02-02-2012 |
20120025335 | MICROELECTROMECHANICAL SYSTEMS (MEMS) PACKAGE - A micro-electromechanical systems (MEMS) transducer device comprises: a package substrate having a first coefficient of thermal expansion (CTE); and a transducer substrate comprising a transducer. The transducer substrate is disposed over the package substrate. The transducer substrate has a second CTE that substantially matches the first CTE. | 02-02-2012 |
20120025336 | CONVERTER MODULE AND METHOD OF MANUFACTURING THE SAME - To provide a converter module easily achieving miniaturization and profile reduction without decreasing the pressure detection sensitivity. The converter module includes: a converter which converts vibration of a diaphragm into an electric signal; and a semiconductor substrate which processes the electric signal obtained as a result of the conversion performed by the converter. The converter includes: a base including a cavity part having an opening in a front surface of the base; and the diaphragm which is arranged on the front surface to cover the opening of the cavity part and converts the vibration into the electric signal. The semiconductor substrate is formed as a part of the base. | 02-02-2012 |
20120032285 | Electronic Device Including MEMS Devices And Holed Substrates, In Particular Of The LGA Or BGA Type - An electronic device includes a substrate provided with a passing opening and a MEMS device including an active surface wherein a portion of the MEMS device is integrated sensitive to chemical/physical variations of a fluid. The active surface of the MEMS device faces the substrate and is spaced therefrom, the sensitive portion being aligned to the opening. A protective package incorporates at least partially the MEMS device and the substrate, leaving at least the sensitive portion of the MEMS device, and the opening of the substrate exposed. A barrier element is positioned in an area which surrounds the sensitive portion to realize a protection structure for the MEMS device, so that the sensitive portion is free. | 02-09-2012 |
20120043628 | PACKAGED DEVICE INCLUDING A WELL FOR CONTAINING A DIE - A packaged device includes a package defining a well having a well top, a die positioned in the well of the package, and a retaining substrate attached to the package over the well top. The retaining substrate holds the die in direct contact with a portion of the package exposed at a well bottom opposite the well top. | 02-23-2012 |
20120043629 | Surface Mount Silicon Condenser Microphone Package - The present invention relates to a surface mount package for a silicon condenser microphone. The inventive package uses a limited number of components which simplifies manufacturing and lowers costs, and features a substrate which performs functions for which multiple components were traditionally required, including providing an interior surface on which the silicon condenser die is mechanically attached, providing an interior surface for making electrical connections between the die and the package, and providing an exterior surface for making electrical connections between package and a user's printed circuit board. | 02-23-2012 |
20120056282 | MEMS Transducer for an Audio Device - A MEMS transducer ( | 03-08-2012 |
20120074509 | WAFER BOND CMUT ARRAY WITH CONDUCTIVE VIAS - A wafer bonded CMUT array comprising a plurality of CMUT elements distributed across a substrates, each element comprising a cavity and a signal electrode formed in the substrate, and a conductive membrane closing the cavity and forming a ground electrode, wherein the membranes of the individual elements form an unbroken ground plane across the surface of the array and wherein electrical connection to the signal electrodes is provided by means of a conductive vias depending therefrom through the substrate from the signal electrode to the rear of the substrate. | 03-29-2012 |
20120086087 | SOI-BASED CMUT DEVICE WITH BURIED ELECTRODES - A muli-layer stacked micro-electro-mechanical (MEMS) device that acts as a capacitive micromachined ultrasonic transducer (CMUT) with a hermetically sealed device cavity formed by a wafer bonding process with semiconductor and insulator layers. The CMUT design uses a doped Si SOI and wafer bonding fabrication method, and is composed of semiconductor layers, insulator layers, and metal layers. Conventional doped silicon may be used for electrode layers. Other suitable semi-conductor materials such as silicon carbide may be used for the electrode layers. The insulator may be silicon oxide, silicon nitride or other suitable dielectric. | 04-12-2012 |
20120086088 | ELECTRONIC COMPONENT - An electronic component includes: a first substrate having a through-hole; a second substrate opposite the first substrate; a sealing member surrounding a sealing space formed between the first substrate and the second substrate; a functional element having at least a part thereof disposed in the sealing space, and a through-electrode filling the through-hole, the through-hole penetrating the first substrate. The sealing member includes an elastic core part on the first substrate. A metal film is on a surface of the core part and is bonded to the second substrate. | 04-12-2012 |
20120091544 | COMPONENT HAVING A MICROMECHANICAL MICROPHONE STRUCTURE, AND METHOD FOR ITS PRODUCTION - A component having a robust, but acoustically sensitive microphone structure is provided and a simple and cost-effective method for its production. This microphone structure includes an acoustically active diaphragm, which functions as deflectable electrode of a microphone capacitor, a stationary, acoustically permeable counter element, which functions as counter electrode of the microphone capacitor, and an arrangement for detecting and analyzing the capacitance changes of the microphone capacitor. The diaphragm is realized in a diaphragm layer above the semiconductor substrate of the component and covers a sound opening in the substrate rear. The counter element is developed in a further layer above the diaphragm. This further layer generally extends across the entire component surface and compensates level differences, so that the entire component surface is largely planar according to this additional layer. This allows a foil to be applied on the layer configuration of the microphone structures exposed in the wafer composite, which makes it possible to dice up the components in a standard sawing process. | 04-19-2012 |
20120091545 | SEMICONDUCTOR COMPONENT HAVING A MICROMECHANICAL MICROPHONE STRUCTURE - A simple and cost-effective form of implementing a semiconductor component having a micromechanical microphone structure, including an acoustically active diaphragm as a deflectable electrode of a microphone capacitor, a stationary, acoustically permeable counterelement as a counter electrode of the microphone capacitor, and means for applying a charging voltage between the deflectable electrode and the counter electrode of the microphone capacitor. In order to not impair the functionality of this semiconductor component, even during overload situations in which contact occurs between the diaphragm and the counter electrode, the deflectable electrode and the counter electrode of the microphone capacitor are counter-doped, at least in places, so that they form a diode in the event of contact. In addition, the polarity of the charging voltage between the deflectable electrode and the counter electrode is such that the diode is switched in the blocking direction. | 04-19-2012 |
20120091546 | Microphone - A microphone comprises a substrate ( | 04-19-2012 |
20120098076 | ACOUSTIC SENSOR AND METHOD OF MANUFACTURING THE SAME - Provided is an acoustic sensor. The acoustic sensor includes: a substrate including sidewall portions and a bottom portion extending from a bottom of the sidewall portions; a lower electrode fixed at the substrate and including a concave portion and a convex portion, the concave portion including a first hole on a middle region of the bottom, the convex portion including a second hole on an edge region of the bottom; diaphragms facing the concave portion of the lower electrode, with a vibration space therebetween; diaphragm supporters provided on the lower electrode at a side of the diaphragm and having a top surface having the same height as the diaphragm; and an acoustic chamber provided in a space between the bottom portion and the sidewall portions below the lower electrode. | 04-26-2012 |
20120126346 | METHOD FOR CREATING A MICROMECHANICAL MEMBRANE STRUCTURE AND MEMS COMPONENT - In a method for manufacturing a micromechanical membrane structure, a doped area is created in the front side of a silicon substrate, the depth of which doped area corresponds to the intended membrane thickness, and the lateral extent of which doped area covers at least the intended membrane surface area. In addition, in a DRIE (deep reactive ion etching) process applied to the back side of the silicon substrate, a cavity is created beneath the doped area, which DRIE process is aborted before the cavity reaches the doped area. The cavity is then deepened in a KOH etching process in which the doped substrate area functions as an etch stop, so that the doped substrate area remains as a basic membrane over the cavity. | 05-24-2012 |
20120126347 | PACKAGES AND METHODS FOR PACKAGING - Packaged integrated devices and methods of forming the same are provided. In one embodiment, a packaged integrated device includes a package substrate, a package lid, and an integrated circuit or microelectromechanical systems (MEMS) device. The package lid is mounted to a first surface of the package substrate using an epoxy, and the package lid and the package substrate define a package interior. The package lid includes an interior coating suited to good adhesion with the epoxy, and an exterior coating suited to RF shielding, where the materials of the interior and exterior coatings are different. In one example, the interior lid coating is nickel whereas the exterior lid coating is tin. | 05-24-2012 |
20120133004 | METHOD FOR PRODUCING OBLIQUE SURFACES IN A SUBSTRATE AND WAFER HAVING AN OBLIQUE SURFACE - A method for producing oblique surfaces in a substrate, comprising a formation of recesses on both surfaces of the substrate, until the recesses are so deep that the substrate is perforated by the two recesses. One recess is produced going out from a first main surface in the region of a first surface, and the other recess is produced going out from the second main surface in the region of a second surface, so that the first surface and the second surface do not coincide along a surface normal of the main surfaces of the substrate. Subsequently, flexible diaphragms are attached over the recesses on each of the main surfaces. If a vacuum pressure is then produced inside the recesses, the flexible diaphragms each curve in the direction of the recesses until their surfaces facing the substrate come into contact with one another, generally in the center of the recesses. | 05-31-2012 |
20120133005 | COLLAPSED MODE CAPACITIVE SENSOR - A capacitive sensor is configured for collapsed mode, e.g. for measuring sound or pressure, wherein the moveable element is partitioned into smaller sections. The capacitive sensor provides increased signal to noise ratio. | 05-31-2012 |
20120139066 | MEMS MICROPHONE - Disclosed is a micro electro mechanical system (MEMS) microphone including: a substrate; an acoustic chamber formed by processing the substrate; a lower electrode formed on the acoustic chamber and fixed to the substrate; a diaphragm formed over the lower electrode so as to be spaced apart from the lower electrode by a predetermined interval; and a diaphragm discharge hole formed at a central portion of the diaphragm. According to an exemplary embodiment of the present disclosure, attenuation generated by an air layer between the diaphragm and the lower electrode in a MEMS microphone may be effectively reduced, thereby making it possible to obtain high sensitivity characteristics and reduce a time and a cost required for removing a sacrificial layer between the diaphragm and the lower electrode. | 06-07-2012 |
20120146163 | MICROPHONE PACKAGE STRUCTURE AND METHOD FOR FABRICATING THE SAME - A microphone package structure is provided, including an integrated circuit (IC) structure and a microphone structure disposed thereover and electrically connected therewith. The IC structure includes a first semiconductor substrate with opposite first and second surfaces, and a first through hole disposed in and through the first semiconductor substrate. The microphone structure includes: a second semiconductor substrate with opposite third and fourth surfaces, wherein the third surface faces to the second surface of the first semiconductor substrate; a second through hole disposed in and through the second semiconductor substrate; an acoustic sensing device embedded in the second through hole and adjacent to the third surface; and a sealing layer disposed over the fourth surface of the second semiconductor substrate, defining a back chamber with the sealing layer, wherein the first through hole allows acoustic pressure waves to penetrate and pass therethrough to the acoustic sensing device. | 06-14-2012 |
20120161257 | Method for Fabricating a Cavity Structure, for Fabricating a Cavity Structure for a Semiconductor Structure and a Semiconductor Microphone Fabricated by the Same - Embodiments show a method for fabricating a cavity structure, a semiconductor structure, a cavity structure for a semiconductor device and a semiconductor microphone fabricated by the same. In some embodiments the method for fabricating a cavity structure comprises providing a first layer, depositing a carbon layer on the first layer, covering at least partially the carbon layer with a second layer to define the cavity structure, removing by means of dry etching the carbon layer between the first and second layer so that the cavity structure is formed. | 06-28-2012 |
20120161258 | PACKAGE WITH A CMOS DIE POSITIONED UNDERNEATH A MEMS DIE - A package is provided. The package has a substrate and a cover. A MEMS die is provided having a diaphragm. A CMOS die is provided wherein at least a portion of the CMOS die is positioned between the diaphragm and the substrate. | 06-28-2012 |
20120161259 | Package With A CMOS Die Positioned Underneath A MEMS Die - A package is provided. The package has a substrate and a cover. A MEMS die is provided having a diaphragm. A CMOS die is provided wherein at least a portion of the CMOS die is positioned between the diaphragm and the substrate. | 06-28-2012 |
20120161260 | Method for packaging a sensor chip, and a component produced using such a method - Measures are introduced to make possible a low-cost packaging of sensor chips having a media access. For this purpose, the sensor chip is first mounted on a substrate and is contacted. The sensor chip is then at least partially embedded in a molding compound. Finally, at least one portion of the media access is produced by the subsequent structuring of the molding compound. | 06-28-2012 |
20120181639 | COMPONENT AND METHOD FOR THE MANUFACTURE THEREOF - A cost-effective and space-saving component that includes a MEMS element and an access channel to the membrane structure of the MEMS element. | 07-19-2012 |
20120187507 | MEMS RESONATOR - A bulk-acoustic-mode MEMS resonator has a first portion with a first physical layout, and a layout modification feature. The resonant frequency is a function of the physical layout, which is designed such that the frequency variation is less than 150 ppm for a variation in edge position of the resonator shape edges of 50 nm. This design combines at least two different layout features in such a way that small edge position variations (resulting from uncontrollable process variation) have negligible effect on the resonant frequency. | 07-26-2012 |
20120187508 | INTEGRATION OF STRUCTURALLY-STABLE ISOLATED CAPACITIVE MICROMACHINED ULTRASONIC TRANSDUCER (CMUT) ARRAY CELLS AND ARRAY ELEMENTS - A method for forming a capacitive micromachined ultrasonic transducer (CMUT) includes forming multiple CMUT elements in a first semiconductor-on-insulator (SOI) structure. Each CMUT element includes multiple CMUT cells. The first SOI structure includes a first handle wafer, a first buried layer, and a first active layer. The method also includes forming a membrane over the CMUT elements and forming electrical contacts through the first handle wafer and the first buried layer. The electrical contacts are in electrical connection with the CMUT elements. The membrane could be formed by bonding a second SOI structure to the first SOI structure, where the second SOI structure includes a second handle wafer, a second buried layer, and a second active layer. The second handle wafer and the second buried layer can be removed, and the membrane includes the second active layer. | 07-26-2012 |
20120193735 | MICROELECTROMECHANICAL SYSTEM MICROPHONE PACKAGE STRUCTURE - A microelectromechanical system microphone package structure includes a base plate and a plurality of chips is provided. The plurality of chips are disposed on the base plate, wherein an active area of each of the chips is disposed with a microelectromechanical system microphone structure, each of the active areas comprises a normal line, and the normal lines of the chips are not parallel to each other. | 08-02-2012 |
20120205755 | MEMS MICROPHONE - A MEMS microphone has a cover, a base and a MEMS chip. The cover has a contact voice receiving unit which is disposed on the base, and a space is formed between the cover and the base. The MEMS chip is disposed in the space and electrically connected to the base and the contact voice receiving unit. The MEMS microphone enhances the quality of voice transmission by reducing interferences from ambient noises. | 08-16-2012 |
20120235255 | MEMS acoustic pressure sensor device and method for making same - The present invention discloses a Micro-Electro-Mechanical System (MEMS) acoustic pressure sensor device and a method for making same. The MEMS device includes: a substrate; a fixed electrode provided on the substrate; and a multilayer structure, which includes multiple metal layers and multiple metal plugs, wherein the multiple metal layers are connected by the multiple metal plugs. A cavity is formed between the multilayer structure and the fixed electrode. Each metal layer in the multilayer structure includes multiple metal sections. The multiple metal sections of one metal layer and those of at least another metal layer are staggered to form a substantially blanket surface as viewed from a moving direction of an acoustic wave. | 09-20-2012 |
20120235256 | COMPONENT - A wafer-level-based packaging concept for MEMS components having at least one diaphragm structure formed in the component front side is described, according to which an interposer is connected to the front side of the MEMS component, which has at least one passage aperture as an access opening to the diaphragm structure of the MEMS component and which is provided with electrical through contacts so that the MEMS component is electrically contactable via the interposer. The cross-sectional area of the at least one passage aperture in the interposer is to be designed as significantly smaller than the lateral extension of the diaphragm structure of the MEMS component. The at least one passage aperture opens into a cavity between the diaphragm structure and the interposer. | 09-20-2012 |
20120241877 | ACOUSTIC SEMICONDUCTOR DEVICE - According to one embodiment, an acoustic semiconductor device includes an element unit, and a first terminal. The element unit includes an acoustic resonance unit. The acoustic resonance unit includes a semiconductor crystal. An acoustic standing wave is excitable in the acoustic resonance unit and is configured to be synchronously coupled with electric charge density within at least one portion of the semiconductor crystal via deformation-potential coupling effect. The first terminal is electrically connected to the element unit. At least one selected from outputting and inputting an electrical signal is implementable via the first terminal. The electrical signal is coupled with the electric charge density. The outputting the electrical signal is from the acoustic resonance unit, and the inputting the electrical signal is into the acoustic resonance unit. | 09-27-2012 |
20120248554 | Micromechanical Sound Transducer Having a Membrane Support with Tapered Surface - A method for manufacturing a micromechanical sound transducer includes depositing successive layers of first and second membrane support material on a first main surface of a substrate arrangement with a first etching rate and a lower second etching rate, respectively. A layer of membrane material is then deposited. A cavity is created in the substrate arrangement from a side of the substrate arrangement opposite to the membrane support materials and the membrane material at least until the cavity extends to the layer of first membrane support material. The layers of first and second membrane support material are etched by applying an etching agent through the cavity in at least one first region located in an extension of the cavity also in a second region surrounding the first region. The etching creates a tapered surface on the layer of second membrane support material in the second region. The etching continues at least until the layer of second membrane support material has been removed in the first region to expose the layer of membrane material. | 10-04-2012 |
20120261775 | MEMS microphone device and method for making same - The present invention discloses a MEMS microphone device and its manufacturing method. The MEMS microphone device includes: a substrate including a first cavity; a MEMS device region above the substrate, wherein the MEMS device region includes a metal layer, a via layer, an insulating material region and a second cavity; a mask layer above the MEMS device region; a first lid having at least one opening communicating with the second cavity, the first lid being fixed above the mask layer; and a second lid fixed under the substrate. | 10-18-2012 |
20120273904 | MINERAL ELECTRET-BASED ELECTROMECHANICAL DEVICE AND METHOD FOR MANUFACTURING SAME - This device includes a dielectric stack including at least one electret layer ( | 11-01-2012 |
20120280335 | COMPONENT - A component includes at least one MEMS component and at least one additional semiconductor component in a common housing having at least one access opening. On the front side of the MEMS component, at least one diaphragm structure is provided, which spans a cavity on the backside of the MEMS component. The housing includes a carrier, on which the MEMS component is mounted. The MEMS component is mounted, using its front side, on the carrier, so that there is a standoff between the diaphragm structure and the carrier surface. The at least one additional semiconductor component is connected to the backside of the MEMS component, so that the MEMS component and the semiconductor component form a chip stack. | 11-08-2012 |
20120299131 | ARRANGEMENT WITH A MEMS DEVICE AND METHOD OF MANUFACTURING - An arrangement and a production method for the arrangement with at least one MEMS device, which comprises a package that closely encloses the MEMS device and seals it from ambient influences. The package comprises as sealing a PFPE layer of a perfluoropolyether polymerized with the aid of functional groups. | 11-29-2012 |
20120313190 | PACKAGED DEVICE INCLUDING INTERPOSER FOR INCREASED ADHESIVE THICKNESS AND METHOD OF ATTACHING DIE TO SUBSTRATE - A device includes a die having: at least one of an electronic device and a microelectromechanical system, a package substrate, an electrically nonconductive interposer disposed between the die and the package substrate, at least a first adhesive layer disposed between the package substrate and the electrically nonconductive interposer, and at least a second adhesive layer disposed between the die and the electrically nonconductive interposer. | 12-13-2012 |
20120319219 | EPITAXIAL SILICON CMOS-MEMS MICROPHONES AND METHOD FOR MANUFACTURING - A method of manufacturing a microphone using epitaxially grown silicon. A monolithic wafer structure is provided. A wafer surface of the structure includes poly-crystalline silicon in a first horizontal region and mono-crystalline silicon in a second horizontal region surrounding a perimeter of the first horizontal region. A hybrid silicon layer is epitaxially deposited on the wafer surface. Portions of the hybrid silicon layer that contact the poly-crystalline silicon use the poly-crystalline silicon as a seed material and portions that contact the mono-crystalline silicon use the mono-crystalline silicon as a seed material. As such, the hybrid silicon layer includes both mono-crystalline silicon and poly-crystalline silicon in the same layer of the same wafer structure. A CMOS/membrane layer is then deposited on top of the hybrid silicon layer. | 12-20-2012 |
20120319220 | METHOD OF BONDING SEMICONDUCTOR SUBSTRATE AND MEMS DEVICE - A method of bonding a semiconductor substrate having a substrate | 12-20-2012 |
20120326249 | MEMS MICROPHONE AND METHOD FOR MANUFACTURE - An improved method for manufacturing an MEMS microphone with a double fixed electrode is specified which results in a microphone which likewise has improved properties. | 12-27-2012 |
20130032905 | SEMICONDUCTOR PACKAGE CONFIGURED TO ELECTRICALLY COUPLE TO A PRINTED CIRCUIT BOARD AND METHOD OF PROVIDING SAME - In some examples, a semiconductor package can be configured to electrically couple to a printed circuit board. The semiconductor package can include: (a) a lid having one or more first electrically conductive leads; (b) a base coupled to the lid and having one or more second electrically conductive leads electrically coupled to the one or more first electrically conductive leads; (c) one or more first semiconductor devices mechanically coupled to the lid and electrically coupled to the one or more first electrically conductive leads; and (d) one or more first micro-electrical-mechanical system devices mechanically coupled to the lid and electrically coupled to the one or more first electrically conductive leads. At least one of the lid or the base can have at least one port hole. The one or more first electrically conductive leads can be configured to couple to the printed circuit board. Other embodiments are disclosed. | 02-07-2013 |
20130056840 | ACOUSTIC TRANSDUCERS WITH PERFORATED MEMBRANES - A MEMS device, such as a microphone, uses a fixed perforated plate. The fixed plate comprises an array of holes across the plate area. At least a set of the holes adjacent the outer periphery comprises a plurality of rows of elongate holes, the rows at different distances from the periphery. This design improves the mechanical robustness of the membrane and can additionally allow tuning of the mechanical behaviour of the plate. | 03-07-2013 |
20130069179 | ACOUSTIC SENSOR, ACOUSTIC TRANSDUCER, MICROPHONE USING THE ACOUSTIC TRANSDUCER, AND METHOD FOR MANUFACTURING THE ACOUSTIC TRANSDUCER - In an acoustic sensor, a conductive vibrating membrane and a fixed electrode plate are disposed above a silicon substrate with an air gap provided therebetween, and the substrate has an impurity added to a surface thereof. A microphone includes an acoustic transducer; and an acquiring section that acquires a change in pressure as detected by the acoustic transducer. A method for manufacturing an acoustic transducer including a semiconductor substrate, a vibrating membrane, which is conductive, and a fixed electrode plate and detecting a pressure according to a change in capacitance between the vibrating membrane and the fixed electrode plate, the method includes an impurity adding step of adding an impurity to a surface of the semiconductor substrate; and a forming step of forming the vibrating membrane and the fixed electrode plate above the semiconductor substrate to which the impurity has been added. | 03-21-2013 |
20130069180 | ELECTRO-ACOUSTIC CONVERSION DEVICE MOUNT SUBSTRATE, MICROPHONE UNIT, AND MANUFACTURING METHOD THEREFOR - The disclosed substrate ( | 03-21-2013 |
20130075835 | MICRO-ELECTRO-MECHANICAL MICROPHONE AND MICRO-ELECTRO-MECHANICAL MICROPHONE CHIP INTEGRATED WITH FILTER - A microelectromechanical microphone comprises a shell body, a microelectromechanical microphone chip and an integrated circuit. The shell body having a cavity and an opening, sound from outside enters into the cavity from the opening. The microelectromechanical microphone chip and the integrated circuit are disposed on a circuit layout inside the cavity. A filter is integrated with the microelectromechanical microphone chip at an appropriate location. Sound entered from the opening into the cavity is received by the microelectromechanical microphone chip, then the sound or audio signals are converted to electrical signals through the filter and the integrated circuit, to be transmitted to external electronic devices. | 03-28-2013 |
20130075836 | Vented MEMS Apparatus And Method Of Manufacture - A micro-electromechanical system (MEMS) device includes a housing and a base. The base includes a port opening extending therethrough and the port opening communicates with the external environment. The MEMS die is disposed on the base and over the opening. The MEMS die includes a diaphragm and a back plate and the MEMS die, the base, and the housing form a back volume. At least one vent extends through the MEMS die and not through the diaphragm. The at least one vent communicates with the back volume and the port opening and is configured to allow venting between the back volume and the external environment. | 03-28-2013 |
20130119490 | INTEGRATED SEMICONDUCTOR DEVICES WITH SINGLE CRYSTALLINE BEAM, METHODS OF MANUFACTURE AND DESIGN STRUCTURE - Bulk acoustic wave filters and/or bulk acoustic resonators integrated with CMOS devices, methods of manufacture and design structure are provided. The method includes forming a single crystalline beam from a silicon layer on an insulator. The method further includes providing a coating of insulator material over the single crystalline beam. The method further includes forming a via through the insulator material. The method further includes providing a sacrificial material in the via and over the insulator material. The method further includes providing a lid on the sacrificial material. The method further includes providing further sacrificial material in a trench of a lower wafer. The method further includes bonding the lower wafer to the insulator, under the single crystalline beam. The method further includes venting the sacrificial material and the further sacrificial material to form an upper cavity above the single crystalline beam and a lower cavity, below the single crystalline beam. | 05-16-2013 |
20130119491 | INTEGRATED SEMICONDUCTOR DEVICES WITH AMORPHOUS SILICON BEAM, METHODS OF MANUFACTURE AND DESIGN STRUCTURE - Bulk acoustic wave filters and/or bulk acoustic resonators integrated with CMOS processes, methods of manufacture and design structures are disclosed. The method includes forming at least one beam comprising amorphous silicon material and providing an insulator material over and adjacent to the amorphous silicon beam. The method further includes forming a via through the insulator material and exposing a material underlying the amorphous silicon beam. The method further includes providing a sacrificial material in the via and over the amorphous silicon beam. The method further includes providing a lid on the sacrificial material and over the insulator material. The method further includes venting, through the lid, the sacrificial material and the underlying material to form an upper cavity above the amorphous silicon beam and a lower cavity below the amorphous silicon beam, respectively. | 05-16-2013 |
20130119492 | Miniaturized Electrical Component Comprising an MEMS and an ASIC and Production Method - The invention relates to a miniaturized electrical component comprising an MEMS chip and an ASIC chip. The MEMS chip and the ASIC chip are disposed on top of each other; an internal mounting of MEMS chip and ASIC chip is connected to external electrical terminals of the electrical component by means of vias through the MEMS chip or the ASIC chip. | 05-16-2013 |
20130126990 | SENSOR MANUFACTURING METHOD AND MICROPHONE STRUCTURE MADE BY USING THE SAME - A sensor manufacturing method and a microphone structure produced by using the same. Wherein, thermal oxidation method is used to form a sacrifice layer of an insulation layer on a silicon-on-insulator (SOI) substrate or a silicon substrate, to fill patterned via in said substrate. Next, form a conduction wiring layer on the insulation layer. Since the conduction wiring layer is provided with holes, thus etching gas can be led in through said hole, to remove filling in the patterned via, to obtain an MEMS sensor. Or after etching of the conduction wiring layer, deep reactive-ion etching is used to etch the silicon substrate into patterned via, to connect the substrate electrically to a circuit chip. The manufacturing process is simple and the technology is stable and mature, thus the conduction wiring layer and the insulation layer are used to realize electrical isolation. | 05-23-2013 |
20130126991 | MICROMECHANICAL FUNCTIONAL APPARATUS, PARTICULARLY A LOUDSPEAKER APPARATUS, AND APPROPRIATE METHOD OF MANUFACTURE - A micromechanical functional apparatus, particularly a loudspeaker apparatus, includes a substrate having a top and an underside and at least one circuit chip mounted on the underside in a first cavity. The apparatus further includes a micromechanical functional arrangement, particularly a loudspeaker arrangement, having a plurality of micromechanical loudspeakers mounted on the top in a second cavity. A covering device is mounted above the micromechanical functional arrangement on the top. An appropriate method is implemented to manufacture the micromechanical functional apparatus. | 05-23-2013 |
20130126992 | MEMS Chip Package and Method for Manufacturing an MEMS Chip Package - A MEMS chip package includes a first chip, a second chip, a first coupling element, and a first redistribution layer. The first chip has a first chip surface and a second chip surface, which is opposite the first chip surface. The second chip has a first chip surface and a second chip surface, which is opposite the first chip surface. The first coupling element couples the first chip surface of the second chip to the first chip surface of the first chip, so that a first cavity is defined between the first chip and the second chip. The first redistribution layer is mounted on the second chip surface of the second chip and is configured to provide contact with a substrate. | 05-23-2013 |
20130126993 | ELECTROMECHANICAL TRANSDUCER AND METHOD OF PRODUCING THE SAME - The present invention relates to an electromechanical transducer and a method of producing it, in which the substrate rigidity is maintained to prevent the substrate from being broken during formation of dividing grooves or a film. | 05-23-2013 |
20130140654 | Low Frequency CMUT with Vent Holes - A capacitive micromachined ultrasonic transducer (CMUT), which has a conductive structure that can vibrate over a cavity, has a number of vent holes that are formed in the bottom surface of the cavity. The vent holes eliminate the deflection of the CMUT membrane due to atmospheric pressure which, in turn, allows the CMUT to receive and transmit low frequency ultrasonic waves. | 06-06-2013 |
20130140655 | MEMS ACOUSTIC TRANSDUCER AND METHOD FOR FABRICATING THE SAME - A MEMS acoustic transducer is provided, which includes a substrate, a MEMS chip, and a housing. The substrate has a first opening area and a lower electrode layer disposed over a surface of the substrate, wherein the first opening area includes at least one hole allowing acoustic pressure to enter the MEMS acoustic transducer. The MEMS chip is disposed over the surface of the substrate, including a second opening area and an upper electrode layer partially sealing the second opening area, wherein the upper electrode layer and the lower electrode layer, which are parallel to each other and have a gap therebetween, form an induction capacitor. The housing is disposed over the MEMS chip or the surface of the substrate creating a cavity with the MEMS chip or the substrate. In addition, a method for fabricating the above MEMS acoustic transducer is also provided. | 06-06-2013 |
20130140656 | MEMS Microphone And Method For Producing The MEMS Microphone - The invention relates to a method for producing a microphone, in which a transducer element (WE) is mounted on a carrier (TR); a cover is arranged over the transducer element (WE) and the carrier (TR) such that the transducer element (WE) is enclosed between the cover and the carrier (TR); a first sound inlet opening (SO | 06-06-2013 |
20130146995 | THREE-DIMENSIONAL, ULTRASONIC TRANSDUCER ARRAYS, METHODS OF MAKING ULTRASONIC TRANSDUCER ARRAYS, AND DEVICES INCLUDING ULTRASONIC TRANSDUCER ARRAYS - Systems, apparatus, and associated methods of forming the systems and/or apparatus may include imaging devices that may comprise multiple arrays of ultrasonic transducer elements for use in a variety of applications. These multiple arrays of ultrasonic transducer elements can be arranged to form a three-dimensional imaging device. Non-coplanar arrays of ultrasonic transducer elements can be coupled together. These imaging devices may be used as medical imaging devices. Additional apparatus, systems, and methods are disclosed. | 06-13-2013 |
20130187246 | BACKSIDE INTEGRATION OF RF FILTERS FOR RF FRONT END MODULES AND DESIGN STRUCTURE - A design structure for an integrated radio frequency (RF) filter on a backside of a semiconductor substrate includes: a device on a first side of a substrate; a radio frequency (RF) filter on a backside of the substrate; and at least one substrate conductor extending from the front side of the substrate to the backside of the substrate and electrically coupling the RF filter to the device. | 07-25-2013 |
20130193533 | EMBEDDED CIRCUIT IN A MEMS DEVICE - A Microelectromechanical System (MEMS) microphone includes a printed circuit board, a MEMS die, and an integrated circuit. The MEMS die is disposed on a top surface of the printed circuit board. The integrated circuit is disposed at least partially within the printed circuit board and produces at least one output signal. The output signals of the integrated circuit are routed directly into at least one conductor to access pads at the printed circuit board and the access pads are disposed on a bottom surface of the printed circuit board that is opposite the top surface. | 08-01-2013 |
20130200474 | Low Frequency CMUT with Vent Holes - A capacitive micromachined ultrasonic transducer (CMUT), which has a conductive structure that can vibrate over a cavity, has a number of vent holes that are formed in the bottom surface of the cavity. The vent holes eliminate the deflection of the CMUT membrane due to atmospheric pressure which, in turn, allows the CMUT to receive and transmit low frequency ultrasonic waves. | 08-08-2013 |
20130221455 | Methods for Embedding Controlled-Cavity MEMS Package in Integration Board - An embedded micro-electro-mechanical system (MEMS) ( | 08-29-2013 |
20130221456 | Capacitance Type Micro-Silicon Microphone and Method for Making the Same - A capacitance type micro-silicon microphone includes a base, a backplate and a diaphragm positioned above the backplate in a suspended manner. The base includes a top face, a bottom face and a number of sound bores recessing inwardly from the top face. Bottom sides of the sound bores are in communication with each other so as to form an upper cavity. The base defines at least one lower cavity recessing inwardly from the bottom face. The backplate is positioned above the upper cavity in a suspended manner. The lower cavity is in communication with the upper cavity so as to jointly form a back cavity of the capacitance type micro-silicon microphone. Besides, a method for fabricating the capacitance type micro-silicon microphone is also disclosed. | 08-29-2013 |
20130221457 | ASSEMBLY OF A CAPACITIVE ACOUSTIC TRANSDUCER OF THE MICROELECTROMECHANICAL TYPE AND PACKAGE THEREOF - A microelectromechanical-acoustic-transducer assembly has: a first die integrating a MEMS sensing structure having a membrane, which has a first surface in fluid communication with a front chamber and a second surface, opposite to the first surface, in fluid communication with a back chamber of the microelectromechanical acoustic transducer, is able to undergo deformation as a function of incident acoustic-pressure waves, and faces a rigid electrode so as to form a variable-capacitance capacitor; a second die, integrating an electronic reading circuit operatively coupled to the MEMS sensing structure and supplying an electrical output signal as a function of the capacitive variation; and a package, housing the first die and the second die and having a base substrate with external electrical contacts. The first and second dice are stacked in the package and directly connected together mechanically and electrically; the package delimits at least one of the front and back chambers. | 08-29-2013 |
20130249023 | High Frequency CMUT - A high-frequency capacitive micromachined ultrasonic transducer (CMUT) has a silicon membrane and an overlying metal silicide layer that together form a conductive structure which can vibrate over a cavity. The CMUT also has a metal structure that touches a group of conductive structures. The metal structure has an opening that extends completely through the metal structure to expose the conductive structure. | 09-26-2013 |
20130256815 | CAVITY PACKAGE DESIGN - A semiconductor device. The device including a substrate having electrical traces, at least one of a MEMS die and a semiconductor chip mounted on the substrate, and a spacer. The spacer has a first end connected to the substrate and includes electrical interconnects coupled to the electrical traces. The at least one MEMS die and a semiconductor chip are contained within the spacer. The spacer and substrate form a cavity which contains the at least one MEMS die and a semiconductor chip. The cavity forms an acoustic volume when the semiconductor device is mounted to a circuit board via a second end of the spacer. | 10-03-2013 |
20130256816 | MEMS PROCESS AND DEVICE - A method of fabricating a micro-electrical-mechanical system (MEMS) transducer comprises the steps of forming a membrane on a substrate, and forming a back-volume in the substrate. The step of forming a back-volume in the substrate comprises the steps of forming a first back-volume portion and a second back-volume portion, the first back-volume portion being separated from the second back-volume portion by a step in a sidewall of the back-volume. The cross-sectional area of the second back-volume portion can be made greater than the cross-sectional area of the membrane, thereby enabling the back-volume to be increased without being constrained by the cross-sectional area of the membrane. The back-volume may comprise a third back-volume portion. The third back-volume portion enables the effective diameter of the membrane to be formed more accurately. | 10-03-2013 |
20130256817 | ELEMENT ARRAY, ELECTROMECHANICAL CONVERSION DEVICE, AND PROCESS FOR PRODUCING THE SAME - An element array comprises a plurality of elements having a first electrode and a second electrode with a gap therebetween; the first electrode is separated for each of the elements by grooves, an insulating connection substrate is bonded to the first electrode, and wirings are provided from the respective first electrodes through the connection substrate to the side opposite to the first electrodes. | 10-03-2013 |
20130264663 | MEMS Device and Method of Making a MEMS Device - A MEMS device and a method of making a MEMS device are disclosed. In one embodiment a semiconductor device comprises a substrate, a moveable electrode and a counter electrode, wherein the moveable electrode and the counter electrode are mechanically connected to the substrate. The movable electrode is configured to stiffen an inner region of the movable membrane. | 10-10-2013 |
20130277776 | Packaged MEMS Device and Method of Calibrating a Packaged MEMS Device - A packaged MEMS device and a method of calibrating a packaged MEMS device are disclosed. In one embodiment a packaged MEMS device comprises a carrier, a MEMS device disposed on the substrate, a signal processing device disposed on the carrier, a validation circuit disposed on the carrier; and an encapsulation disposed on the carrier, wherein the encapsulation encapsulates the MEMS device, the signal processing device and the memory element. | 10-24-2013 |
20130285173 | ACOUSTIC TRANSDUCERS WITH PERFORATED MEMBRANES - A MEMS device, such as a microphone, uses a perforated plate. The plate comprises an array of holes across the plate area. The plate has an area formed as a grid of polygonal cells, wherein each cell comprises a line of material following a path around the polygon thereby defining an opening in the centre. In one aspect, the line of material forms a path along each side of the polygon which forms a track which extends at least once inwardly from the polygon perimeter towards the centre of the polygon and back outwardly to the polygon perimeter. This defines a meandering hexagon side wall, which functions as a local spring suspension. | 10-31-2013 |
20130285174 | ULTRASOUND PROBE - Disclosed is an ultrasonic probe comprising: CMUT cells ( | 10-31-2013 |
20130313661 | Method for Processing a Wafer at Unmasked Areas and Previously Masked Areas to Reduce a Wafer Thickness - A method for processing a wafer having microelectromechanical system structures at the first main surface includes applying a masking material at the second main surface and structuring the masking material to obtain a plurality of masked areas and a plurality of unmasked areas at the second main surface. The method further includes anisotropically etching the wafer from the second main surface at the unmasked areas to form a plurality of recesses. The masking material is then removed at least at some of the masked areas to obtain previously masked areas. The method further includes anisotropically etching the wafer from the second main surface at the unmasked areas and the previously masked areas to increase a depth of the recesses and reduce a thickness of the wafer at the previously masked areas. | 11-28-2013 |
20130313662 | MEMS MICROPHONE DEVICE AND METHOD FOR MAKING SAME - The present invention discloses a MEMS microphone device and its manufacturing method. The MEMS microphone device includes: a substrate including a first cavity; a MEMS device region above the substrate, wherein the MEMS device region includes a metal layer, a via layer, an insulating material region and a second cavity; a mask layer above the MEMS device region; a first lid having at least one opening communicating with the second cavity, the first lid being fixed above the mask layer; and a second lid fixed under the substrate. | 11-28-2013 |
20130313663 | CAPACITIVE ELECTROMECHANICAL TRANSDUCER - Provided is a capacitive electromechanical transducer manufactured by fusion bonding, which is capable of enhancing the performance by reducing fluctuations in initial deformation among diaphragms caused at positions having difference boundary conditions such as the bonding area. The capacitive electromechanical transducer includes a device, the device including at least one cellular structure including: a silicon substrate; a diaphragm; and a diaphragm supporting portion configured to support the diaphragm so that a gap is formed between one surface of the silicon substrate and the diaphragm. The device has, in its periphery, a groove formed in a layer shared with the diaphragm supporting portion. | 11-28-2013 |
20130320465 | THIN MEMS MICROPHONE MODULE - A MEMS microphone module includes a first circuit board and a second circuit board attached to the first circuit board. A MEMS chip and an ASIC chip are respectively received in one of two concavities of the first circuit board. A first ground layer of the first circuit board and a second ground layer of the second circuit board are electrically coupled to each other to define a ground shielding structure. By this way, an EMI shielding can be applied by the ground shielding structure to the MEMS chip and the ASIC chip. | 12-05-2013 |
20130334625 | METHOD FOR FABRICATING PATTERNED POLYIMIDE FILM AND APPLICATIONS THEREOF - A method for fabricating a patterned polyimide film, wherein the method comprises steps as follows: Firstly, a polyimide film is provided on a substrate. A wet planarization process is then performed to remove a portion of the polyimide film. Subsequently the planarized polyimide film is patterned. | 12-19-2013 |
20130334626 | HYBRID INTEGRATED COMPONENT AND METHOD FOR THE MANUFACTURE THEREOF - A hybrid integrated component includes: at least one ASIC element having integrated circuit elements and a back-end stack; an MEMS element having a micromechanical structure, which extends over the entire thickness of the MEMS substrate; and a cap wafer. The hybrid integrated component is provided with an additional micromechanical function. The MEMS element is mounted on the ASIC element, so that a gap exists between the micromechanical structure and the back-end stack of the ASIC element. The cap wafer is mounted above the micromechanical structure of the MEMS element. A pressure-sensitive diaphragm structure having at least one deflectable electrode of a capacitor system is implemented in the back-end stack of the ASIC element, which diaphragm structure spans a pressure connection in the rear side of the ASIC element. | 12-19-2013 |
20130334627 | SEMICONDUCTOR INTEGRATED DEVICE ASSEMBLY AND RELATED MANUFACTURING PROCESS - Described herein is a semiconductor integrated device assembly, which envisages: a package defining an internal space; a first die including semiconductor material; and a second die, distinct from the first die, also including semiconductor material; the first die and the second die are coupled to an inner surface of the package facing the internal space. The second die is shaped so as to partially overlap the first die, above the inner surface, with a portion suspended in cantilever fashion above the first die, by an overlapping distance. | 12-19-2013 |
20140001580 | Transducer with Enlarged Back Volume | 01-02-2014 |
20140001581 | MEMS MICROPHONE AND FORMING METHOD THEREFOR | 01-02-2014 |
20140015070 | COMPONENT HAVING A MICROMECHANICAL MICROPHONE PATTERN - A microphone component has a micromechanical microphone pattern which is implemented in a layer construction on a semiconductor substrate and includes (i) an acoustically active diaphragm which at least partially spans a sound opening on the backside of the substrate, (ii) at least one movable electrode of a microphone capacitor system, and (iii) a stationary acoustically penetrable counterelement having through holes, which counterelement is situated in the layer construction over the diaphragm and functions as the carrier for at least one immovable electrode of the microphone capacitor system. The diaphragm is tied in to the semiconductor substrate in a middle area, and the diaphragm has a corrugated sheet metal type of corrugation, at least in regions. | 01-16-2014 |
20140015071 | ENCAPSULATED MICRO-ELECTRO-MECHANICAL DEVICE, IN PARTICULAR A MEMS ACOUSTIC TRANSDUCER - An encapsulated micro-electro-mechanical device, wherein a MEMS chip is encapsulated by a package formed by a first, a second, and a third substrates that are bonded together. The first substrate has a main surface bearing the MEMS chip, the second substrate is bonded to the first substrate and defines a chamber surrounding the MEMS chip, and the third substrate is bonded to the second substrate and upwardly closes the chamber. A grid or mesh structure of electrically conductive material is formed in or on the third substrate and overlies the MEMS chip; the second substrate has a conductive connection structure coating the walls of the chamber, and the first substrate incorporates an electrically conductive region, which forms, together with the conductive layer and the grid or mesh structure, a Faraday cage. | 01-16-2014 |
20140027867 | PACKAGES AND METHODS FOR 3D INTEGRATION - Packages and methods for 3D integration are disclosed. In various embodiments, a first integrated device die having a hole is attached to a package substrate. A second integrated device die can be stacked on top of the first integrated device die. At least a portion of the second integrated device die can extend into the hole of the first integrated device die. By stacking the two dies such that the portion of the second integrated device die extends into the hole, the overall package height can advantageously be reduced. | 01-30-2014 |
20140042565 | Apparatus Comprising and a Method for Manufacturing an Embedded MEMS Device - A system and a method for forming a packaged MEMS device are disclosed. In one embodiment a packaged MEMS device includes a MEMS device having a first main surface with a first area along a first direction and a second direction, a membrane disposed on the first main surface of the MEMS device and a backplate adjacent to the membrane. The packaged MEMS device further includes an encapsulation material that encapsulates the MEMS device and that defines a back volume, the back volume having a second area along the first direction and the second direction, wherein the first area is smaller than the second area. | 02-13-2014 |
20140061825 | MICRO ELECTRO MECHANICAL SYSTEM(MEMS) ACOUSTIC SENSOR AND FABRICATION METHOD THEREOF - Provided are a micro electro mechanical system (MEMS) acoustic sensor for removing a nonlinear component that occurs due to a vertical motion of a lower electrode when external sound pressure is received by fixing the lower electrode to a substrate using a fixing pin, and a fabrication method thereof. The MEMS acoustic sensor removes an undesired vertical motion of a fixed electrode when sound pressure is received by forming a fixing groove on a portion of the substrate and then forming a fixing pin on the fixing groove, and fixing the fixed electrode to the substrate using the fixing pin, and thereby improves a frequency response characteristic and also improves a yield of a process by inhibiting thermal deformation of the fixed electrode that may occur during the process. | 03-06-2014 |
20140061826 | ULTRASONIC TRANSDUCER AND METHOD OF MANUFACTURING THE SAME - An ultrasonic transducer and a method of manufacturing the same are disclosed. The ultrasonic transducer includes a first electrode layer which is disposed to cover a conductive substrate and an inner wall and a top of a via hole penetrating a membrane and has a top surface at a same height as a top surface of the membrane; a second electrode layer which is disposed on a bottom surface of the conductive substrate to be spaced apart from the first electrode layer; and a top electrode which is disposed on the top surface of the membrane and which contacts the top surface of the first electrode layer. | 03-06-2014 |
20140077317 | MICROELECTROMECHANICAL SYSTEM (MEMS) DEVICE AND FABRICATION METHOD THEREOF - A MEMS device includes a silicon substrate and a structural dielectric layer. The silicon substrate has a cavity. The structural dielectric layer is disposed on the silicon substrate. The structural dielectric layer has a space above the cavity of the silicon substrate and holds a plurality of structure elements within the space, including: a conductive backplate, over the silicon substrate, having a plurality of venting holes and a plurality of protrusion structures on top of the conductive backplate; and a diaphragm, located above the conductive backplate by a distance, wherein a chamber is formed between the diaphragm and the conductive backplate, and is connected to the cavity of the silicon substrate through the venting holes. A first side of the diaphragm is exposed by the chamber and faces to the protrusion structures of the conductive backplate and a second side of the diaphragm is exposed to an environment space. | 03-20-2014 |
20140084394 | MICRO ELECTRO MECHANICAL SYSTEM (MEMS) MICROPHONE AND FABRICATION METHOD THEREOF - Provided is a structure for improving performance of a micro electro mechanical system (MEMS) microphone by preventing deformation from occurring due to a residual stress and a package stress of a membrane and by decreasing membrane rigidity. A MEMS microphone according to the present disclosure includes a backplate formed on a substrate, an insulating layer formed on the substrate to surround the backplate; a membrane formed to be separate from above the backplate by a predetermined interval; a membrane supporting portion configured to connect the membrane to the substrate; and a buffering portion formed in a double spring structure between the membrane and the membrane supporting portion. | 03-27-2014 |
20140084395 | MEMS MICROPHONE - Mechanical resonating structures, as well as related devices and methods of manufacture. The mechanical resonating structures can be microphones, each including a diaphragm and a piezoelectric stack. The diaphragm can have one or more openings formed therethrough to enable the determination of an acoustic pressure being applied to the diaphragm through signals emitted by the piezoelectric stack. | 03-27-2014 |
20140091406 | MEMS Microphone System for Harsh Environments - A MEMS microphone system suited for harsh environments. The system uses an integrated circuit package. A first, solid metal lid covers one face of a ceramic package base that includes a cavity, forming an acoustic chamber. The base includes an aperture through the opposing face of the base for receiving audio signals into the chamber. A MEMS microphone is attached within the chamber about the aperture. A filter covers the aperture opening in the opposing face of the base to prevent contaminants from entering the acoustic chamber. A second metal lid encloses the opposing face of the base and may attach the filter to this face of the base. The lids are electrically connected with vias forming a radio frequency interference shield. The ceramic base material is thermally matched to the silicon microphone material to allow operation over an extended temperature range. | 04-03-2014 |
20140091407 | INTEGRATED SEMICONDUCTOR DEVICES WITH AMORPHOUS SILICON BEAM, METHODS OF MANUFACTURE AND DESIGN STRUCTURE - Bulk acoustic wave filters and/or bulk acoustic resonators integrated with CMOS processes, methods of manufacture and design structures are disclosed. The method includes forming at least one beam comprising amorphous silicon material and providing an insulator material over and adjacent to the amorphous silicon beam. The method further includes forming a via through the insulator material and exposing a material underlying the amorphous silicon beam. The method further includes providing a sacrificial material in the via and over the amorphous silicon beam. The method further includes providing a lid on the sacrificial material and over the insulator material. The method further includes venting, through the lid, the sacrificial material and the underlying material to form an upper cavity above the amorphous silicon beam and a lower cavity below the amorphous silicon beam, respectively. | 04-03-2014 |
20140091408 | SENSOR MODULE AND SEMICONDUCTOR CHIP - A sensor module and semiconductor chip. One embodiment provides a carrier. A semiconductor chip includes a first recess and a second recess and a main surface of the semiconductor chip. The semiconductor chip is mounted to the carrier such that the first recess forms a first cavity with the carrier and the second recess forms a second cavity with the carrier. The first cavity is in fluid connection with the second cavity. | 04-03-2014 |
20140103464 | Microphone System with Integrated Passive Device Die - A microphone system has a package forming an interior chamber, and a MEMS microphone secured within the interior chamber. The package forms an aperture for permitting acoustic access to the interior of the chamber and thus, the MEMS microphone. The system also has two dies; namely, the system has a primary circuit die within the interior chamber, and an integrated passive device die electrically connected with the primary circuit die. The primary circuit die is electrically connected with the MEMS microphone and has at least one active circuit element. | 04-17-2014 |
20140103465 | Surface Acoustic Wave (SAW) Device Package and Method for Fabricating Same - A surface acoustic wave (SAW) device package and method for packaging a SAW device provide a surface excited device having a small footprint, low cost and fabricated according to a unique manufacturing process. A substrate including a SAW active area on a first side is bonded to another similar sized substrate with a space sufficient to allow the propagation of the SAW on a top surface of the substrate. The two substrates have similar thermal expansion coefficients such that stress from the sealing process is minimized. The two substrates are sealed using either a low melting point glass or an organic compound such that conductive pathways exist through the seal allowing the internal device to access an external electrical connection. | 04-17-2014 |
20140117473 | PACKAGES AND METHODS FOR PACKAGING - A three-dimensional printing technique can be used to form a microphone package. The microphone package can include a housing having a first side and a second side opposite the first side. A first electrical lead can be formed on an outer surface on the first side of the housing. A second electrical lead can be formed on an outer surface on the second side of the housing. The first electrical lead and the second electrical lead may be electrically shorted to one another. Further, vertical and horizontal conductors can be monolithically integrated within the housing. | 05-01-2014 |
20140124878 | MAPPING DENSITY AND TEMPERATURE OF A CHIP, IN SITU - A method and system to map density and temperature of a chip, in situ, is disclosed. The method includes measuring a propagation time that a mechanical propagation wave travels along at least one predefined path in a substrate. The method further includes calculating an average substrate density and temperature along the at least one predefined path as a function of the propagation time and distance. The method further includes determining a defect or unauthorized modification in the substrate based on the average substrate density being different than a baseline substrate density. | 05-08-2014 |
20140124879 | Component and method for producing same - A packaging concept for MEMS components having at least one diaphragm structure formed in the front side of the component is provided, according to which the MEMS component is mounted on a support which at least laterally delimits a cavity adjoining the diaphragm structure. In addition, at least one electrical feedthrough is formed in the support which allows electrical contacting of the MEMS component through the support. To achieve the largest possible rear volume for the diaphragm structure of the MEMS component for a given chip surface area, and also to simplify the processing of the support, according to the invention the electrical feedthroughs are integrated into the wall of the cavity adjoining the diaphragm structure, in that at least one section of such a feedthrough is implemented in the form of an electrically conductive coating of a side wall section of the cavity. | 05-08-2014 |
20140145275 | ULTRASONIC TRANSDUCER AND METHOD OF MANUFACTURING THE SAME - An ultrasonic transducer and a method of manufacturing the same are disclosed. The ultrasonic transducer includes a conductive substrate, a projection which is disposed on the conductive substrate and which forms a cavity therein, a via hole which penetrates the projection and conductive substrate, a first electrode which includes a metal and which fills the via hole, a second electrode which is provided on a bottom of the conductive substrate, a membrane which is provided on the projection and which covers the cavity, and an upper electrode which is provided on the membrane and which contacts the first electrode. | 05-29-2014 |
20140145276 | MEMS MICROPHONE AND METHOD FOR MANUFACTURE - An improved method for manufacturing an MEMS microphone with a double fixed electrode is specified which results in a microphone which likewise has improved properties. | 05-29-2014 |
20140183671 | SEMICONDUCTOR DEVICE AND MICROPHONE - A package is formed by vertically stacking a cover and a substrate. A microphone chip is mounted at the top surface of a concave portion provided to the cover, and a circuit element is mounted on the upper surface of the substrate. The microphone chip is connected to a pad on the lower surface of the cover by a bonding wire. The circuit element is connected to a pad on the upper surface of the substrate by a bonding wire. A cover-side joining portion in conduction with the pad on the lower surface of the cover, and a substrate-side joining portion in conduction with the pad on the upper surface of the substrate, are joined by a conductive material. A conductive layer for electromagnetic shielding is embedded inside the cover near the bonding pad and the cover-side joining portion. | 07-03-2014 |
20140191343 | SOUND TRANSDUCER AND MICROPHONE USING SAME - Provided is an acoustic transducer including: a semiconductor substrate; a vibrating membrane, provided above the semiconductor substrate, including a vibrating electrode; and a fixed membrane, provided above the semiconductor substrate, including a fixed electrode, the acoustic transducer detecting a sound wave according to changes in capacitances between the vibrating electrode and the fixed electrode, converting the sound wave into electrical signals, and outputting the electrical signals. At least one of the vibrating electrode and the fixed electrode is divided into a plurality of divided electrodes, and the plurality of divided electrodes outputting the electrical signals. | 07-10-2014 |
20140191344 | MEMS PROCESS AND DEVICE - A method of fabricating a micro-electrical-mechanical system (MEMS) transducer comprises the steps of forming a membrane on a substrate, and forming a back-volume in the substrate. The step of forming a back-volume in the substrate comprises the steps of forming a first back-volume portion and a second back-volume portion, the first back-volume portion being separated from the second back-volume portion by a step in a sidewall of the back-volume. The cross-sectional area of the second back-volume portion can be made greater than the cross-sectional area of the membrane, thereby enabling the back-volume to be increased without being constrained by the cross-sectional area of the membrane . The back-volume may comprise a third back-volume portion. The third back-volume portion enables the effective diameter of the membrane to be formed more accurately. | 07-10-2014 |
20140197501 | MEMS Device with Polymer Layer, System of a MEMS Device with a Polymer Layer, Method of Making a MEMS Device with a Polymer Layer - A MEMS device, a method of making a MEMS device and a system of a MEMS device are shown. In one embodiment, a MEMS device includes a first polymer layer, a MEMS substrate disposed on the first polymer layer and a MEMS structure supported by the MEMS substrate. The MEMS device further includes a first opening disposed in the MEMS substrate and a second opening disposed in the first polymer layer. | 07-17-2014 |
20140197502 | Comb MEMS Device and Method of Making a Comb MEMS Device - A MEMS device and a method to manufacture a MEMS device are disclosed. An embodiment includes forming trenches in a first main surface of a substrate, forming conductive fingers by forming a conductive material in the trenches and forming an opening from a second main surface of the substrate thereby exposing the conductive fingers, the second main surface opposite the first main surface. | 07-17-2014 |
20140197503 | SENSOR PACKAGE - A sensor package is disclosed. One embodiment provides a sensor device having a carrier, a semiconductor sensor mounted on the carrier and an active surface. Contact elements are electrically connecting the carrier with the semiconductor sensor. A protective layer made of an inorganic material covers at least the active surface and the contact elements. | 07-17-2014 |
20140203380 | CHIP PACKAGE COMPRISING A MICROPHONE STRUCTURE AND A METHOD OF MANUFACTURING THE SAME - In various embodiments, a method for manufacturing a chip package is provided. The method includes arranging a chip over a substrate, the chip including a microphone structure and an opening to the microphone structure; and encapsulating the chip with encapsulation material such that the opening is kept at least partially free from the encapsulation material. | 07-24-2014 |
20140210020 | MEMS Device and Method of Manufacturing a MEMS Device - MEMS devices with a rigid backplate and a method of making a MEMS device with a rigid backplate are disclosed. In one embodiment, a device includes a substrate and a backplate supported by the substrate. The backplate includes elongated protrusions. | 07-31-2014 |
20140217522 | MICROPHONE STRUCTURE - A microphone structure is disclosed. The microphone structure comprises a substrate penetrated with at least one opening chamber and having an insulation surface. A conduction layer is arranged on the insulation surface and arranged over the opening chamber. An insulation layer is arranged on the conduction layer and having a opening to expose a part of the conduction layer as a vibration block arranged over the opening chamber. At least two first patterned electrodes are arranged on the insulation layer and arranged over the vibration block. At least two second patterned electrodes are arranged over the opening chamber, arranged on the vibration block and separated from the first patterned electrodes by at least two first gaps. When the vibration block vibrates, the vibration block moves the second patterned electrodes whereby the second patterned electrodes and the first patterned electrodes perform differential sensing. | 08-07-2014 |
20140246738 | Top Port MEMS Cavity Package and Method of Manufacture Thereof - A method for the manufacture of a package encasing a Micro-Electro-Mechanical Systems (MEMS) device provides a cover having a lid and sidewalls with a port extending through the lid. A first base component is bonded to the sidewalls defining an internal cavity. This first base component further includes an aperture extending therethrough. The MEMS device is inserted through the aperture and bonded said to the lid with the MEMS device at least partially overlapping the port. Assembly is completed by bonding a second base component to the first base component to seal the aperture. The package so formed has a cover with a lid, sidewalls and a port extending through the lid. A MEMS device is bonded to the lid and electrically interconnected to electrically conductive features disposed on the first base component. A second base component is bonded to the first base component spanning the aperture. | 09-04-2014 |
20140246739 | Top Port MEMS Cavity Package and Method of Manufacture Thereof - A method for the manufacture of a package encasing a Micro-Electro-Mechanical Systems (MEMS) device provides a cover having a lid and sidewalls with a port extending through the lid. A first base component is bonded to the sidewalls defining an internal cavity. This first base component further includes an aperture extending therethrough. The MEMS device is inserted through the aperture and bonded to the lid with the MEMS device at least partially overlapping the port. Assembly is completed by bonding a second base component to the first base component to seal the aperture. The package so formed has a cover with a lid, sidewalls and a port extending through the lid. A MEMS device is bonded to the lid and electrically interconnected to electrically conductive features disposed on the first base component. A second base component is bonded to the first base component spanning the aperture. | 09-04-2014 |
20140252512 | Methods And Apparatus For MEMS Structure Release - Methods and apparatus for MEMS release are disclosed. A method is described including providing a substrate including at least one MEMS device supported by a sacrificial layer; performing an etch in solution to remove the sacrificial layer from at least one MEMS device; immersing the substrate including the at least one MEMS device in an organic solvent; and while the substrate is immersed in the organic solvent, removing water from the organic solvent until the water remaining in the organic solvent is less than a predetermined threshold. An apparatus is disclosed for performing the methods. Additional alternative methods are disclosed. | 09-11-2014 |
20140264650 | Low Frequency Response Microphone Diaphragm Structures And Methods For Producing The Same - A microphone system includes a diaphragm suspended by springs and including a sealing layer that seals passageways which, if left open, would degrade the microphone's frequency response by allowing air to pass from one side of the diaphragm to the other when the diaphragm is responding to an incident acoustic signal. In some embodiments, the sealing layer may include an equalization aperture to allow pressure to equalize on both sides of the diaphragm. | 09-18-2014 |
20140264651 | Semiconductor Devices and Methods of Forming Thereof - In accordance with an embodiment of the present invention, a method of forming a semiconductor device includes forming a sacrificial layer over a first surface of a workpiece having the first surface and an opposite second surface. A membrane is formed over the sacrificial layer. A through hole is etched through the workpiece from the second surface to expose a surface of the sacrificial layer. At least a portion of the sacrificial layer is removed from the second surface to form a cavity under the membrane. The cavity is aligned with the membrane. | 09-18-2014 |
20140264652 | ACOUSTIC SENSOR WITH INTEGRATED PROGRAMMABLE ELECTRONIC INTERFACE - An integrated MEMS acoustic sensor has a MEMS transducer and a programmable electronic interface. The programmable electronic interface includes non-volatile memory and is coupled to the MEMS transducer. Using programmable electrical functions, the programmable electronic interface is operable to sense variations in the MEMS transducer caused by application of an acoustic pressure to the MEMS transducer. | 09-18-2014 |
20140264653 | MEMS Pressure Sensor and Microphone Devices Having Through-Vias and Methods of Forming Same - A method embodiment includes providing a MEMS wafer. A portion of the MEMS wafer is patterned to provide a first membrane for a microphone device and a second membrane for a pressure sensor device. A carrier wafer is bonded to the MEMS wafer. The carrier wafer is etched to expose the first membrane and a first surface of the second membrane to an ambient environment. A MEMS structure is formed in the MEMS wafer. A cap wafer is bonded to a side of the MEMS wafer opposing the carrier wafer to form a first sealed cavity including the MEMS structure and a second sealed cavity including a second surface of the second membrane for the pressure sensor device. The cap wafer comprises an interconnect structure. A through-via electrically connected to the interconnect structure is formed in the cap wafer. | 09-18-2014 |
20140264654 | MICROPHONE PACKAGE WITH INTEGRATED SUBSTRATE - MEMS microphone packages are described that include an ASIC integrated in the base substrate of the package housing. Methods of manufacturing the same and methods for separating individual microphone packages from wafer form assembly arrays are also described. | 09-18-2014 |
20140264655 | SURFACE ROUGHENING TO REDUCE ADHESION IN AN INTEGRATED MEMS DEVICE - In an integrated MEMS device, moving silicon parts with smooth surfaces can stick together if they come into contact. By roughening at least one smooth surface, the effective area of contact, and therefore surface adhesion energy, is reduced and hence the sticking force is reduced. The roughening of a surface can be provided by etching the smooth surfaces in gas, plasma, or liquid with locally non-uniform etch rate. Various etch chemistries and conditions lead to various surface roughness. | 09-18-2014 |
20140264656 | MEMS ACOUSTIC SENSOR WITH INTEGRATED BACK CAVITY - A MEMS device is disclosed. The MEMS device comprises a first plate with a first surface and a second surface; and an anchor attached to a first substrate. The MEMS device further includes a second plate with a third surface and a fourth surface attached to the first plate. A linkage connects the anchor to the first plate, wherein the first plate and second plate are displaced in the presence of an acoustic pressure differential between the first and second surfaces of the first plate. The first plate, second plate, linkage, and anchor are all contained in an enclosure formed by the first substrate and a second substrate, wherein one of the first and second substrates contains a through opening to expose the first surface of the first plate to the environment. | 09-18-2014 |
20140264657 | MONOLITHICALLY INTEGRATED MULTI-SENSOR DEVICE ON A SEMICONDUCTOR SUBSTRATE AND METHOD THEREFOR - An integrated circuit having an indirect sensor and a direct sensor formed on a common semiconductor substrate is disclosed. The direct sensor requires the parameter being measured to be directly applied to the direct sensor. Conversely, the indirect sensor can have the parameter being measured to be indirectly applied to the indirect sensor. The parameter being measured by the direct sensor is different than the parameter being measured by the indirect sensor. In other words, the direct sensor and indirect sensor are of different types. An example of a direct sensor is a pressure sensor. The pressure being measured by the pressure sensor must be applied to the pressure sensor. An example of an indirect sensor is an accelerometer. The rate of change of velocity does not have to be applied directly to the accelerometer. In one embodiment, the direct and indirect sensors are formed using photolithographic techniques. | 09-18-2014 |
20140264658 | CELL PHONE HAVING A MONOLITHICALLY INTEGRATED MULTI-SENSOR DEVICE ON A SEMICONDUCTOR SUBSTRATE AND METHOD THEREFOR - A cell phone is provided having multiple sensors configured to detect and measure different parameters of interest. The cell phone includes at least one monolithic integrated multi-sensor (MIMS) device. The MIMS device comprises at least two sensors of different types formed on a common semiconductor substrate. For example, the MIMS device can comprise an indirect sensor and a direct sensor. The cell phone couples a first parameter to be measured directly to the direct sensor. Conversely, the cell phone can couple a second parameter to be measured to the indirect sensor indirectly. Other sensors can be added to the cell phone by stacking a sensor to the MIMS device or to another substrate coupled to the MIMS device. This supports integrating multiple sensors such as a microphone, an accelerometer, and a temperature sensor to reduce cost, complexity, simplify assembly, while increasing performance. | 09-18-2014 |
20140264659 | TRANSPORTATION DEVICE HAVING A MONOLITHICALLY INTEGRATED MULTI-SENSOR DEVICE ON A SEMICONDUCTOR SUBSTRATE AND METHOD THEREFOR - A transportation device is provided having multiple sensors configured to detect and measure different parameters of interest. The transportation device includes at least one monolithic integrated multi-sensor (MIMS) device. The MIMS device comprises at least two sensors of different types formed on a common semiconductor substrate. For example, the MIMS device can comprise an indirect sensor and a direct sensor. The transportation device couples a first parameter to be measured directly to the direct sensor. Conversely, the transportation device can couple a second parameter to be measured to the indirect sensor indirectly. Other sensors can be added to the transportation device by stacking a sensor to the MIMS device or to another substrate coupled to the MIMS device. This supports integrating multiple sensors such as a microphone, an accelerometer, and a temperature sensor to reduce cost, complexity, simplify assembly, while increasing performance. | 09-18-2014 |
20140264660 | COMPLEMENTARY METAL OXIDE SEMICONDUCTOR (CMOS) ULTRASONIC TRANSDUCERS AND METHODS FOR FORMING THE SAME - Complementary metal oxide semiconductor (CMOS) ultrasonic transducers (CUTs) and methods for forming CUTs are described. The CUTs may include monolithically integrated ultrasonic transducers and integrated circuits for operating in connection with the transducers. The CUTs may be used in ultrasound devices such as ultrasound imaging devices and/or high intensity focused ultrasound (HIFU) devices. | 09-18-2014 |
20140291782 | METHODS AND DEVICES FOR PACKAGING INTEGRATED CIRCUITS - Methods and devices for packaging integrated circuits. A packaged device may include an integrated circuit, a first packaging component including a patterned surface, and a second packaging component. The patterned surface of the first packaging component may be adhesively coupled to a surface of the second packaging component or a surface of the integrated circuit. The integrated circuit may be at least partially enclosed between the first and second packaging components. A packaging method may include patterning a surface of a packaging component of an integrated circuit package. The surface of the packaging component may be for adhesively coupling to a second component to at least partially enclose an integrated circuit in the integrated circuit package. | 10-02-2014 |
20140291783 | COVER FOR A MEMS MICROPHONE - A microphone assembly includes a base, a cover, and a microelectromechanical system (MEMS) die. The cover extends at least partially over and is coupled to the base. The cover and the base form a cavity. The MEMS die is coupled to the base and disposed within the cavity. At least a portion of the cover is constructed of a copper-nickel-zinc alloy that is effective in preventing solder from moving from a first portion of the cover to a second portion of the cover. | 10-02-2014 |
20140291784 | MEMS APPARATUS WITH INCREASED BACK VOLUME - A microelectromechanical system (MEMS) microphone assembly includes a base and a cover. The cover is coupled to the base and together with the base defines a cavity. The base forms a recess and the recess has dimensions and a shape so as to hold a MEMS die. The MEMS die includes a diaphragm and back plate. | 10-02-2014 |
20140291785 | MICROPHONE - A microphone has a base substrate having a main surface, an acoustic sensor mounted on the main surface, and a circuit element that processes a signal output from the acoustic sensor. The acoustic sensor has a sensor substrate having a first surface opposed to the base substrate, a second surface on a side opposite to the first surface, and a cavity formed while piercing the sensor substrate from the first surface to the second surface, and a movable electrode that covers the cavity from the second surface side. A through-hole is formed in the base substrate while piercing the base substrate in a thickness direction to communicate with the cavity. The through-hole overlaps the sensor substrate when viewed in the thickness direction of the base substrate. | 10-02-2014 |
20140291786 | component having a micromechanical microphone structure - Substrate-side overload protection for the diaphragm structure of a microphone component having a micromechanical microphone structure which impairs the damping properties of the microphone structure as little as possible, in which the microphone structure includes a diaphragm structure having at least one acoustically active diaphragm which is formed in a diaphragm layer above a semiconductor substrate. The diaphragm structure spans at least one sound opening in the rear side of the substrate. A stationary, acoustically permeable counter element is formed in the layer structure of the component above the diaphragm layer. According to the invention, at least projections are formed at the outer edge area of the diaphragm structure which protrude beyond the edge area of the sound opening, so that the edge area of the sound opening acts as a substrate-side stop for the diaphragm structure. | 10-02-2014 |
20140291787 | STRUCTURE OF MEMS ELECTROACOUSTIC TRANSDUCER - A structure of micro-electro-mechanical systems (MEMS) electroacoustic transducer is disclosed. The MEMS electroacoustic transducer includes a substrate having a MEMS device region, a diaphragm having openings and disposed in the MEMS device region, a silicon material layer disposed on the diaphragm and sealing the diaphragm, and a conductive pattern disposed beneath the diaphragm in the MEMS device region. Preferably, a first cavity is also formed between the diaphragm and the substrate. | 10-02-2014 |
20140299948 | SILICON BASED MEMS MICROPHONE, A SYSTEM AND A PACKAGE WITH THE SAME - The present invention relates to a silicon based MEMS microphone, comprising a silicon substrate and an acoustic sensing part supported on the silicon substrate, wherein a mesh-structured back hole is formed in the substrate and aligned with the acoustic sensing part, the mesh-structured back hole includes a plurality of mesh beams which are interconnected with each other and supported on the side wall of the mesh-structure back hole, the plurality of mesh beams and the side wall define a plurality of mesh holes which all have a tapered profile and merge into one hole in the vicinity of the acoustic sensing part at the top side of the silicon substrate. The mesh-structured back hole can help to streamline the air pressure pulse caused, for example, in a drop test and thus reduce the impact on the acoustic sensing part of the microphone, and also serve as a protection filter to prevent alien substances such as particles entering the microphone. | 10-09-2014 |
20140299949 | ASSEMBLY OF A CAPACITIVE ACOUSTIC TRANSDUCER OF THE MICROELECTROMECHANICAL TYPE AND PACKAGE THEREOF - A microelectromechanical-acoustic-transducer assembly has: a first die integrating a MEMS sensing structure having a membrane, which has a first surface in fluid communication with a front chamber and a second surface, opposite to the first surface, in fluid communication with a back chamber of the microelectromechanical acoustic transducer, is able to undergo deformation as a function of incident acoustic-pressure waves, and faces a rigid electrode so as to form a variable-capacitance capacitor; a second die, integrating an electronic reading circuit operatively coupled to the MEMS sensing structure and supplying an electrical output signal as a function of the capacitive variation; and a package, housing the first die and the second die and having a base substrate with external electrical contacts. The first and second dice are stacked in the package and directly connected together mechanically and electrically; the package delimits at least one of the front and back chambers. | 10-09-2014 |
20140306299 | MICROPHONE - A microphone has a base substrate comprising a main surface, an acoustic sensor mounted on the main surface, and a circuit element stacked on the acoustic sensor. A hollow space is formed between the acoustic sensor and the circuit element. The acoustic sensor has a sensor substrate having a first surface opposed to the base substrate, a second surface on a side opposite to the first surface, and a cavity formed while recessed with respect to the second surface, and a movable electrode that covers the cavity from the second surface side. A through-hole is formed in the base substrate while piercing the base substrate in a thickness direction. A communication hole is formed in the sensor substrate while piercing the sensor substrate from the first surface to the second surface. The communication hole causes the through-hole and the hollow space to communicate with each other. | 10-16-2014 |
20140312439 | Microphone Module and Method of Manufacturing Thereof - A microphone module includes a package including a semiconductor chip and having a recess on an upper surface and a micro-electro-mechanical microphone being electrically connected to the package. Further, the micro-electro-mechanical microphone is arranged on the upper surface of the package. The recess forms an acoustic back volume of the micro-electro-mechanical microphone. | 10-23-2014 |
20140319629 | COMPONENT HAVING A MICROMECHANICAL MICROPHONE PATTERN - Measures are provided for increasing the resistance to compression of a component having a micromechanical microphone pattern. In particular, the robustness of the microphone pattern to highly dynamic pressure fluctuations is to be increased, without the microphone sensitivity, i.e. the microphone performance, being impaired. The microphone pattern of such a component is implemented in a layer construction on a semiconductor substrate and includes at least one acoustically active diaphragm, which spans a sound hole on the substrate backside, and a stationary acoustically penetrable counterelement having through hole openings, which is situated above/below the diaphragm in the layer construction. At least one outflow channel is developed which makes possible a rapid pressure equalization between the two sides of the diaphragm. In addition, at least one controllable closing element is provided, with which the at least one outflow channel is optionally able to be opened or closed. | 10-30-2014 |
20140319630 | WAFER LEVEL ASSEMBLY OF A MEMS SENSOR DEVICE AND RELATED MEMS SENSOR DEVICE - An assembly of a MEMS sensor device envisages: a first die, integrating a micromechanical detection structure and having an external main face; a second die, integrating an electronic circuit operatively coupled to the micromechanical detection structure, electrically and mechanically coupled to the first die and having a respective external main face. Both of the external main faces of the first die and of the second die are set in direct contact with an environment external to the assembly, without interposition of a package. | 10-30-2014 |
20140332910 | MICROELECTROMECHANICAL DEVICE AND A METHOD OF MANUFACTURING - A microelectromechanical device that comprises a wafer plate, a group of one or more wafer connector elements, and an electrical distribution layer between them. For reduced device thickness, the wafer plate comprises at least two dies and bonding material that bonds the at least two dies alongside each other to the longitudinal extent of the wafer plate, wherein at least one of the dies is a microelectromechanical die. The electrical distribution layer covers the wafer plate and includes a layer of dielectric material and a layer of conductive material, wherein the layer of conductive material is patterned within the layer of dielectric material for electrical interconnection of the dies and the wafer connector elements. With the new configuration, significantly reduced MEMS device thicknesses are achieved | 11-13-2014 |
20140332911 | CAPACITIVE MICRO-MACHINED TRANSDUCER AND METHOD OF MANUFACTURING THE SAME - The present invention relates to a method of manufacturing a capacitive micro- machined transducer ( | 11-13-2014 |
20140332912 | CHIP PACKAGE AND A METHOD OF MANUFACTURING THE SAME - In various embodiments, a method for manufacturing a chip package is provided. The method includes arranging a chip over a substrate, the chip including a microphone structure and an opening to the microphone structure; and encapsulating the chip with encapsulation material such that the opening is kept at least partially free from the encapsulation material. | 11-13-2014 |
20140339657 | PIEZOELECTRIC MEMS MICROPHONE - A piezoelectric MEMS microphone comprising a multi-layer sensor that includes at least one piezoelectric layer between two electrode layers, with the sensor being dimensioned such that it provides a near maximized ratio of output energy to sensor area, as determined by an optimization parameter that accounts for input pressure, bandwidth, and characteristics of the piezoelectric and electrode materials. The sensor can be formed from single or stacked cantilevered beams separated from each other by a small gap, or can be a stress-relieved diaphragm that is formed by deposition onto a silicon substrate, with the diaphragm then being stress relieved by substantial detachment of the diaphragm from the substrate, and then followed by reattachment of the now stress relieved diaphragm. | 11-20-2014 |
20140346620 | MEMS MICROPHONE WITH REDUCED PARASITIC CAPACITANCE - A MEMS microphone has reduced parasitic capacitance. The microphone includes a trench electrically separating an acoustically active section of the backplate from an acoustically inactive section of the backplate. | 11-27-2014 |
20140346621 | MEMS BACKPLATE, MEMS MICROPHONE COMPRISING A MEMS BACKPLATE AND METHOD FOR MANUFACTURING A MEMS MICROPHONE - A MEMS backplate enables MEMS microphones with reduced parasitic capacitance. A MEMS backplate includes a central area and a perforation in the central area. A suspension area surrounds the central area at least partially. An aperture is disposed in the suspension area. | 11-27-2014 |
20140346622 | Forming Semiconductor Structure with Device Layers and TRL - A semiconductor wafer is formed with a first device layer having active devices. A handle wafer having a trap rich layer is bonded to a top surface of the semiconductor wafer. A second device layer having a MEMS device or acoustic filter device is formed on a bottom surface of the semiconductor wafer. The second device layer is formed either by monolithic fabrication processes or layer-transfer processes. | 11-27-2014 |
20140353779 | MEMS MICROPHONE AND ELECTRONIC EQUIPMENT HAVING THE MEMS MICROPHONE - The present invention provides a MEMS microphone and an electronic equipment having the MEMS microphone. The electronic equipment of the present invention at least comprises: a MEMS microphone and a printed circuit board, wherein, the microphone comprises: a microphone chip containing acoustic and electric sensor, a package shell packaging the microphone chip, wherein, it is provided a sound hole on the package shell, the sound hole is positioned on the side of the microphone chip, it is also provided pins derived from the microphone chip on the side face of the package shell adjacent to the sound hole; the printed circuit board electrically connect with the pins of the MEMS microphone, which is used to output the electric signal generated by the microphone. The present invention avoids the sound air flow directly to the microphone chip, reduces dust interference on acoustic and electric sensor in microphone chip by means of changing the position of the sound hole of the microphone. | 12-04-2014 |
20140353780 | DETECTION STRUCTURE FOR A MEMS ACOUSTIC TRANSDUCER WITH IMPROVED ROBUSTNESS TO DEFORMATION - A micromechanical structure for a MEMS capacitive acoustic transducer, has: a substrate of semiconductor material; a rigid electrode, at least in part of conductive material, coupled to the substrate; a membrane, at least in part of conductive material, facing the rigid electrode and coupled to the substrate, which undergoes deformation in the presence of incident acoustic pressure waves and is arranged between the substrate and the rigid electrode and has a first surface and a second surface, in fluid communication, respectively, with a first chamber and a second chamber, the first chamber being delimited at least in part by a first wall portion and by a second wall portion formed by the substrate, and the second chamber being delimited at least in part by the rigid electrode; and a stopper element, connected between the first and second wall portions for limiting the deformations of the membrane. At least one electrode-anchorage element couples the rigid electrode to the stopper element. | 12-04-2014 |
20140361388 | CAPACITIVE SENSING STRUCTURE WITH EMBEDDED ACOUSTIC CHANNELS - A MEMS device includes a dual membrane, an electrode, and an interconnecting structure. The dual membrane has a top membrane and a bottom membrane. The bottom membrane is positioned between the top membrane and the electrode and the interconnecting structure defines a spacing between the top membrane and the bottom membrane. | 12-11-2014 |
20140367808 | SEMICONDUCTOR DEVICE AND MICROPHONE - A bump-joining pad ( | 12-18-2014 |
20140367809 | Viristor In Base For MEMS Microphones - A micro electro mechanical system (MEMS) apparatus includes a substrate. The substrate includes a first surface and a second surface. The first surface and the second surface are on opposing sides of the substrate. A programming contact pad is disposed on the second surface of the substrate. A MEMS device is disposed on the first surface of the substrate. An integrated circuit is disposed on the first surface of the substrate and electrically connected to the MEMS device and the contact pad. An anti-fuse region is coupled to the pad and to ground. When the anti-fuse region is not fused, a first electrical path exists from the programming contact pad to the integrated circuit. When the anti-fuse region is fused, a second electrical path is created from the programming contact pad to ground and the first electrical path is no longer available for programming purposes. | 12-18-2014 |
20140367810 | Open Cavity Substrate in a MEMS Microphone Assembly and Method of Manufacturing the Same - An acoustic apparatus includes a substrate. A microelectromechanical system (MEMS) device is disposed on the substrate. The MEMS device forms a back volume between the MEMS device and the substrate. An integrated circuit disposed on the substrate. A cover is disposed on the substrate and the cover includes a port. The cover forms a cavity in which the MEMS device and the integrated circuit are disposed. The cover, substrate, MEMS device, and integrated circuit form a front volume. A filler material is disposed in the cavity to reduce an amount of the front volume that would exist in the absence of the filler material. | 12-18-2014 |
20140367811 | CAPACITANCE TYPE SENSOR AND METHOD OF MANUFACTURING THE SAME - A capacitance type sensor has a semiconductor substrate having a vertically opened penetration hole, a movable electrode film arranged above the penetration hole such that a periphery portion opposes to a top surface of the semiconductor substrate with a gap provided, and a fixed electrode film arranged above the movable electrode film with a gap with respect to the movable electrode film. A concave portion having at least a part thereof formed by an inclined surface is provided in the top surface of the semiconductor substrate in a region of the top surface of the semiconductor substrate which overlaps the periphery portion of the movable electrode film. | 12-18-2014 |
20150008542 | Micromechanical component and manufacturing method for a micromechanical component - A micromechanical component includes a substrate having a cavern structured into the same, an at least partially conductive diaphragm, which at least partially spans the cavern, and a counter electrode, which is situated on an outer side of the diaphragm oriented away from the substrate so that a clearance is present between the counter electrode and the at least partially conductive diaphragm, the at least partially conductive diaphragm being spanned onto or over at least one electrically insulating material which at least partially covers the functional top side of the substrate, and at least one pressure access being formed on the cavern so that the at least partially conductive diaphragm is bendable into the clearance when a gaseous medium flows from an outer surroundings of the micromechanical component into the cavern. Also described is a manufacturing method for a micromechanical component. | 01-08-2015 |
20150014795 | SURFACE PASSIVATION OF SUBSTRATE BY MECHANICALLY DAMAGING SURFACE LAYER - An apparatus comprises a substrate having a trap rich surface layer produced by mechanically grinding a surface of the substrate, an electrical contact disposed on the trap rich surface layer of the substrate, and an electronic device electrically connected to the electrical contact. | 01-15-2015 |
20150014796 | Device with MEMS Structure and Ventilation Path in Support Structure - A device includes a support structure, a sound port disposed in the support structure, and a MEMS structure including a membrane acoustically coupled to the sound port. The membrane separates a first space contacting a first side of the membrane from a second space contacting an opposite second side of the membrane. The device further includes an adjustable ventilation path disposed in the support structure and extending from the sound port to the second space. | 01-15-2015 |
20150014797 | MEMS DEVICE HAVING A MICROPHONE STRUCTURE, AND METHOD FOR THE PRODUCTION THEREOF - A microphone structure of an MEMS device has a layer construction including: a base substrate; a deflectable microphone diaphragm at least partly spanning a through-opening in the substrate; a deflectable electrode of a microphone condenser system; a stationary counter-element having ventilation openings situated in the layer construction over the microphone diaphragm and acting as a bearer for a stationary electrode of the microphone condenser system. The diaphragm is bonded into the layer construction on the substrate via a flexible beam. The otherwise free edge region of the diaphragm is curved in a pan shape, so that it extends both vertically and also in some regions laterally beyond the edge region of the through-opening, and the edge region of the through-opening forms a lower stop for the diaphragm movement. | 01-15-2015 |
20150014798 | ASSEMBLY FOR A MEMS ENVIRONMENTAL SENSOR DEVICE HAVING IMPROVED RESISTANCE, AND CORRESPONDING MANUFACTURING PROCESS - Described herein is an assembly for a MEMS sensor device, which envisages: a first body made of semiconductor material, integrating a micromechanical detection structure at a first main face thereof; a cap element, set stacked on the first main face of the first body, above the micromechanical detection structure; and an adhesion structure set between the first body and the cap element, defining a gap in a position corresponding to the micromechanical detection structure. At least one first opening is defined through the adhesion structure in fluidic communication with the gap. | 01-15-2015 |
20150021721 | INTEGRATED CIRCUIT PACKAGE AND METHOD - A method of forming a packaged electronic device includes fabricating a MEMS structure, such as a BAW structure, on a first semiconductor wafer substrate; forming a cavity in a second semiconductor wafer substrate; and mounting the second substrate on the first substrate such that the MEMS structure is positioned inside the cavity in the second substrate. A wafer level assembly and an integrated circuit package are also described. | 01-22-2015 |
20150021722 | MEMS Device - A MEMS device includes a membrane comprising a first plurality of fingers. A counter electrode arrangement includes a second plurality of fingers disposed in a interdigitated relationship with the first plurality of fingers of the membrane. A deflector is configured to deflect the membrane such that the first and second plurality of fingers are displaced in a position excluding maximum overlapping of surfaces of the fingers. | 01-22-2015 |
20150028435 | Method of Packaging Integrated Circuits and a Molded Package - A method of packaging integrated circuits includes providing a molded substrate that has a plurality of first semiconductor dies and a plurality of second semiconductor dies laterally spaced apart from one another and covered by a molding compound. The molding compound is thinned to expose at least some of the second semiconductor dies. The exposed second semiconductor dies are removed to form cavities in the molded substrate. A plurality of third semiconductor dies are inserted in the cavities formed in the molded substrate, and electrical connections are formed to the first semiconductor dies and to the third semiconductor dies. | 01-29-2015 |
20150028436 | Apparatus Comprising and a Method for Manufacturing an Embedded MEMS Device - A system and a method for forming a packaged MEMS device are disclosed. In one embodiment a packaged MEMS device includes a MEMS device having a first main surface with a first area along a first direction and a second direction, a membrane disposed on the first main surface of the MEMS device and a backplate adjacent to the membrane. The packaged MEMS device further includes an encapsulation material that encapsulates the MEMS device and that defines a back volume, the back volume having a second area along the first direction and the second direction, wherein the first area is smaller than the second area. | 01-29-2015 |
20150035094 | MICROPHONE ASSEMBLY HAVING AT LEAST TWO MEMS MICROPHONE COMPONENTS - A microphone assembly includes two MEMS components each having a micromechanical microphone structure, each microphone structure having: a diaphragm configured to be deflected by sound pressure and provided with at least one diaphragm electrode of a capacitor system; and a stationary acoustically permeable counter-element that acts as bearer for at least one counter-electrode of the capacitor system. The microphone assembly is configured such that under the action of sound the spacing between the diaphragm and the counter-element of the two microphone structures changes in opposite directions. | 02-05-2015 |
20150041929 | Packaged Microphone with Multiple Mounting Orientations - A packaged microphone has a base and a lid that at least in part form a package having a plurality of exterior sides and an interior chamber. The packaged microphone also has a flexible substrate having a first portion within the interior chamber, and a second portion, extending from the interior chamber, having at least two sets of pads. A MEMS microphone die is mounted to the first portion of the flexible substrate, and each set of pads is in electrical communication with the microphone die. One set of pads is on a first exterior side of the package, and a second set of pads is on a second exterior side of the package. | 02-12-2015 |
20150041930 | ACOUSTIC TRANSDUCER - There is provided an acoustic transducer including: a substrate formed to have a hollow part through which acoustic waves are input; a diaphragm formed on the substrate and covering the hollow part; and a back plate disposed so as to cover at least a portion of the diaphragm, wherein a ring-shaped groove extended along an edge of the diaphragm is formed in the substrate. | 02-12-2015 |
20150041931 | Embedded Micro Valve In Microphone - A microelectromechanical system (MEMS) apparatus includes a base. A MEMS device is disposed on the base. A cover encloses the MEMS device on the base. A port extends through the base, and the MEMS device is disposed over the port. A diaphragm is embedded within the base and has at least some portions that extend across the port. In an open position, the diaphragm allows the passage of sound energy from the exterior of the apparatus to the interior of the apparatus. In a closed position, the diaphragm makes contact with an outer surface of the port to at least partially block the passage of sound energy from the exterior of the apparatus to the interior of the apparatus. | 02-12-2015 |
20150054097 | Method for Manufacturing a MEMS Device and MEMS Device - A method for manufacturing a MEMS device includes providing a cavity within a layer adjacent to a sacrificial layer. The cavity extends to the sacrificial layer and includes a capillary slot protruding into the layer. The sacrificial layer is removed by exposing the sacrificial layer to an etching agent that is introduced through the cavity. | 02-26-2015 |
20150054098 | MEMS MICROPHONE ASSEMBLY AND METHOD OF MANUFACTURING THE MEMS MICROPHONE ASSEMBLY - The present invention concerns a MEMS microphone assembly ( | 02-26-2015 |
20150061048 | Packaged MEMS Device - A packaged MEMS device may include an embedding arrangement, a MEMS device disposed in the embedding arrangement, a sound port disposed in the embedding arrangement and acoustically coupled to the MEMS device, and a grille within the sound port. Some embodiments relate to a sound transducer component including an embedding material and a substrate-stripped MEMS die embedded into the embedding material. The MEMS die may comprise a diaphragm for sound transduction. The sound transducer component may further comprise a sound port within the embedding material in fluidic or acoustic contact with the diaphragm. Further embodiments relate to a method for packaging a MEMS device or to a method for manufacturing a sound transducer component. | 03-05-2015 |
20150076627 | MEMS-MICROPHONE WITH REDUCED PARASITIC CAPACITANCE - A MEMS microphone with reduced parasitic capacitance is provided. A microphone includes a protection film covering a rim-sided area of the backplate. | 03-19-2015 |
20150076628 | MULTI-PORT DEVICE PACKAGE - An integrated device package includes a housing having a first opening and a second opening in fluid communication with an interior volume of the housing. A package substrate(s) has a first port and a second port. A first device die is mounted to the substrate(s) over the first port. A second device die is mounted to the substrate(s) over the second port. The substrate(s) is coupled to the housing to cover the first and second openings such that the first device die is disposed within the interior volume through the first opening and the second device die is disposed within the interior volume through the second opening. | 03-19-2015 |
20150076629 | MICROPHONE - There is provided a microphone including: a thin film member including leg members extended in a direction not in parallel with a vibration direction; first supports supporting first points of the leg members, respectively; and a piezoelectric member connected to second points of the leg members and converting vibrations of the thin film member into electrical signals. | 03-19-2015 |
20150102435 | MEMS MICROPHONE WITH MEMBRANE ANTENNAS - A MEMS microphone. The microphone includes a backplate, a membrane, and a plurality of antennas. The backplate has a plurality of acoustic apertures. The membrane is parallel to the backplate and is positioned a distance from the backplate. The plurality of antennas are connected to the membrane and extend toward the backplate. In addition, the plurality of antennas are positioned entirely within spaces defined by the plurality of acoustic apertures. | 04-16-2015 |
20150102436 | Pre-Molded MEMS Device Package with Conductive Shell - A MEMS lead frame package body encloses a MEMS device enclosed in an internal cavity formed by the mold body and cover. A conductive internal shell with a connection window sits in the cavity. The MEMS device is mounted in the shell and electrically coupled to the lead frame through wire bonds directed through the connection window. To accommodate a MEMS microphone, an acoustic aperture extends through the mold body aligned with a hole in the internal shell. | 04-16-2015 |
20150129992 | MEMS MICROPHONE HAVING DUAL BACK PLATE AND METHOD FOR MANUFACTURING SAME - Disclosed herein are a microelectromechanical systems (MEMS) microphone with a dual-back plate, and a method of manufacturing the same. The MEMS microphone according to an exemplary embodiment of the present invention includes: a substrate having a first back plate formed at a central portion thereof; a membrane plate disposed on first support parts formed at both sides on the substrate and vibrated depending on external sound pressure; and a second back plate disposed on second support parts formed at both sides of the membrane plate. | 05-14-2015 |
20150137284 | MICROPHONE PACKAGE AND MOUNTING STRUCTURE THEREOF - There are provided a microphone package and a mounting structure thereof, allowing for an increase in a back volume, the microphone package including: a package substrate; an acoustic element mounted on the package substrate and having a space formed in a lower portion thereof; and at least one electronic component mounted on the package substrate and having a space formed in a lower portion thereof, wherein the package substrate includes an acoustic volume connecting the space of the acoustic element and the space of the electronic component. | 05-21-2015 |
20150137285 | CAPACITIVE MICROMACHINED ULTRASONIC TRANSDUCER AND METHOD OF FABRICATING THE SAME - A capacitive micromachined ultrasonic transducer and a method of fabricating the same are provided. The capacitive micromachined ultrasonic transducer includes a device substrate including a first trench defining a plurality of first portions corresponding to an element and a second trench spaced apart from the first trench; a supporting unit provided on the device substrate, the supporting unit defining a plurality of cavities; a membrane provided on the supporting unit to cover the plurality of cavities; a top electrode electrically connected to a second portion in the second trench through a via hole penetrating through the membrane and the supporting unit; and a through silicon via (TSV) substrate provided on a bottom surface of the device substrate, the TSV substrate including a first via metal connected to the plurality of first portions corresponding to the element and a second via metal connected to the second portion. | 05-21-2015 |
20150145078 | Semiconductor Package with Air Gap - A semiconductor package includes a semiconductor die having a first main side and a second main side opposite the first main side, the first main side having an inner region surrounded by a periphery region. The semiconductor package further includes a film covering the semiconductor die and adhered to the periphery region of the first main side of the semiconductor die. The film has a curved surface so that the inner region of the first main side of the semiconductor die is spaced apart from the film by an air gap. Electrical conductors are attached at a first end to pads at the periphery region of the first main side of the semiconductor die. A corresponding method of manufacture is also provided. | 05-28-2015 |
20150145079 | Semiconductor Devices and Methods of Fabrication Thereof - In one embodiment, a method of manufacturing a semiconductor device includes oxidizing a substrate to form local oxide regions that extend above a top surface of the substrate. A membrane layer is formed over the local oxide regions and the top surface of the substrate. A portion of the substrate under the membrane layer is removed. The local oxide regions under the membrane layer is removed. | 05-28-2015 |
20150291413 | METHOD AND SYSTEM FOR CMOS BASED MEMS BUMP STOP CONTACT DAMAGE PREVENTION - In some embodiments, a microelectromechanical system may include a semiconductor substrate, a plurality of wiring layers, and a stop. The plurality of wiring layers may be coupled to a first surface of the semiconductor substrate. The stop may be coupled to the plurality of wiring layers. In some embodiments, at least a portion of the plurality of wiring layers between the stop and the first surface of the substrate comprises an insulating material. In some embodiments, at least the portion excludes wiring within. In some embodiments, a volume of the portion may be determined by a use of the microelectromechanical system. In some embodiments, the portion may inhibit, during use, electrical failures adjacent to the stop. | 10-15-2015 |
20150298170 | Ultrasonic Transducers in Complementary Metal Oxide Semiconductor (CMOS) Wafers and Related Apparatus and Methods - Micromachined ultrasonic transducers formed in complementary metal oxide semiconductor (CMOS) wafers are described, as are methods of fabricating such devices. A metallization layer of a CMOS wafer may be removed by sacrificial release to create a cavity of an ultrasonic transducer. Remaining layers may form a membrane of the ultrasonic transducer. | 10-22-2015 |
20150315013 | MICRO-ELECTRICAL-MECHANICAL SYSTEM (MEMS) MICROPHONE - A micro-electrical-mechanical system (MEMS) microphone includes a MEMS structure, having a substrate, a diaphragm, and a backplate, wherein the substrate has a cavity and the backplate is between the cavity and the diaphragm. The backplate has multiple venting holes, which are connected to the cavity and allows the cavity to extend to the diaphragm. Further, an adhesive layer is disposed on the substrate, surrounding the cavity. A cover plate is adhered on the adhesive layer, wherein the cover plate has an acoustic hole, dislocated from the cavity without direct connection. | 11-05-2015 |
20150315014 | Top Port MEMS Cavity Package and Method of Manufacture Thereof - A method for the manufacture of a package encasing a Micro-Electro-Mechanical Systems (MEMS) device provides a cover having a lid and sidewalls with a port extending through the lid. A first base component is bonded to the sidewalls defining an internal cavity. This first base component further includes an aperture extending therethrough. The MEMS device is inserted through the aperture and bonded to the lid with the MEMS device at least partially overlapping the port. Assembly is completed by bonding a second base component to the first base component to seal the aperture. The package so formed has a cover with a lid, sidewalls and a port extending through the lid. A MEMS device is bonded to the lid and electrically interconnected to electrically conductive features disposed on the first base component. A second base component is bonded to the first base component spanning the aperture. | 11-05-2015 |
20150321906 | INTEGRATED PACKAGE CONTAINING MEMS ACOUSTIC SENSOR AND ENVIRONMENTAL SENSOR AND METHODOLOGY FOR FABRICATING SAME - An integrated package of at least one environmental sensor and at least one MEMS acoustic sensor is disclosed. The package contains a shared port that exposes both sensors to the environment, wherein the environmental sensor measures characteristics of the environment and the acoustic sensor measures sound waves. The port exposes the environmental sensor to an air flow and the acoustic sensor to sound waves. An example of the acoustic sensor is a microphone and an example of the environmental sensor is a humidity sensor. | 11-12-2015 |
20150325780 | MEMS Component and Method for Encapsulating MEMS Components - A MEMS component includes, on a substrate, component structures, contact areas connected to the component structures, metallic column structures seated on the contact areas, and metallic frame structures surrounding the component structures. A cured resist layer is seated on frame structure and column structures such that a cavity is enclosed between substrate, frame structure and resist layer. A structured metallization is provided directly on the resist layer or on a carrier layer seated on the resist layer. The structured metallization includes at least external contacts of the component and being electrically conductively connected both to metallic structures and to the contact areas of the component structures. | 11-12-2015 |
20150341726 | METHOD FOR MANUFACTURING AN OPENING STRUCTURE AND OPENING STRUCTURE - A method for manufacturing an opening structure is provided. The method may include: forming a patterned mask over a first side of a carrier; forming material over the first side of the carrier covering at least a portion of the carrier; forming a first opening in the carrier from a second side of the carrier opposite the first side of the carrier to at least partially expose a surface of the patterned mask; and forming a second opening in the material from the second side of the carrier using the patterned mask as a mask. | 11-26-2015 |
20150344293 | INTEGRATED SEMICONDUCTOR DEVICES WITH SINGLE CRYSTALLINE BEAM, METHODS OF MANUFACTURE AND DESIGN STRUCTURE - Bulk acoustic wave filters and/or bulk acoustic resonators integrated with CMOS devices, methods of manufacture and design structure are provided. The method includes forming a single crystalline beam from a silicon layer on an insulator. The method further includes providing a coating of insulator material over the single crystalline beam. The method further includes forming a via through the insulator material exposing a wafer underlying the insulator. The insulator material remains over the single crystalline beam. The method further includes providing a sacrificial material in the via and over the insulator material. The method further includes providing a lid on the sacrificial material. The method further includes venting, through the lid, the sacrificial material and a portion of the wafer under the single crystalline beam to form an upper cavity above the single crystalline beam and a lower cavity in the wafer, below the single crystalline beam. | 12-03-2015 |
20150344296 | ENCAPSULATED COMPONENT COMPRISING A MEMS COMPONENT AND METHOD FOR THE PRODUCTION THEREOF - A component comprising a carrier, a chip component and a MEMS component is proposed, wherein the mechanically sensitive MEMS component is mounted below a half-shell on the carrier. The component is encapsulated with a molding compound in a transfer molding process. | 12-03-2015 |
20150350792 | PIEZOELECTRIC MEMS MICROPHONE - A microphone including a casing having a front wall, a back wall, and a side wall joining the front wall to the back wall, a transducer mounted to the front wall, the transducer including a substrate and a transducing element, the transducing element having a transducer acoustic compliance dependent on the transducing element dimensions, a back cavity cooperatively defined between the back wall, the side wall, and the transducer, the back cavity having a back cavity acoustic compliance. The transducing element is dimensioned such that the transducing element length matches a predetermined resonant frequency and the transducing element width, thickness, and elasticity produces a transducer acoustic compliance within a given range of the back cavity acoustic compliance. | 12-03-2015 |
20150357375 | INTEGRATED PIEZOELECTRIC MICROELECTROMECHANICAL ULTRASOUND TRANSDUCER (PMUT) ON INTEGRATED CIRCUIT (IC) FOR FINGERPRINT SENSING - Microelectromechanical (MEMS) devices and associated methods are disclosed. Piezoelectric MEMS transducers (PMUTs) suitable for integration with complementary metal oxide semiconductor (CMOS) integrated circuit (IC), as well as PMUT arrays having high fill factor for fingerprint sensing, are described. | 12-10-2015 |
20150358735 | System and Method for a Microphone - According to an embodiment, a microfabricated structure includes a cavity disposed in a substrate, a first clamping layer overlying the substrate, a deflectable membrane overlying the first clamping layer, and a second clamping layer overlying the deflectable membrane. A portion of the second clamping layer overlaps the cavity. | 12-10-2015 |
20150375991 | MICROMECHANICAL COMPONENT HAVING A DIAPHRAGM STRUCTURE - A diaphragm structure of a micromechanical component includes: a diaphragm integrated via at least one spring element into a layered structure, the diaphragm spanning a cavern, so that at least one section of the diaphragm edge extends up to and beyond the edge area of the cavern; and an anchoring structure formed in the overlap area between the diaphragm and the cavern edge area. The anchoring structure includes at least one anchor element structured out of the layered structure above the cavern edge area, and one through opening for the anchor element formed in the edge area of the diaphragm, so that there is a clearance between the anchor element and the through opening which allows for a mechanical stress relaxation of the diaphragm. | 12-31-2015 |
20160014530 | PACKAGING CONCEPT TO IMPROVE PERFORMANCE OF A MICRO-ELECTRO MECHANICAL (MEMS) MICROPHONE | 01-14-2016 |
20160016790 | Miniaturized Component and Method for the Production Thereof - An encapsulated component and a method for producing an encapsulated component are specified. The component includes a carrier substrate, a functional structure, a thin-film cover and a reinforcement layer comprising glass. The carrier substrate, the thin-film cover and the reinforcement layer together enclose a cavity around at least parts of the functional structure. | 01-21-2016 |
20160023891 | Component including a MEMS element and a cap structure including a media connection port - A structural concept for components includes a MEMS element, the micromechanical function of which requires a media connection to the surroundings, and including a cap structure for this micromechanical component, which may be implemented in a simple and cost-effective manner and which may be used to protect the micromechanical structure of MEMS elements very effectively against particles and interfering environmental influences despite media access. The cap structure closes at least one first cavity section above the micromechanical component and at least one second cavity section on the side of this micromechanical component, so that the two cavity sections are connected to one another, the connection area between the two cavity sections being configured as particle filters. The media connection port is situated in the area of the second cavity section. | 01-28-2016 |
20160029126 | MEMS Membrane Overtravel Stop - A micro electrical mechanical system (MEMS) device in one embodiment includes a substrate defining a back cavity, a membrane above the back cavity, a back plate above the membrane, and a first overtravel stop (OTS) positioned at least partially directly beneath the membrane and supported by the back plate. | 01-28-2016 |
20160031704 | CAPACITOR WITH PLANARIZED BONDING FOR CMOS-MEMS INTEGRATION - An integrated circuit (IC) structure is provided. The IC structure includes an IC substrate including active devices which are coupled together through a conductive interconnect structure arranged thereover. The conductive interconnect structure includes a series of horizontal conductive layers and dielectric regions arranged between neighboring horizontal conductive layers. The conductive interconnect structure includes an uppermost conductive horizontal region with a planar top surface region. A MEMS substrate is arranged over the IC substrate and includes a flexible or moveable structure that flexes or moves commensurate with a force applied to the flexible or moveable structure. The active devices of the IC substrate are arranged to establish analysis circuitry to facilitate electrical measurement of a capacitance between the uppermost conductive horizontal region and the flexible or moveable structure. | 02-04-2016 |
20160037261 | Composite Back Plate And Method Of Manufacturing The Same - A back plate for use in a microphone includes a first layer; a second layer; and a metal layer disposed between the first layer and the second layer. A first compression of the back plate provided by cooling of the first layer and the second layer. A second compression of the back plate that is in addition to the first compression, the second compression being provided by the metal layer, the first and second compressions being effective to strengthen the back plate. | 02-04-2016 |
20160044396 | MICROPHONE DEVICE FOR REDUCING NOISE COUPLING EFFECT - A microphone device includes a carrier board, a micro electro-mechanical system unit, an integrated circuit and an upper cover. The micro electro-mechanical system unit includes a substrate, a cap and a capacitive microphone. The cap is installed on the substrate, and is composed of electrically conductive material. The capacitive microphone is positioned between the cap and the carrier board, wherein the capacitive microphone and the cap form a resonant cavity. The integrated circuit is installed on the carrier board, and arranged to control the capacitive microphone. The upper cover is connected to the carrier board, wherein the micro-electro mechanical system unit and the integrated circuit are both positioned inside a space formed by the carrier board and the upper cover. | 02-11-2016 |
20160060101 | Integrated CMOS/MEMS Microphone Die Components - The claim invention is directed at a MEMS microphone die fabricated using CMOS-based technologies. In particular, the claims are directed at various aspects of a diaphragm for a MEMS microphone die which is fabricated as stacked metallic layers separated by vias using CMOS fabrication technologies. | 03-03-2016 |
20160060104 | MEMS Integrated Pressure Sensor and Microphone Devices and Methods of Forming Same - A method embodiment for forming a micro-electromechanical (MEMS) device includes providing a MEMS wafer, wherein a portion of the MEMS wafer is patterned to provide a first membrane for a microphone device and a second membrane for a pressure sensor device. A carrier wafer is bonded to the MEMS wafer, and the carrier wafer is etched to expose the first membrane for the microphone device to an ambient environment. A MEMS substrate is patterned and portions of a first sacrificial layer are removed of the MEMS wafer to form a MEMS structure. A cap wafer is bonded to a side of the MEMS wafer opposing the carrier wafer to form a first sealed cavity including the MEMS structure. A second sealed cavity and a cavity exposed to an ambient environment on opposing sides of the second membrane for the pressure sensor device are formed. | 03-03-2016 |
20160075552 | Component Which Can be Produced at Wafer Level and Method of Production - A component which can be produced at wafer level has a first chip and a second chip connected thereto. The connection is (at least partially) established via a first and a second connecting structure and a first and a second contact structure of the second chip. An adaptation structure between the first chip and the first connecting structure equalizes a height difference between the first and the second contact structure. | 03-17-2016 |
20160090294 | PACKAGE ARRANGEMENT, A PACKAGE, AND A METHOD OF MANUFACTURING A PACKAGE ARRANGEMENT - According to various embodiments, a package arrangement may include: a first encapsulation material; at least one electronic circuit at least partially embedded in the first encapsulation material, the at least one electronic circuit including a first contact pad structure at a first side of the at least one electronic circuit; at least one electromechanical device disposed over the first side of the at least one electronic circuit, the at least one electromechanical device including a second contact pad structure facing the first side of the at least one electronic circuit; a redistribution layer structure between the at least one electromechanical device and the at least one electronic circuit, the redistribution layer structure electrically connecting the first contact pad structure with the second contact pad structure, wherein a gap is provided between the at least one electromechanical device and the redistribution layer structure; a second encapsulation material at least partially covering the at least one electromechanical device, wherein the gap is free of the second encapsulation material. | 03-31-2016 |
20160096726 | MEMS Device and Method of Making a MEMS Device - A MEMS device and a method of making a MEMS device are disclosed. In one embodiment a semiconductor device comprises a substrate, a moveable electrode and a counter electrode, wherein the moveable electrode and the counter electrode are mechanically connected to the substrate. The movable electrode is configured to stiffen an inner region of the movable membrane. | 04-07-2016 |
20160119722 | METHOD FOR THE INTEGRATION OF A MICROELECTROMECHANICAL SYSTEMS (MEMS) MICROPHONE DEVICE WITH A COMPLEMENTARY METAL-OXIDE-SEMICONDUCTOR (CMOS) DEVICE - A microelectromechanical systems (MEMS) package includes a MEMS device and an integrated circuit (IC) device connected by a through silicon via (TSV). A conductive MEMS structure is arranged in a dielectric layer and includes a membrane region extending across a first volume arranged in the dielectric layer. A first substrate is bonded to a second substrate through the dielectric layer, where the MEMS device includes the second substrate. The TSV extends through the second substrate to electrically couple the MEMS device to the IC device. A third substrate is bonded to the second substrate to define a second volume between the second substrate and the third substrate, where the IC device includes the first or third substrate. A method for manufacturing the MEMS package is also provided. | 04-28-2016 |
20160127837 | MULTI-LAYER COMPOSITE BACKPLATE FOR MICROMECHANICALA MICROPHONE - A MEMS device. The device includes a membrane, and a reinforced backplate having a plurality of openings. The reinforced backplate include a first layer, and a second layer coupled to the first layer. | 05-05-2016 |
20160127838 | MICROPHONE PACKAGE WITH MOLDED SPACER - A microelectromechanical system (MEMS) microphone package including a MEMS microphone die configured to sense acoustic pressure and to generate a signal based on the acoustic pressure. An application specific integrated circuit (ASIC) electrically connects to the MEMS microphone die. The MEMS microphone package includes a molded package spacer that connects to a conductive lid and to a substrate. The molded package spacer forms side walls of the MEMS microphone package and is adapted to route electrical connections from the MEMS microphone die and the ASIC to the substrate. | 05-05-2016 |
20160130134 | PRE-MOLDED MEMS DEVICE PACKAGE HAVING CONDUCTIVE COLUMN COUPLED TO LEADFRAME AND COVER - A MEMS lead frame package body encloses a MEMS device enclosed in an internal cavity formed by the mold body and cover. To accommodate a MEMS microphone, an acoustic aperture extends through the mold body. In some embodiments, a conductive column extends through the pre-molded body to allow electrical connection from a partially encapsulated lead frame to the conductive cover. Some embodiments may include a multi-tiered cavity within the mold body for mounting an integrated circuit separated by a gap above the MEMS device. | 05-12-2016 |
20160137486 | MEMS MICROPHONE WITH TENSIONED MEMBRANE - A micro electro-mechanical system (MEMS) microphone is provided. The MEMS microphone is configured to operate at a predetermined range of frequencies. The MEMS microphone has a tensioned membrane preset at a tension amount selected to cause the MEMS microphone to operate at a predetermined sensitivity level that is above a threshold sensitivity level. The tension amount is controlled based on a temperature applied to the tensioned membrane during a fabrication process. At least a portion of the tensioned membrane is sandwiched between a first conductive layer and a second conductive layer configured to equalize stress of the tensioned membrane. | 05-19-2016 |
20160137490 | CAVITY PACKAGE DESIGN - A semiconductor device. The device including a substrate having electrical traces, at least one of a MEMS die and a semiconductor chip mounted on the substrate, and a spacer. The spacer has a first end connected to the substrate and includes electrical interconnects coupled to the electrical traces. The at least one MEMS die and a semiconductor chip are contained within the spacer. The spacer and substrate form a cavity which contains the at least one MEMS die and a semiconductor chip. The cavity forms an acoustic volume when the semiconductor device is mounted to a circuit board via a second end of the spacer. | 05-19-2016 |
20160145093 | FULLY DEPLETED REGION FOR REDUCED PARASITIC CAPACITANCE BETWEEN A POLY-SILICON LAYER AND A SUBSTRATE REGION - A fully depleted region may be used to reduce poly-to-substrate parasitic capacitance in an electronic device with poly-silicon layer. When the fully depleted region is located at least partially beneath the electronic device, an additional parasitic capacitance is formed between the fully depleted region and the substrate region. This additional parasitic capacitance is coupled in series with a first parasitic capacitance between a poly-silicon layer of the electronic device and the doped region. The series combination of the first parasitic capacitance and the additional parasitic capacitance results in an overall reduction of parasitic capacitance experience by an electronic device. The structure may include two doped regions on sides of the electronic device to form a fully depleted region based on lateral interaction of dopant in the doped regions and the substrate region. | 05-26-2016 |
20160157025 | HINGED MEMS DIAPHRAGM AND METHOD OF MANUFACTURE THEREOF | 06-02-2016 |
20160165358 | MEMS MICROPHONE PACKAGE - An MEMS microphone package includes a substrate, an MEMS microphone, an IC chip and an electrically conductive cover. The substrate includes a first hole, an upper surface, a bottom surface, a side surface, a first electrically conductive layer and a second electrically conductive layer. The side surface has two sides connected to the upper surface and the bottom surface, respectively. The first electrically conductive layer is disposed on the upper surface. The second electrically conductive layer is disposed on the bottom surface. The MEMS microphone is electrically coupled to the substrate. The IC chip is electrically coupled to the substrate. The electrically conductive cover includes a second hole. The electrically conductive cover is bonded to the substrate to form a chamber for accommodating the MEMS microphone and the IC chip. The first hole and the second hole together form an acoustic hole. | 06-09-2016 |
20160167946 | MEMS DEVICE AND PROCESS | 06-16-2016 |
20160167947 | Microphone Module and Method of Manufacturing Thereof | 06-16-2016 |
20160190206 | ACOUSTIC WAVE DEVICE STRUCTURE, INTEGRATED STRUCTURE OF POWER AMPLIFIER AND ACOUSTIC WAVE DEVICE, AND FABRICATION METHODS THEREOF - An integrated structure of power amplifier and acoustic wave device comprises: a compound semiconductor epitaxial substrate, a power amplifier upper structure formed on a first side of said compound semiconductor epitaxial substrate, and a film bulk acoustic resonator formed on a second side of said compound semiconductor epitaxial substrate; wherein forming an epitaxial structure on a compound semiconductor substrate to form said compound semiconductor epitaxial substrate; wherein said first side of said compound semiconductor epitaxial substrate and said power amplifier upper structure form a power amplifier; said second side of said compound semiconductor epitaxial substrate and said film bulk acoustic resonator form an acoustic wave device; the integrated structure of power amplifier and acoustic wave device on the same compound semiconductor epitaxial substrate is capable of reducing the component size, optimizing the impedance matching, and reducing the signal loss between power amplifier and acoustic wave device. | 06-30-2016 |
20160192082 | ACOUSTIC SENSOR AND MANUFACTURING METHOD OF THE SAME - An acoustic sensor is provided for improving shock resistance performance, along with a method for manufacturing the acoustic sensor. In the acoustic sensor, a fixing plate is provided by a semiconductor manufacturing process, a frame wall has a curved shape in at least a portion of the periphery of the fixing plate, the frame wall being coupled to the semiconductor substrate. A sacrifice layer removed from the inner side of the fixing plate in the manufacturing process remains at least on a portion of the inner side of the frame wall. Roughness of the remaining sacrifice layer is smaller than roughness of a sound shape reflecting structure in which a shape similar to the external shape of sound holes is repeated. Roughness of the sound shape reflecting structure is formed when removing the sacrifice layer using etching liquid supplied from the plurality of sound holes in the semiconductor manufacturing process. | 06-30-2016 |
20160200567 | SENSOR STRUCTURE FOR SENSING PRESSURE WAVES AND AMBIENT PRESSURE | 07-14-2016 |
20160376144 | Apparatus and Method For Protecting a Micro-Electro-Mechanical System - A protective cover for a micro-electro-mechanical system that has a low mass/area, preferably <3 gsm, most preferably <1 gsm. | 12-29-2016 |
20160377569 | System and Method for a MEMS Transducer - According to an embodiment, a microelectromechanical systems (MEMS) transducer includes a substrate with a first cavity that passes through the substrate from a backside of the substrate. The MEMS transducer also includes a perforated first electrode plate overlying the first cavity on a topside of the substrate, a second electrode plate overlying the first cavity on the topside of the substrate and spaced apart from the perforated first electrode plate by a spacing region, and a gas sensitive material in the spacing region between the perforated first electrode plate and the second electrode plate. The gas sensitive material has an electrical property that is dependent on a concentration of a target gas. | 12-29-2016 |
20180022603 | MEMS DEVICES HAVING TETHERING STRUCTURES | 01-25-2018 |
20180027337 | PIEZORESISTIVE MICROPHONE AND METHOD OF FABRICATING THE SAME | 01-25-2018 |