Class / Patent application number | Description | Number of patent applications / Date published |
257279000 | Pn junction gate in compound semiconductor material (e.g., GaAs) | 8 |
20080224183 | Method for Manufacturing a Compound Semiconductor Field Effect Transistor Having a Fin Structure, and Compound Semiconductor Field Effect Transistor Having a Fin Structure - In another embodiment, the invention provides a compound semiconductor field effect transistor having a fin structure. A first layer is formed on or above a substrate, wherein the first layer contains a first compound semiconductor material. A second layer is formed on the first layer, wherein the second layer comprises a second compound semiconductor material. A third layer is formed on the second layer, wherein the third layer comprises a third compound semiconductor material. A cap layer is formed on at least one partial region of the third layer, wherein the cap layer comprises a fourth compound semiconductor material. The second layer, the third layer and the cap layer are patterned in such a way that a fin structure is formed. A first source/drain region is formed from a first partial region of the cap layer, and a second source/drain region is formed from a second partial region of the cap layer. A gate region is formed on at least one partial region of at least one sidewall of the fin structure and/or on a partial region of an upper surface of the third layer. | 09-18-2008 |
20090242943 | SEMICONDUCTOR DEVICE - A semiconductor device which can prevent peeling off of a gate electrode is provided. The semiconductor device has GaN buffer layer formed on substrate | 10-01-2009 |
20100025739 | SEMICONDUCTOR DEVICE WITH LARGE BLOCKING VOLTAGE AND METHOD OF MANUFACTURING THE SAME - A normally-off type junction FET in which a channel resistance is reduced without lowering its blocking voltage is provided. In a junction FET formed with using a substrate made of silicon carbide, an impurity concentration of a channel region (second epitaxial layer) is made higher than an impurity concentration of a first epitaxial layer to be a drift layer. The channel region is formed of a first region in which a channel width is constant and a second region below the first region in which the channel width becomes wider toward the drain (substrate) side. A boundary between the first epitaxial layer and the second epitaxial layer is positioned in the second region in which the channel width becomes wider toward the drain (substrate) side. | 02-04-2010 |
20100244104 | COMPOUND SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A compound semiconductor device includes a compound semiconductor laminated structure; a source electrode, a drain electrode, and a gate electrode formed over the compound semiconductor laminated structure; a first protective film formed over the compound semiconductor laminated structure between the source electrode and the gate electrode and including silicon; and a second protective film formed over the compound semiconductor laminated structure between the drain electrode and the gate electrode and including more silicon than the first protective film. | 09-30-2010 |
20110272748 | SEMICONDUCTOR DEVICE - A semiconductor device includes: a gate electrode, a source electrode and a drain electrode, all of which are provided on top of a first surface of a substrate, and each of which includes multiple fingers; and an ohmic electrode layer. The semiconductor device includes: a gate terminal electrode connecting the fingers of the gate electrode together; a source terminal electrode connecting the fingers of the source electrode together; a drain terminal electrode connecting the fingers of the drain electrode together; and a gate pad placed on top of the ohmic electrode layer, and connecting the ohmic electrode layer to the gate terminal electrode. The semiconductor device further includes: an n type semiconductor layer formed in the substrate; a p type semiconductor layer formed in the n type semiconductor layer; and a reaction layer formed in the interface between the p type semiconductor layer substrate and the ohmic electrode layer. | 11-10-2011 |
20120091514 | Semiconductor Junction Diode Device And Method For Manufacturing The Same - A semiconductor junction diode device structure and a method for manufacturing the same are provided, where a gate of the diode device structure is directly formed on the substrate, a P-N junction is formed in the semiconductor substrate, a first contact is formed on the gate, and a second contact is formed on the doped region at both sides of the gate, the first contact and the second contact acting as cathode/anode of the diode device, respectively. The diode device of this structure occupies a small area, and its forming process may be integrated in a gate-last integration process of MOSFET devices, which needs no additional mask and costs and has a high integration level. | 04-19-2012 |
20130082307 | COMPOUND SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREFOR - A compound semiconductor device includes a compound semiconductor laminated structure, a passivation film formed on the compound semiconductor laminated structure and having a through-hole, and a gate electrode formed on the passivation film so as to plug the through-hole. A grain boundary between different crystalline orientations is formed in the gate electrode, and a starting point of the grain boundary is located apart from the through-hole on a flat surface of the passivation film. | 04-04-2013 |
20150060957 | THREE-DIMENSIONAL GATE-WRAP-AROUND FIELD-EFFECT TRANSISTOR - A three-dimensional Gate-Wrap-Around Field-Effect Transistor (GWAFET). The GWAFET includes a substrate of III-V semiconductor material. The GWAFET further includes one or more channel layers with a gate wrapped around these one or more channel layers. Additionally, the GWAFET includes a barrier layer residing on the top channel layer with a layer of doped III-V semiconductor material residing on each end of the barrier layer. A source and drain contact are connected to the layer of doped III-V semiconductor material as well as to the multiple channels in the embodiment with the GWAFET including multiple channel layers. By having such a structure, integration density is improved. Furthermore, electrostatic control is improved due to gate coupling, which helps reduce standby power consumption. Furthermore, by using III-V semiconductor material as opposed to silicon, the current drive capacity is improved. | 03-05-2015 |