Entries |
Document | Title | Date |
20080197379 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A carrier storage layer is located in a region of a predetermined depth from a surface of an N− substrate, a base region is located in a shallower region than the predetermined depth and an emitter region is located in a surface of the N− substrate. The carrier storage layer is formed by phosphorus injected to have a maximum impurity concentration at the predetermined depth, the base region is formed by boron injected to have the maximum impurity concentration at a shallower position than the predetermined depth and the emitter region is formed by arsenic injected to have the maximum impurity concentration at the surface of the N− substrate. An opening is formed to extend through the emitter region, base region and the carrier storage layer. On the inner wall of the opening, a gate electrode is formed with a gate insulating film therebetween. | 08-21-2008 |
20080246055 | SEMICONDUCTOR COMPONENT INCLUDING A MONOCRYSTALLINE SEMICONDUCTOR BODY AND METHOD - A semiconductor component comprising a monocrystalline semiconductor body, and to a method for producing the same is disclosed. In one embodiment, the semiconductor body has a semiconductor component structure with regions of a porous-mono crystalline semiconductor. | 10-09-2008 |
20080283867 | SEMICONDUCTOR DEVICE - A fourth semiconductor region of a first conduction type is provided in a partial region of a third semiconductor region of a second conduction type. This configuration enhances the blocking voltage at the time when the sheet carrier concentration of a fifth semiconductor region is enhanced. | 11-20-2008 |
20080290366 | Soi Vertical Bipolar Power Component - An SOI device comprises an isolation trench defining a vertical drift zone, a buried insulating layer to which the isolation trench extends, and an electrode region for emitting charge carriers that is formed adjacent to the insulating layer and that is in contact with the drift zone. The electrode region comprises first strip-shaped portions having a first type of doping and second strip-shaped portions having a second type of doping that is inverse to the first type of doping. A first sidewall doping of the first type of doping is provided at a first sidewall of the isolation trench and a second sidewall doping of the second type of doping is provided at a second sidewall of the isolation trench. The first strip-shaped portions are in contact with the first sidewall doping and the second strip-shaped portions are in contact with the second sidewall doping. | 11-27-2008 |
20080296611 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SAME - A semiconductor device includes: a semiconductor layer having a first major surface, a second major surface provided on opposite side of the first major surface, and a channel formation region provided in a surface portion on the first major surface side; a first main electrode provided inside a dicing street on the first major surface of the semiconductor layer; a second main electrode provided inside a dicing street on the second major surface of the semiconductor layer; and a control electrode opposed to the channel formation region across an insulating film. | 12-04-2008 |
20080303056 | SEMICONDUCTOR SUBASSEMBLIES WITH INTERCONNECTS AND METHODS FOR MANUFACTURING THE SAME - A semiconductor subassembly is provided for use in a switching module of an inverter circuit for a high power, alternating current motor application. The semiconductor subassembly includes a wafer having first and second opposed metallized faces; a semiconductor switching device electrically coupled to the first metallized face of the wafer and having at least one electrode region; and an interconnect bonded to the semiconductor switching device. The interconnect includes a first metal layer bonded to the at least one electrode region of the semiconductor switching device, a ceramic layer bonded to the first metal layer, the ceramic layer defining a via for accessing the first metal layer, a second metal layer bonded to the ceramic layer, and a conducting substance disposed in the via of the ceramic layer to electrically couple the first metal layer to the second metal layer. | 12-11-2008 |
20080308838 | Power switching transistors - In an embodiment, a integrated semiconductor device includes a first Vertical Junction Field Effect Transistor (VJFET) having a source, and a gate disposed on each side of the first VJFET source, and a second VJFET transistor having a source, and a gate disposed on each side of the second VJFET source. At least one gate of the first VJFET is separated from at least one gate of the second VJFET by a channel. The integrated semiconductor device also includes a Junction Barrier Schottky (JBS) diode positioned between the first and second VJFETs. The JBS diode comprises a metal contact that forms a rectifying contact to the channel and a non-rectifying contact to at least one gate of the first and second VJFETs, and the metal contact is an anode of the JBS diode. A first electrical connection ties the gates of the first VJFET, the gates of the second VJFET, and the anode of the JBS diode to a common gate electrode and a second electrical connection ties the source of the first VJFET and the source of the second VJFET to a common source electrode. | 12-18-2008 |
20080308839 | INSULATED GATE BIPOLAR TRANSISTOR - The invention realizes IGBT having an NPT structure which has a smaller variation in switching characteristics and the like and lower on-resistance. In the IGBT of the invention, by setting a ratio of a width of a trench to an interval between the trenches within a range of 1 to 2, electron current density and a conductivity modulation effect are optimized, a breakdown voltage is secured, a variation in characteristics is minimized, and on-resistance is largely reduced. | 12-18-2008 |
20080315246 | TRANSISTOR SWITCH CIRCUIT AND SAMPLE-AND-HOLD CIRCUIT - A transistor switch circuit includes: a MOS transistor in which a channel is formed when a gate-source voltage is zero; and a voltage supply part which is connected to a gate of the MOS transistor to supply the gate with a voltage for turning off the MOS transistor. | 12-25-2008 |
20080315247 | BONDED-WAFER SUPERJUNCTION SEMICONDUCTOR DEVICE - A bonded-wafer semiconductor device includes a semiconductor substrate, a buried oxide layer disposed on a first main surface of the semiconductor substrate and a multi-layer device stack. The multi-layer device stack includes a first device layer of a first conductivity disposed on the buried oxide layer, a second device layer of a second conductivity disposed on the first device layer, a third device layer of the first conductivity disposed on the second device layer and a fourth device layer of the second conductivity disposed on the third device layer. A trench is formed in the multi-layer device stack. A mesa is defined by the trench. The mesa has first and second sidewalls. A first anode/cathode layer is disposed on a first sidewall of the multi-layer device stack, and a second anode/cathode layer is disposed on the second sidewall of the multi-layer device stack. | 12-25-2008 |
20090001410 | Driver Circuit and Electrical Power Conversion Device - An electrical power conversion device includes: a switching element in which a principal electrical current flows in a direction from a second electrode towards a first electrode based upon a voltage being applied to a control electrode; a voltage control circuit that controls the voltage that is applied to the control electrode; and a continuity control circuit that is connected between the second electrode and the control electrode and controls continuity between the second electrode and the control electrode. | 01-01-2009 |
20090032838 | SYMMETRIC BIDIRECTIONAL SILICON-CONTROLLED RECTIFIER - The present invention discloses a symmetric bidirectional silicon-controlled rectifier, which comprises: a substrate; a buried layer formed on the substrate; a first well, a middle region and a second well, which are sequentially formed on the buried layer side-by-side; a first semiconductor area and a second semiconductor area both formed inside the first well; a third semiconductor area formed in a junction between the first well and the middle region, wherein a first gate is formed over a region between the second and third semiconductor areas; a fourth semiconductor area and a fifth semiconductor area both formed inside the second well; a sixth semiconductor area formed in a junction between the second well and the middle region, wherein a second gate is formed over a region between the fifth and sixth semiconductor areas. | 02-05-2009 |
20090032839 | Semiconductor Device and Its Driving Method - A semiconductor device having a thyristor SCR with reduced turn-off time. A third semiconductor region of the second conductivity type (anode AN) and a fourth semiconductor region of the first conductivity type (anode gate AG) are formed in the top layer of a first semiconductor region; fifth semiconductor region of the first conductivity type (cathode CA) and sixth semiconductor region of the second conductivity type (cathode gate CG) are formed in the top layer of a second semiconductor region; a gate insulating film and gate electrode MG are formed on the second semiconductor region. When the thyristor is turned off from the on state, a higher potential than that on the anode is applied to the anode gate, and a diode made up of the anode and the anode gate inside the thyristor is made to conduct so as to control the potential of the anode during driving. | 02-05-2009 |
20090039385 | SEMICONDUCTOR DEVICES - A device comprises a first sub-collector formed in an upper portion of a substrate and a lower portion of a first epitaxial layer and a second sub-collector formed in an upper portion of the first epitaxial layer and a lower portion of a second epitaxial layer. The device further comprises a reach-through structure connecting the first and second sub-collectors and an N-well formed in a portion of the second epitaxial layer and in contact with the second sub-collector and the reach-through structure. The device further comprises N+ diffusion regions in contact with the N-well, a P+ diffusion region in contact with the N-well, and shallow trench isolation structures between the N+ and P+ diffusion regions. | 02-12-2009 |
20090050931 | SWITCHING ASSEMBLY FOR AN AIRCRAFT IGNITION SYSTEM - A switching assembly is disclosed for a high voltage aircraft ignition system. The switching assembly includes a ceramic substrate and switch die that includes an anode bonded to an electrical pad on the ceramic substrate. The switch die includes a semiconductor device having a plurality of interleaved gates and cathodes, and includes a ceramic cap having at least one gate pad connected to the gates and at least one cathode pad connected to the cathodes. The switching assembly includes leads connected to the gate pad, the cathode pad, and the electrical pad on the substrate. The switch die and a portion of the leads are potted to form the completed assembly. | 02-26-2009 |
20090065802 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD OF THE SAME - Disclosed herein is a semiconductor device including: an element forming region of a semiconductor substrate isolated by an element isolating region formed in the semiconductor substrate; an insulating film formed on the semiconductor substrate; an opening portion formed in the insulating film to include a region to be selectively epitaxially grown in the element forming region; and a semiconductor layer formed by selective epitaxial growth of the element forming region of the semiconductor substrate in the opening portion. | 03-12-2009 |
20090072268 | SEMICONDUCTOR DEVICE - A semiconductor device includes a semiconductor substrate having a main surface and a semiconductor element having an insulated gate field effect portion formed in the semiconductor substrate. The semiconductor element includes an n | 03-19-2009 |
20090085059 | SEMICONDUCTOR DEVICE INCLUDING ELECTROSTATIC DISCHARGE PROTECTION CIRCUIT - A SGPMOS transistor includes a base, a P-type diffusion layer, a gate electrode, and a LOCOS oxide film. The base includes at least one of a N-type semiconductor substrate, a P-type semiconductor substrate, and a N-type well. The P-type diffusion layer includes a P-type source and a P-type drain. At least the P-type drain includes a double diffusion structure including first and second P-type drain diffusion layers. The LOCOS oxide film is provided on the first P-type drain diffusion layer and covered by an end of the gate electrode. The first and the second P-type drain diffusion layers satisfy a relation of Y04-02-2009 | |
20090108287 | ONE-TRANSISTOR STATIC RANDOM ACCESS MEMORY WITH INTEGRATED VERTICAL PNPN DEVICE - A one-transistor static random access memory (1T SRAM) device and circuit implementations are disclosed. The 1T SRAM device includes a planar field effect transistor (FET) on the surface of the cell and a vertical PNPN device integrated to one side of the FET. A base of the PNP of the PNPN device is electrically common to the emitter/collector of the FET and a base of the NPN of the PNPN device is electrically common to the channel region of the FET. The anode pin of the PNPN device may be used as a word line or a bit line. A method of forming the 1T SRAM device is also disclosed. | 04-30-2009 |
20090108288 | Semiconductor device and method of manufacturing the same - A semiconductor device includes a semiconductor substrate that includes a plurality of section having different thicknesses. The sections include a first section having a first thickness and a second section having a second thickness, the second section is the thinnest section among all the sections, and the first thickness is greater than the second thickness. A plurality of isolation trenches penetrates the semiconductor substrate for defining a plurality of element-forming regions in the first section and the second section. A plurality of elements is located at respective ones of the plurality of element-forming regions. The elements include a double-sided electrode element that includes a pair of electrodes separately disposed on the first surface and the second surface, and the double-sided electrode element is located in the second section. | 04-30-2009 |
20090140288 | HIGH ION/IOFF SOI MOSFET USING BODY VOLTAGE CONTROL - A semiconductor device may comprise a partially-depleted SOI MOSFET having a floating body region disposed between a source and drain. The floating body region may be driven to receive injected carriers for adjusting its potential during operation of the MOSFET. In a particular case, the MOSFET may comprise another region of semiconductor material in contiguous relationship with a drain/source region of the MOSFET and on a side thereof opposite to the body region. This additional region may be formed with a conductivity of type opposite the drain/source, and may establish an effective bipolar device per the body, the drain/source and the additional region. The geometries and doping thereof may be designed to establish a transport gain of magnitude sufficient to assist the injection of carriers into the floating body region, yet small enough to guard against inter-latching with the MOSFET. | 06-04-2009 |
20090159926 | SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A semiconductor device includes a thyristor in which a first-conductivity-type first region, a second-conductivity-type second region having a conductivity type reverse to the first conductivity type, a first-conductivity-type third region, and a second-conductivity-type fourth region are sequentially arranged to form junctions. The third region is formed on a semiconductor substrate separated by an element isolation region. A gate electrode formed via a gate insulating film and side wall formed at wall side of both side of the gate electrode are provided on the third region, and the fourth region is formed so that one end thereof covers the joint portion between the other end of the third region and the element isolation regions, and so that the other end of the fourth region is joined with the sidewall on the other side. | 06-25-2009 |
20090206363 | SOLID-STATE SWITCH CAPABLE OF BIDIRECTIONAL OPERATION - A monolithic switching device including a main semiconductor region configured to provide a current-carrying channel as in the form of two-dimensional electron gas. Disposed symmetrically on a surface of the main semiconductor region are two main electrodes to be coupled to an electric circuit for switching control, two gate electrodes for individually controlling current flow between the main electrodes through the current-carrying channel, and two diode-forming electrodes electrically connected respectively to the two main electrodes. The device operates in either Switch On Mode, Switch Off Mode, Negative Current Mode, or Positive Current Mode depending upon voltages applied to the two gate electrodes. | 08-20-2009 |
20090212320 | Semiconductor devices and semiconductor apparatuses including the same - Semiconductor devices and semiconductor apparatuses including the same are provided. The semiconductor devices include a body region disposed on a semiconductor substrate, gate patterns disposed on the semiconductor substrate and on opposing sides of the body region, and first and second impurity doped regions disposed on an upper surface of the body region. The gate patterns may be separated from the first and second impurity doped regions by, or greater than, a desired distance, such that the gate patterns do not to overlap the first and second impurity doped regions in a direction perpendicular to the first and second impurity doped regions. | 08-27-2009 |
20090261379 | SEMICONDUCTOR DEVICE WITH A SEMICONDUCTOR BODY AND METHOD FOR ITS PRODUCTION - A semiconductor device includes an active region with a vertical drift path of a first conduction type and with a near-surface lateral well of a second, complementary conduction type. In addition, the semiconductor device has an edge region surrounding the active region. This edge region has a variable lateral doping material zone of the second conduction type, which adjoins the well. A transition region in which the concentration of doping material gradually decreases from the concentration of the well to the concentration at the start of the variable lateral doping material zone is located between the lateral well and the variable lateral doping material zone. | 10-22-2009 |
20090278166 | SEMICONDUCTOR DEVICE - A semiconductor device in which both an IGBT element region and a diode element region exist in the same semiconductor substrate includes a low lifetime region, which is formed in at least a part of a drift layer within the diode element region and shortens the lifetime of holes. A mean value of the lifetime of holes in the drift layer that includes the low lifetime region is shorter within the IGBT element region than within the diode element region. | 11-12-2009 |
20090289276 | SEMICONDUCTOR DEVICE - A semiconductor device is provided. On one main surface side of an n-type semiconductor substrate, a p-type diffusion region to serve as an anode of a diode is formed. A guard ring formed of a p-type diffusion region is formed to surround the anode. On the other main surface side, an n-type ultrahigh-concentration impurity layer and an n-type high-concentration impurity layer to serve as a cathode are formed. In a guard-ring opposed region located in the cathode and opposite to the guard ring, a cathode-side p-type diffusion region is formed. Accordingly, concentration of the electric current on an outer peripheral end portion of the anode is suppressed. | 11-26-2009 |
20090294798 | Bipolar Device Compatible with CMOS Process Technology - A bipolar device includes: an emitter of a first polarity type constructed on a semiconductor substrate; a collector of the first polarity type constructed on the semiconductor substrate; a gate pattern in a mesh configuration defining the emitter and the collector; an intrinsic base of a second polarity type underlying the gate pattern; and an extrinsic base constructed atop the gate pattern and coupled with the intrinsic base, for functioning together with the intrinsic base as a base of the bipolar device. | 12-03-2009 |
20090309129 | Semiconductor ESD Device and Method of Making Same - A semiconductor device includes an SCR ESD device region disposed within a semiconductor body, and a plurality of first device regions of the first conductivity type disposed on a second device region of the second conductivity type, where the second conductivity type is opposite the first conductivity type. Also included is a plurality of third device regions having a sub-region of the first conductivity type and a sub-region of the second conductivity type disposed on the second device region. The first regions and second regions are distributed such that the third regions are not directly adjacent to each other. A fourth device region of the first conductivity type adjacent to the second device region and a fifth device region of the second conductivity type disposed within the fourth device region are also included. | 12-17-2009 |
20100065885 | SOI DEVICE WITH MORE IMMUNITY FROM STUBSTRATE VOLTAGE - A semiconductor on insulator device has an insulator layer, an active layer ( | 03-18-2010 |
20100109043 | METHODS AND STRUCTURES FOR ELECTROSTATIC DISCHARGE PROTECTION - A semiconductor device includes a first well region of a first conductivity, a second well region of a second conductivity type, a source region of the second conductivity type within the first well region, and a drain region of the second conductivity type at least partially within the second well region. A well contact to the first well region is coupled to the source. A third doped region of the first conductivity type and a fourth doped region of the second conductivity type are located in the second well region. A first transistor includes the third doped region, the second well region, and the first well region. The first transistor is coupled to a switch device. A second transistor includes the second well region, the first well region, and the source region. The first and the second transistors are configured to provide a current path during an ESD event. | 05-06-2010 |
20100171148 | SEMICONDUCTOR DEVICES - A device comprises a first sub-collector formed in an upper portion of a substrate and a lower portion of a first epitaxial layer and a second sub-collector formed in an upper portion of the first epitaxial layer and a lower portion of a second epitaxial layer. The device further comprises a reach-through structure connecting the first and second sub-collectors and an N− well formed in a portion of the second epitaxial layer and in contact with the second sub-collector and the reach-through structure. The device further comprises N+ diffusion regions in contact with the N− well, a P+ diffusion region in contact with the N− well, and shallow trench isolation structures between the N+ and P+ diffusion regions. | 07-08-2010 |
20100207161 | Device and Method for Coupling First and Second Device Portions - This disclosure relates to devices and methods relating to coupled first and second device portions. | 08-19-2010 |
20100252860 | LATERAL BIPOLAR JUNCTION TRANSISTOR WITH REDUCED BASE RESISTANCE - A lateral bipolar junction transistor formed in a semiconductor substrate includes an emitter region; a base region surrounding the emitter region; a gate disposed at least over a portion of the base region; a collector region having at least one open side and being disposed about a periphery of the base region; a shallow trench isolation (STI) region disposed about a periphery of the collector region; a base contact region disposed about a periphery of the STI region; and an extension region merging with the base contact region and laterally extending to the gate on the open side of the collector region. | 10-07-2010 |
20100276727 | REVERSE-CONDUCTING SEMICONDUCTOR DEVICE - A reverse-conducting semiconductor device is disclosed with an electrically active region, which includes a freewheeling diode and an insulated gate bipolar transistor on a common wafer. Part of the wafer forms a base layer with a base layer thickness. A first layer of a first conductivity type with at least one first region and a second layer of a second conductivity type with at least one second and third region are alternately arranged on the collector side. Each region has a region area with a region width surrounded by a region border. The RC-IGBT can be configured such that the following exemplary geometrical rules are fulfilled: each third region area is an area, in which any two first regions have a distance bigger (i.e., larger) than two times the base layer thickness; the at least one second region is that part of the second layer, which is not the at least one third region; the at least one third region is arranged in the central part of the active region in such a way that there is a minimum distance between the third region border to the active region border of at least once the base layer thickness; the sum of the areas of the at least one third region is between 10 and 30% of the active region; and each first region width is smaller than the base layer thickness. | 11-04-2010 |
20100289057 | INTEGRATED CIRCUITS USING GUARD RINGS FOR ESD, SYSTEMS, AND METHODS FOR FORMING THE INTEGRATED CIRCUITS - An integrated circuit includes at least one transistor over a substrate. A first guard ring is disposed around the at least one transistor. The first guard ring has a first type dopant. A second guard ring is disposed around the first guard ring. The second guard ring has a second type dopant. A first doped region is disposed adjacent to the first guard ring. The first doped region has the second type dopant. A second doped region is disposed adjacent to the second guard ring. The second doped region has the first type dopant. The first guard ring, the second guard ring, the first doped region, and the second doped region are capable of being operable as a first silicon controlled rectifier (SCR) to substantially release an electrostatic discharge (ESD). | 11-18-2010 |
20100295092 | INTEGRATED PMOS TRANSISTOR AND SCHOTTKY DIODE - The present invention discloses an integrated PMOS transistor and Schottky diode, comprising a PMOS transistor which includes a gate, a source, a drain and a channel region between the source and drain, wherein the source, drain and channel region are formed in a substrate, and a parasitic diode is formed between the drain and the channel region; and a Schottky diode formed in the substrate and connected in reverse series with the parasitic diode, the Schottky diode having one end connected with the parasitic diode and the other end connected with the source. | 11-25-2010 |
20100327313 | SEMICONDUCTOR DEVICE - A semiconductor device includes a semiconductor substrate and a MOS transistor. The semiconductor substrate has the first main surface and the second main surface facing each other. The MOS transistor includes a gate electrode ( | 12-30-2010 |
20110127574 | DEVICE FOR PREVENTING CURRENT-LEAKAGE - A device for preventing current-leakage is located between a transistor and a capacitor of a memory cell. The two terminals of the device for preventing current-leakage are respectively connected with a slave terminal of the transistor and an electric pole of the capacitor. The device for preventing current-leakage has at least two p-n junctions. The device for preventing current-leakage is a lateral silicon controlled rectifier, a diode for alternating current, or a silicon controlled rectifier. By utilizing the driving characteristic of the device for preventing current-leakage, electric charge stored in the capacitor hardly passes through the device for preventing current-leakage when the transistor is turned off to improve the current-leakage problem. | 06-02-2011 |
20110156093 | HIGH-VOLTAGE POWER TRANSISTOR USING SOI TECHNOLOGY - The power transistor configured to be integrated into a trench-isolated thick layer SOI-technology with an active silicon layer with a thickness of about 50 μm. The power transistor may have a lower resistance than the DMOS transistor and a faster switch-off behavior than the IGBT. | 06-30-2011 |
20110163351 | Low Voltage Power Supply - This invention provides a structure for low-voltage power supply in high-voltage devices or IC's made on a semiconductor substrate of a first conductivity type. The structure comprises a heavily doped semiconductor region of the first conductivity type between, but not contacted with, two semiconductor regions of the second conductivity type. When the two semiconductor regions of the second conductivity type have reverse-biased voltage with respect to substrate, the depletion region of substrate reaches the heavily doped semiconductor region of the first conductivity type, the heavily doped semiconductor region of the first conductivity type constructs a terminal of low-voltage power supply and any one of the semiconductor region of the second conductivity type constructs another terminal. The heavily doped semiconductor region is used as one terminal of a primary low-voltage power supply and any other region is used as another terminal of it. Thus, the cost of a low-voltage power supply can be reduced and the electrical performances be improved. | 07-07-2011 |
20110180842 | HIGH VOLTAGE SCRMOS IN BiCMOS PROCESS TECHNOLOGIES - An integrated circuit containing an SCRMOS transistor. The SCRMOS transistor has one drain structure with a centralized drain diffused region and distributed SCR terminals, and a second drain structure with distributed drain diffused regions and SCR terminals. An MOS gate between the centralized drain diffused region and a source diffused region is shorted to the source diffused region. A process of forming the integrated circuit having the SCRMOS transistor is also disclosed. | 07-28-2011 |
20110204413 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD OF THE SAME - In order to improve characteristics of an IGBT, particularly, to reduce steady loss, turn-off time and turn-off loss, a thickness of a surface semiconductor layer is set to about 20 nm to 100 nm in an IGBT including: a base layer; a buried insulating film provided with an opening part; the surface semiconductor layer connected to the base layer below the opening part; a p type channel forming layer formed in the surface semiconductor layer; an n | 08-25-2011 |
20110215371 | THYRISTOR BASED MEMORY CELLS, DEVICES AND SYSTEMS INCLUDING THE SAME AND METHODS FOR FORMING THE SAME - Semiconductor devices including a plurality of thyristor-based memory cells, each having a cell size of 4F | 09-08-2011 |
20110215372 | ESD Protection Devices - An ESD protection device is provided. The ESD protection device comprises an SCR and an ESD detection circuit. The SCR is coupled between a high voltage and a ground and has a special semiconductor structure which saves area. When the ESD detection circuit detects an ESD event, the ESD detection circuit drives the SCR to provide a discharging path. | 09-08-2011 |
20110215373 | SYSTEM AND METHOD FOR MANUFACTURING DOUBLE EPI N-TYPE LATERAL DIFFUSION METAL OXIDE SEMICONDUCTOR TRANSISTORS - A system and a method are disclosed for manufacturing double epitaxial layer N-type lateral diffusion metal oxide semiconductor transistors. In one embodiment two N-type buried layers are used to minimize the operation of a parasitic PNP bipolar transistor. The use of two N-type buried layers increases the base width of the parasitic PNP bipolar transistor without significantly decreasing the peak doping profiles in the two N-type buried layers. In one embodiment two N-type buried layers and one P-type buried layer are used to form a protection NPN bipolar transistor that minimizes the operation of parasitic NPN bipolar transistor. The N-type lateral diffusion metal oxide semiconductor transistors of the invention are useful in inductive full load or half bridge converter circuits that drive very high current. | 09-08-2011 |
20110227127 | ELECTRO-STATIC DISCHARGE PROTECTION CIRCUIT AND SEMICONDUCTOR DEVICE - An electro-static discharge protection circuit includes: a PNPN junction, a P-type side of the PNPN junction being coupled to a terminal, an N-type side of the PNPN junction being coupled to ground; and a P-type metal oxide semiconductor transistor, a source and a gate of the P-type metal oxide semiconductor transistor being coupled to an N-type side of a PN junction whose P-type side coupled to the ground, and a drain of the P-type metal oxide semiconductor transistor being coupled to the terminal. | 09-22-2011 |
20120037953 | SEMICONDUCTOR DEVICE - A semiconductor device comprises a vertical MOS transistor including a semiconductor substrate having a silicon pillar, a gate electrode formed along a sidewall of the silicon pillar, a gate insulating film formed between the gate electrode and the silicon pillar, an upper diffusion layer formed on the top of the silicon pillar, and a lower diffusion layer formed lower than the upper diffusion layer in the semiconductor substrate; and a pad electrically connected to the lower diffusion layer. Breakdown occurs between the lower diffusion layer and the semiconductor substrate when a surge voltage is applied. | 02-16-2012 |
20120061720 | VTS insulated gate bipolar transistor - In one embodiment, a power transistor device comprises a substrate that forms a PN junction with an overlying buffer layer. The power transistor device further includes a first region, a drift region that adjoins a top surface of the buffer layer, and a body region. The body region separates the first region from the drift region. First and second dielectric regions respectively adjoin opposing lateral sidewall portions of the drift region. The dielectric regions extend in a vertical direction from at least just beneath the body region down at least into the buffer layer. First and second field plates are respectively disposed in the first and second dielectric regions. A trench gate that controls forward conduction is disposed above the dielectric region adjacent to and insulated from the body region. | 03-15-2012 |
20120061721 | POWER SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A power semiconductor device includes a first semiconductor layer of a first conductivity type, a first drift layer, and a second drift layer. The first drift layer includes a first epitaxial layer of the first conductivity type, a plurality of first first-conductivity-type pillar layers, and a plurality of first second-conductivity-type pillar layers. The second drift layer is formed on the first drift layer and includes a second epitaxial layer of the first conductivity type, a plurality of second second-conductivity-type pillar layers, a plurality of second first-conductivity-type pillar layers, a plurality of third second-conductivity-type pillar layers, and a plurality of third first-conductivity-type pillar layers. The plurality of second second-conductivity-type pillar layers are connected to the first second-conductivity-type pillar layers. The plurality of second first-conductivity-type pillar layers are connected to the first first-conductivity-type pillar layers. The plurality of third second-conductivity-type pillar layers are arranged on the first epitaxial layer. | 03-15-2012 |
20120061722 | CONTROL DEVICE OF SEMICONDUCTOR DEVICE - A control device of a semiconductor device is provided. The control device of a semiconductor device is capable of reducing both ON resistance and feedback capacitance in a hollow-gate type planar MOSFET to which a second gate electrode is provided or a trench MOSFET to which a second gate electrode is provided. In the control device controlling driving of a hollow-gate type planar MOSFET to which a second gate electrode is provided or a trench MOSFET to which a second gate electrode is provided, a signal of tuning ON or OFF is outputted to a gate electrode in a state of outputting a signal of turning OFF to the second gate electrode. | 03-15-2012 |
20120068221 | SEMICONDUCTOR DEVICE - A semiconductor device includes a base layer, a second conductivity type semiconductor layer, a first insulating film, and a first electrode. The first insulating film is provided on an inner wall of a plurality of first trenches extending from a surface of the second conductivity type semiconductor layer toward the base layer side, but not reaching the base layer. The first electrode is provided in the first trench via the first insulating film, and provided in contact with a surface of the second conductivity type semiconductor layer. The second conductivity type semiconductor layer includes first and second regions. The first region is provided between the first trenches. The second region is provided between the first second conductivity type region and the base layer, and between a bottom part of the first trench and the base layer. The second region has less second conductivity type impurities than the first region. | 03-22-2012 |
20120104457 | POWER SWITCHING ASSEMBLY HAVING A ROBUST GATE CONNECTION - A structurally robust power switching assembly, that has a power transistor, comprising a thin and delicate layer of metal oxide, and a major surface of the layer of metal oxide being substantially coincident with a major surface of the power transistor, the major surface of the power transistor defining both an emitter and a gate. Also, dielectric material is placed over a portion of the emitter, so that it abuts the gate and a highly conductive pillar is constructed out of a relatively soft material, supported by the gate and the dielectric material, so that it has a larger area than would be possible if it was supported only by the gate. | 05-03-2012 |
20120112240 | SEMICONDUCTOR DEVICE - An N type layer made of an N type epitaxial layer in which an N+ type drain layer etc are formed is surrounded by a P type drain isolation layer extending from the front surface of the N type epitaxial layer to an N+ type buried layer. A P type collector layer is formed in an N type layer made of the N type epitaxial layer surrounded by the P type drain isolation layer and a P type element isolation layer, extending from the front surface to the inside of the N type layer. A parasitic bipolar transistor that uses the first conductive type drain isolation layer as the emitter, the second conductive type N type layer as the base, and the collector layer as the collector is thus formed so as to flow a surge current into a ground line. | 05-10-2012 |
20120139004 | HIGH-PERFORMANCE ONE-TRANSISTOR MEMORY CELL - One aspect of this disclosure relates to a memory cell. In various embodiments, the memory cell includes an access transistor having a floating node, and a diode connected between the floating node and a diode reference potential line. The diode includes an anode, a cathode, and an intrinsic region between the anode and the cathode. A charge representative of a memory state of the memory cell is held across the intrinsic region of the diode. In various embodiments, the memory cell is implemented in bulk semiconductor technology. In various embodiments, the memory cell is implemented in semiconductor-on-insulator technology. In various embodiments, the diode is gate-controlled. In various embodiments, the diode is charge enhanced by an intentionally generated charge in a floating body of an SOI access transistor. Various embodiments include laterally-oriented diodes (stacked and planar configurations), and various embodiments include vertically-oriented diodes. Other aspects and embodiments are provided herein. | 06-07-2012 |
20120168817 | LATERAL EXTENDED DRAIN METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR (LEDMOSFET) HAVING A HIGH DRAIN-TO-BODY BREAKDOWN VOLTAGE (Vb), A METHOD OF FORMING AN LEDMOSFET, AND A SILICON-CONTROLLED RECTIFIER (SCR) INCORPORATING A COMPLEMENTARY PAIR OF LEDMOSFETS - Disclosed are embodiments of a lateral, extended drain, metal oxide semiconductor, field effect transistor (LEDMOSFET) having a high drain-to-body breakdown voltage. Discrete conductive field (CF) plates are adjacent to opposing sides of the drain drift region, each having an angled sidewall such that the area between the drain drift region and the CF plate has a continuously increasing width along the length of the drain drift region from the channel region to the drain region. The CF plates can comprise polysilicon or metal structures or dopant implant regions within the same semiconductor body as the drain drift region. The areas between the CF plates and the drain drift region can comprise tapered dielectric regions or, alternatively, tapered depletion regions within the same semiconductor body as the drain drift region. Also disclosed are embodiments of a method for forming an LEDMOSFET and embodiments of a silicon-controlled rectifier (SCR) incorporating such LEDMOSFETs. | 07-05-2012 |
20120205713 | Memory Cells, Memory Arrays, Methods Of Forming Memory Cells, And Methods Of Forming A Shared Doped Semiconductor Region Of A Vertically Oriented Thyristor And A Vertically Oriented Access Transistor - A memory cell includes a thyristor having a plurality of alternately doped, vertically superposed semiconductor regions; a vertically oriented access transistor having an access gate; and a control gate operatively laterally adjacent one of the alternately doped, vertically superposed semiconductor regions. The control gate is spaced laterally of the access gate. Other embodiments are disclosed, including methods of forming memory cells and methods of forming a shared doped semiconductor region of a vertically oriented thyristor and a vertically oriented access transistor. | 08-16-2012 |
20120211799 | POWER SEMICONDUCTOR MODULE AND METHOD OF MANUFACTURING A POWER SEMICONDUCTOR MODULE - A power semiconductor module including a semiconductor device (e.g., an insulated gate bipolar transistor (IGBT), a reverse conductive (RC IGBT), or a bi-mode insulated gate transistor (BIGT)) with an emitter electrode and a collector electrode is provided. An electrically conductive upper layer is sintered to the emitter electrode. The upper layer is capable of forming an eutecticum with the semiconductor of the semiconductor device, and has a coefficient of thermal expansion which differs from the coefficient of thermal expansion of the semiconductor in a range of ≦250%, for example ≦50%. An electrically conductive base plate is sintered to the collector electrode. The semiconductor module includes an electrically conductive area which is electrically isolated from the base plate and connected to the upper layer via a direct electrical connection. The semiconductor module is easy to prepare, has an improved reliability and exhibits short circuit failure mode capacity. | 08-23-2012 |
20120217540 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREFOR - A semiconductor device having a semiconductor body, a source metallization arranged on a first surface of the semiconductor body and a trench including a first trench portion and a second trench portion and extending from the first surface into the semiconductor body is provided. The semiconductor body further includes a pn-junction formed between a first semiconductor region and a second semiconductor region. The first trench portion includes an insulated gate electrode which is connected to the source metallization, and the second trench portion includes a conductive plug which is connected to the source metallization and to the second semiconductor region. | 08-30-2012 |
20120280270 | Field Effect Transistor Devices with Low Source Resistance - A semiconductor device includes a drift layer having a first conductivity type, a well region in the drift layer having a second conductivity type opposite the first conductivity type, and a source region in the well region, The source region has the first conductivity type and defines a channel region in the well region. The source region includes a lateral source region adjacent the channel region and a plurality of source contact regions extending away from the lateral source region opposite the channel region. A body contact region having the second conductivity type is between at least two of the plurality of source contact regions and is in contact with the well region. A source ohmic contact overlaps at least one of the source contact regions and the body contact region. A minimum dimension of a source contact area of the semiconductor device is defined by an area of overlap between the source ohmic contact and the at least one source contact region. | 11-08-2012 |
20120280271 | SEMICONDUCTOR DEVICE AND ELECTRONIC DEVICE - A semiconductor device including: an FET; a MOSFET having a drain thereof connected with a source of the FET; a resistor having one end thereof connected with a gate of the FET and having the other end thereof connected with a source of the MOSFET; and a diode having an anode thereof connected with the gate of the FET and having a cathode thereof connected with the source of the MOSFET. | 11-08-2012 |
20120286322 | METHODS AND STRUCTURES FOR ELECTROSTATIC DISCHARGE PROTECTION - A semiconductor device includes a first well region of a first conductivity type, a second well region of a second conductive type within the first well region. A first region of the first conductivity type and a second region of the second conductivity type are disposed within the second well region. A third region of the first conductivity type and a fourth region of the second conductivity type are disposed within the first well region, wherein the third region and the fourth region are separated by the second well region. The semiconductor device also includes a switch device coupled to the third region. | 11-15-2012 |
20130015493 | SEMICONDUCTOR APPARATUS AND METHOD FOR MANUFACTURING SEMICONDUCTOR APPARATUSAANM SENOO; MasaruAACI Okazaki-shiAACO JPAAGP SENOO; Masaru Okazaki-shi JP - A semiconductor apparatus includes a substrate having a device region and a peripheral region located around the device region. A first semiconductor region is formed within the device region, is of a first conductivity type, and is exposed at an upper surface of the substrate. Second-fourth semiconductor regions are formed within the peripheral region. The second semiconductor region is of the first conductivity type, has a lower concentration of the first conductivity type of impurities, is exposed at the upper surface, and is consecutive with the first semiconductor region directly or indirectly. The third semiconductor region is of a second conductivity type, is in contact with the second semiconductor region from an underside, and is an epitaxial layer. The fourth semiconductor region is of the second conductivity type, has a lower concentration of the second conductivity type of impurities, and is in contact with the third semiconductor region from an underside. | 01-17-2013 |
20130032854 | Rectirier - The rectifier in this invention is connected in series with two field effect transistor, comprises: the source S | 02-07-2013 |
20130069108 | POWER SEMICONDUCTOR MODULE - Disclosed herein is a power semiconductor module including: a circuit board having gate, emitter, and collector patterns formed thereon; a first semiconductor chip mounted on the circuit board, having gate and emitter terminals each formed on one surface thereof, and having a collector terminal formed on the other surface thereof; a second semiconductor chip mounted on the first semiconductor chip, having a cathode terminal formed on one surface thereof, and having an anode terminal formed on the other surface thereof; a first conductive connection member having one end disposed between the collector terminal of the first semiconductor chip and the cathode terminal of the second semiconductor chip and the other end contacting the collector pattern of the circuit board; and a second conductive connection member having one end contacting the anode terminal of the second semiconductor chip and the other end contacting the emitter pattern of the circuit board. | 03-21-2013 |
20130092976 | A SEMICONDUCTOR POWER DEVICE INTEGRATRED WITHIMPROVED GATE SOURCE ESD CLAMP DIODES - A trench semiconductor power device integrated with four types of ESD clamp diodes for optimization of total perimeter of the ESD clamp diodes, wherein the ESD clamp diodes comprise multiple back to back Zener diodes with alternating doped regions of a first conductivity type next to a second conductivity type, wherein each of the doped regions has a closed ring structure. | 04-18-2013 |
20130099278 | SCR APPARATUS AND METHOD FOR ADJUSTING THE SUSTAINING VOLTAGE - An SCR apparatus includes an SCR structure and a first N injection region. The SCR structure includes a P+ injection region, a P well, an N well and a first N+ injection region, the first N injection region is located under an anode terminal of the P+ injection region of the SCR structure. A method for adjusting a sustaining voltage therefor is provided as well. | 04-25-2013 |
20130140601 | Recessed Channel Negative Differential Resistance-Based Memory Cell - The disclosed recessed thyristor-based memory cell comprises in one embodiment a conductive plug recessed into the bulk of the substrate, which is coupled to or comprises the enable gate of the cell. Vertically disposed around this recessed gate is a thyristor, whose anode is connected to the bit line and cathode is connected to the word line. The disclosed cell comprises no other gate, such as an access transistor, and hence is essentially a one-transistor device. As facilitated by the vertical disposition of the thyristor, the disclosed cell takes up a small amount of area on an integrated circuit when compared to a traditional DRAM cell. The disclosed cell is simple to manufacture in its various embodiments, and is easy to configure into an array of cells. Isolation underneath the cell assists in improving the data retention of the cell and extends the time needed between cell refresh. | 06-06-2013 |
20130168728 | LATERAL INSULATED-GATE BIPOLAR TRANSISTOR AND MANUFACTURING METHOD THEREOF - A lateral insulated-gate bipolar transistor includes a buried insulation layer which opens only part of the collector ion implantation region and isolates the other regions, thereby reducing the loss by the turn-off time. The lateral insulated-gate bipolar transistor further includes a deep ion implantation region formed to face towards the open part of the collector ion implantation region, thereby decreasing the hole current injected into a base region under an emitter ion implantation region, and thereby greatly increasing the latch-up current level by relatively increasing the hole current injected into the deep ion implantation region having no latch-up effect. | 07-04-2013 |
20130234199 | ESD Protection Circuit - One embodiment of the disclosure provides an electrostatic discharge protection circuit. The electrostatic discharge protection circuit includes a p-type field effect transistor, a capacitance device and an n-type field effect transistor. The p-type field effect transistor has a source coupled to an input/output terminal, a gate coupled to a first node and a drain coupled to a second node. The capacitance device has a first terminal coupled to a first rail and a second terminal coupled to the first node. The n-type field effect transistor has a source coupled to the first rail, a gate coupled to the second node and a drain coupled to the first node. | 09-12-2013 |
20130264608 | Self-Protected Drain-extended metal-oxide-semiconductor Transistor - Device structures, design structures, and fabrication methods for a drain-extended metal-oxide-semiconductor (DEMOS) transistor. A first well of a first conductivity type and a second well of a second conductivity type are formed in a device region. The first and second wells are juxtaposed to define a p-n junction. A first doped region of the first conductivity type and a doped region of the second conductivity type are in the first well. The first doped region of the first conductivity type is separated from the second well by a first portion of the first well. The doped region of the second conductivity type is separated from the second well by a second portion of the first well. A second doped region of the first conductivity type, which is in the second well, is separated by a portion of the second well from the first and second portions of the first well. | 10-10-2013 |
20130285113 | BIDIRECTIONAL ELECTROSTATIC DISCHARGE (ESD) PROTECTION DEVICE - A bidirectional electrostatic discharge (ESD) protection device includes a substrate having a topside semiconductor surface that includes a first silicon controlled rectifier (SCR) and a second SCR formed therein including a patterned p-buried layer (PBL) including a plurality of PBL regions. The first SCR includes a first and second n-channel remote drain MOS device each having a gate, a source within a p-body, and sharing a first merged drain. The second SCR includes a third and a fourth n-channel remote drain MOS device each having a gate, a source within a p-body, and sharing a second merged drain. The plurality of PBL regions are directly under at least a portion of the sources while being excluded from being directly under either of the merged drains. | 10-31-2013 |
20130292738 | SEMICONDUCTOR DEVICE - A semiconductor device includes a semiconductor substrate and a MOS transistor. The semiconductor substrate has the first main surface and the second main surface facing each other. The MOS transistor includes a gate electrode ( | 11-07-2013 |
20130307017 | ELECTROSTATIC DISCHARGE PROTECTION CIRCUIT - The invention discloses an ESD protection circuit, comprising a P-type substrate; an N-well formed on the P-type substrate; a P-doped region formed on the N-well, wherein the P-doped region is electrically connected to an input/output terminal of a circuit under protection; a first N-doped region formed on the P-type substrate, the first N-doped region is electrically connected to a first node, and the P-doped region, the N-well, the P-type substrate, and the first N-doped region constitute a silicon controlled rectifier; and a second N-doped region formed on the N-well and electrically connected to a second node, wherein a part of the P-doped region and the second N-doped region constitute a discharging path, and when an ESD event occurs at the input/output terminal, the silicon controlled rectifier and the discharging path bypass electrostatic charges to the first and second nodes respectively. | 11-21-2013 |
20130334564 | MONOLITHIC COMPOUND SEMICONDUCTOR STRUCTURE - A monolithic compound semiconductor structure is disclosed. The monolithic compound semiconductor structure comprises a substrate, an n-type FET epitaxial structure, an n-type etching-stop layer, a p-type insertion layer, and an npn HBT epitaxial structure, and it can be used to form an FET, an HBT, or a thyristor. | 12-19-2013 |
20140015002 | MOS TRANSISTOR ON SOI PROTECTED AGAINST OVERVOLTAGES - A MOS transistor protected against overvoltages formed in an SOI-type semiconductor layer arranged on an insulating layer itself arranged on a semiconductor substrate including a lateral field-effect control thyristor formed in the substrate at least partly under the MOS transistor, a field-effect turn-on region of the thyristor extending under at least a portion of a main electrode of the MOS transistor and being separated there-from by said insulating layer, the anode and the cathode of the thyristor being respectively connected to the drain and to the source of the MOS transistor, whereby the thyristor turns on in case of a positive overvoltage between the drain and the source of the MOS transistor. | 01-16-2014 |
20140027810 | SINGLE-EVENT LATCH-UP PREVENTION TECHNIQUES FOR A SEMICONDUCTOR DEVICE - A technique for addressing single-event latch-up (SEL) in a semiconductor device includes determining a location of a parasitic silicon-controlled rectifier (SCR) in an integrated circuit design of the semiconductor device. In this case, the parasitic SCR includes a parasitic pnp bipolar junction transistor (BJT) and a parasitic npn BJT. The technique also includes incorporating a first transistor between a first power supply node and an emitter of the parasitic pnp BJT in the integrated circuit design. The first transistor includes a first terminal coupled to the first power supply node, a second terminal coupled to the emitter of the parasitic pnp BJT, and a control terminal. The first transistor is not positioned between a base of the pnp BJT and the first power supply node. The first transistor limits current conducted by the parasitic pnp bipolar junction transistor following an SEL. | 01-30-2014 |
20140048843 | BOTH CARRIERS CONTROLLED THYRISTOR - The present invention relates to a technique of semiconductor devices, and provides a semiconductor device, which uses two controllable current sources to control the electron current and the hole current of the voltage-sustaining region of a thyristor under conduction state, making the sum of current between anode and cathode close to saturation under high voltage, thus avoiding the current crowding effect in local region and increasing the reliability of the device. Besides, it further provides a method of implementing the two current sources in the device and a method to improve the switching speed. | 02-20-2014 |
20140061717 | POWER SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - Disclosed herein is a power semiconductor device including: a base substrate having one surface and the other surface and formed of a first conductive type drift layer; a first conductive type diffusion layer formed on one surface of the base substrate and having a concentration higher than that of the first conductive type drift layer; and a trench formed so as to penetrate through the second conductive type well layer and the first conductive type diffusion layer from one surface of the base substrate including the second conductive type well layer in a thickness direction. | 03-06-2014 |
20140097465 | SILICON CONTROLLED RECTIFIER (SCR) DEVICE FOR BULK FINFET TECHNOLOGY - Some aspects relate to a semiconductor device disposed on a semiconductor substrate. The device includes an STI region that laterally surrounds a base portion of a semiconductor fin. An anode region, which has a first conductivity type, and a cathode region, which has a second conductivity type, are arranged in an upper portion of the semiconductor fin. A first doped base region, which has the second conductivity type, is arranged in the base of the fin underneath the anode region. A second doped base region, which has the first conductivity type, is arranged in the base of the fin underneath the cathode region. A current control unit is arranged between the anode region and the cathode region. The current control unit is arranged to selectively enable and disable current flow in the upper portion of the fin based on a trigger signal. Other devices and methods are also disclosed. | 04-10-2014 |
20140103392 | SEMICONDUCTOR DEVICE - A semiconductor device comprises a vertical MOS transistor including a semiconductor substrate having a silicon pillar, a gate electrode formed along a sidewall of the silicon pillar, a gate insulating film formed between the gate electrode and the silicon pillar, an upper diffusion layer formed on the top of the silicon pillar, and a lower diffusion layer formed lower than the upper diffusion layer in the semiconductor substrate; and a pad electrically connected to the lower diffusion layer. Breakdown occurs between the lower diffusion layer and the semiconductor substrate when a surge voltage is applied. | 04-17-2014 |
20140110752 | Power Module and Method of Manufacturing the Power Module - A power module includes a semiconductor device having at least one electrode surface on each side thereof, a first conductive member connected to the electrode surface provided on one side of the semiconductor device with solder, and a second conductive member connected to the electrode surface provided on the other side of the semiconductor device with solder, with at least one of the electrode surfaces provided on the one side of the semiconductor device being double comb-shaped. | 04-24-2014 |
20140124828 | ESD PROTECTION CIRCUIT WITH ISOLATED SCR FOR NEGATIVE VOLTAGE OPERATION - A semiconductor controlled rectifier (FIG. | 05-08-2014 |
20140131765 | ESD Devices Comprising Semiconductor Fins - A device includes a semiconductor substrate, and an insulation region extending from a top surface of the semiconductor substrate into the semiconductor substrate. The device further includes a first node and a second node, and an Electro-Static Discharge (ESD) device coupled between the first node and the second node. The ESD device includes a semiconductor fin adjacent to and over a top surface of the insulation region. The ESD device is configured to, in response to an ESD transient on the first node, conduct a current from the first node to the second node. | 05-15-2014 |
20140167102 | SEMICONDUCTOR DEVICE WITH SINGLE-EVENT LATCH-UP PREVENTION CIRCUITRY - A semiconductor device includes a parasitic silicon-controlled rectifier (SCR) and a first transistor. The parasitic SCR includes a parasitic pnp bipolar junction transistor (BJT) and a parasitic npn BJT. The first transistor is coupled between a first power supply node and an emitter of the parasitic pnp BJT. The first transistor includes a first terminal coupled to the first power supply node, a second terminal coupled to the emitter of the parasitic pnp BJT, and a control terminal. The first transistor is not positioned between a base of the pnp BJT and the first power supply node. The first transistor limits current conducted by the parasitic pnp BJT following a single-event latch-up (SEL) event. | 06-19-2014 |
20140197450 | ESD PROTECTION CIRCUIT - An electrostatic discharge (ESD) protection circuit is coupled between first and second pads to protect an internal circuit therebetween. Under a normal operating condition, a voltage on the first pad is higher than that on the second pad. The ESD protection circuit includes a substrate of a first conductivity type; first well of a second conductivity type in the substrate, wherein the first well is coupled to the first pad; a snapback device housed in the first well; and a diode string in the substrate, connected in series with the snapback device and separated from the first well, wherein the serially connected diode string and snapback device is connected between the first pad and the second pad. With the isolation from the first well, the holding voltage of the ESD protection circuit can be tuned by adjusting the number of diodes in the diode string without using a guard ring. | 07-17-2014 |
20140299913 | INTEGRATED CIRCUITS USING GUARD RINGS FOR ESD SYSTEMS, AND METHODS FOR FORMING THE INTEGRATED CIRCUITS - An integrated circuit includes at least one transistor over a substrate, and a first guard ring disposed around the at least one transistor. The integrated circuit further includes a second guard ring disposed around the first guard ring. The integrated circuit further includes a first doped region disposed adjacent to the first guard ring, the first doped region having a first dopant type. The integrated circuit further includes a second doped region disposed adjacent to the second guard ring, the second doped region having a second dopant type. | 10-09-2014 |
20140327038 | POWER SEMICONDUCTOR AND MANUFACTURING METHOD THEREOF - A power semiconductor includes a semiconductor substrate, a metal oxide semiconductor layer, a N-type buffer layer and a P-type injection layer. The semiconductor substrate has a first surface and a second surface. The metal oxide semiconductor layer is formed on the first surface for defining a N-type drift layer of the semiconductor substrate. The N-type buffer layer is formed on the second surface through ion implanting, and the P-type injection layer is formed on the N-type buffer layer through ion implanting. By utilizing the semiconductor substrate having drift layer and forming the N-type buffer layer and the P-type injection layer on the second surface of the semiconductor substrate through ion implanting, the ion concentration is adjustable. As a result, the electron hole injection efficiency and the width of depletion region are easily adjusted, the fabricating processes are simplified, and the fabricating time and cost are reduced. | 11-06-2014 |
20140367736 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A semiconductor device is a composite module in which three power semiconductor modules are arranged at a predetermined interval in the same plane and pin-shaped conductors that are drawn from the power semiconductor modules to the outside are connected to three main terminal plates such that they are integrated with each other. When the entire composite module is accommodated in a protective case and a radiation fin is provided, bolts are inserted into through holes to fix the protective case to the radiation fin. In this way, it is possible to accommodate the composite module in the protective case while reliably bringing the bottom of an insulating substrate into close contact with the radiation fin. | 12-18-2014 |
20150008476 | SEMICONDUCTOR DEVICES AND ARRANGEMENTS - A semiconductor device including: a first semiconductor region of a first conductivity type; a second semiconductor region of a second conductivity type adjacent to the first region; third and fourth semiconductor regions of the second conductivity type over or at least partially within the first semiconductor region; a fifth semiconductor region of the first conductivity type between the third and fourth semiconductor regions; a first gate over the fifth semiconductor region; sixth and seventh semiconductor regions of the first conductivity type over or at least partially within the second semiconductor region; an eighth semiconductor region of the second conductivity type between the sixth and seventh semiconductor regions; a second gate over the eighth semiconductor region; the third and seventh semiconductor regions coupled to first and second regions of the first gate, respectively, and the fourth and sixth semiconductor regions coupled to first and second regions of the second gate, respectively. | 01-08-2015 |
20150014740 | Monolithic Composite III-Nitride Transistor with High Voltage Group IV Enable Switch - There are disclosed herein various implementations of a monolithically integrated component. In one exemplary implementation, such a monolithically integrated component includes an enhancement mode group IV transistor and two or more depletion mode III-Nitride transistors. The enhancement mode group IV transistor may be implemented as a group IV insulated gate bipolar transistor (group IV IGBT). One or more of the III-Nitride transistor(s) may be situated over a body layer of the group IV IGBT, or the III-Nitride transistor(s) may be situated over a collector layer of the IGBT. | 01-15-2015 |
20150137174 | Methods and Apparatus for Increased Holding Voltage in Silicon Controlled Rectifiers for ESD Protection - Methods and apparatus for increased holding voltage SCRs. A semiconductor device includes a semiconductor substrate of a first conductivity type; a first well of the first conductivity type; a second well of a second conductivity type adjacent to the first well, an intersection of the first well and the second well forming a p-n junction; a first diffused region of the first conductivity type formed at the first well and coupled to a ground terminal; a first diffused region of the second conductivity type formed at the first well; a second diffused region of the first conductivity type formed at the second well and coupled to a pad terminal; a second diffused region of the second conductivity type formed in the second well; and a Schottky junction formed adjacent to the first diffused region of the second conductivity type coupled to a ground terminal. Methods for forming devices are disclosed. | 05-21-2015 |
20150349104 | INSULATED GATE TURN-OFF DEVICE WITH TURN-OFF TRANSISTOR - An insulated gate turn-off (IGTO) device, formed as a die, has a layered structure including a p+ layer (e.g., a substrate), an n− epi layer, a p-well, vertical insulated gate regions formed in the p-well, and n+ regions between the gate regions, so that vertical NPN and PNP transistors are formed. The device is formed of a matrix of cells. To turn the device on, a positive voltage is applied to the gate, referenced to the cathode. The cells further contain a vertical p-channel MOSFET, for shorting the base of the NPN transistor to its emitter, to turn the NPN transistor off when the p-channel MOSFET is turned on by a slight negative voltage applied to the gate. This allows the IGTO device to be more easily turned off while in a latch-up condition, when the device is acting like a thyristor. | 12-03-2015 |
20160056146 | Electrostatic Discharge (ESD) Silicon Controlled Rectifier (SCR) with Lateral Gated Section - In an embodiment, an ESD protection circuit may include an STI-bound SCR and a gated SCR that may be electrically in parallel with the STI-bound SCR. The gated SCR may be perpendicular to the STI-bound SCR in a plane of the semiconductor substrate. In an embodiment, the gated SCR may trigger more quickly and turn on more quickly than the STI-bound SCR. The STI-bound SCR may form the main current path for an ESD event. A low capacitive load with rapid response to ESD events may thus be formed. In an embodiment, the anode of the two SCRs may be shared. | 02-25-2016 |
20160093622 | Cross-Coupled Thyristor SRAM Semiconductor Structures and Methods of Fabrication - A memory cell based upon thyristors for an SRAM integrated circuit is described together with a process for fabricating it. The memory cell can be implemented in different combinations of MOS and bipolar select transistors, or without select transistors, with thyristors in a semiconductor substrate with shallow trench isolation. Standard CMOS process technology can be used to manufacture the SRAM. Special circuitry provides lowered power consumption during standby. | 03-31-2016 |
20160093623 | Two-Transistor SRAM Semiconductor Structure and Methods of Fabrication - A two-transistor memory cell based upon a thyristor for an SRAM integrated circuit is described together with a process for fabricating it. The memory cell can be implemented in different combinations of MOS and bipolar select transistors, or without select transistors, with thyristors in a semiconductor substrate with shallow trench isolation. Standard CMOS process technology can be used to manufacture the SRAM. | 03-31-2016 |
20160093624 | Thyristor Volatile Random Access Memory and Methods of Manufacture - A volatile memory array using vertical thyristors is disclosed together with methods of fabricating the array. | 03-31-2016 |
20160133621 | SEMICONDUCTOR DEVICE AND AN ELECTRONIC APPARATUS - A semiconductor device includes a P-type substrate, and an N-well in the P-type substrate. A first N+ diffusion region is located in the P-type substrate, and a first P+ diffusion region is located in the N-well. A second P+ diffusion region is located across a boundary between the P-type substrate and the N-well. A first gate electrode overlies the N-well between the first P+ diffusion regions and the second P+ diffusion region. A second gate electrode overlies the P-type substrate between the second P+ diffusion region and the first N+ diffusion region. The first P+ diffusion region, the N-well, the P-type substrate, and the first N+ diffusion region form an SCR (Silicon-Controlled rectifier) device. The first P+ diffusion region, the second P+ diffusion region, and the first gate electrode form a PMOS transistor. The second P+ diffusion region, the first N+ diffusion region, and the second gate electrode form a gated diode. | 05-12-2016 |
20160141287 | ELECTROSTATIC DISCHARGE PROTECTION CIRCUIT, STRUCTURE AND METHOD OF MAKING THE SAME - An ESD structure, including a first conductive type substrate, a second conductive type well region in the substrate, first/second doped regions (the first type), fourth to sixth doped regions (second conductive type), and first/second gates, is provided. The first/second doped regions are respectively disposed in the well region and the substrate. The first/second gates are on the substrate surface with no well region below. A third doped region is between the first and second gates in the substrate. The fourth doped region is in the substrate and on one side of the first/second gates. The fifth doped region is in the substrate, extends into the well region, and on another side of the first/second gates. The first doped region is located between the fifth and sixth doped region. The first/sixth doped regions and the first gate are connected. The fourth/second doped region and the second gate are connected. | 05-19-2016 |
20160149021 | VERTICALLY INTEGRATED SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD - A vertically integrated semiconductor device in accordance with various embodiments may include: a first semiconducting layer; a second semiconducting layer disposed over the first semiconducting layer; a third semiconducting layer disposed over the second semiconducting layer; and an electrical bypass coupled between the first semiconducting layer and the second semiconducting layer. | 05-26-2016 |
20160163690 | ELECTROSTATIC DISCHARGE PROTECTION DEVICE AND ELECTRONIC DEVICE HAVING THE SAME - In an ESD protection device, a first well of a first conductivity type and a second well of a second conductivity type are formed in a substrate to contact each other. A first impurity region of the first conductivity type and a second impurity region of the second conductivity type are formed in the first well, and are electrically connected to a first electrode pad. The second impurity region is spaced apart from the first impurity region in a direction of the second well. A third impurity region is formed in the second well, has the second conductivity type, and is electrically connected to a second electrode pad. A fourth impurity region is formed in the second well, is located in a direction of the first well from the third impurity region to contact the third impurity region, has the first conductivity type, and is electrically floated. | 06-09-2016 |
20160163691 | ESD PROTECTION DEVICE WITH IMPROVED BIPOLAR GAIN USING CUTOUT IN THE BODY WELL - An integrated circuit includes an NMOS SCR in which a p-type body well of the NMOS transistor provides a base layer for a vertical NPN layer stack. The base layer is formed by implanting p-type dopants using an implant mask which has a cutout mask element over the base area, so as to block the p-type dopants from the base area. The base layer is implanted concurrently with p-type body wells under NMOS transistors in logic components in the integrated circuit. Subsequent anneals cause the p-type dopants to diffuse into the base area, forming a base with a lower doping density that adjacent regions of the body well of the NMOS transistor in the NMOS SCR. The NMOS SCR may have a symmetric transistor, a drain extended transistor, or may be a bidirectional NMOS SCR with a symmetric transistor integrated with a drain extended transistor. | 06-09-2016 |
20160204240 | POWER SEMICONDUCTOR DEVICE | 07-14-2016 |
20160379984 | Thyristor Memory Cell with Gate in Trench Adjacent the Thyristor - A volatile memory array using vertical thyristors with gates, NMOS or PMOS, in trenches adjacent the thyristors is disclosed together with methods of fabricating the array. | 12-29-2016 |