Class / Patent application number | Description | Number of patent applications / Date published |
219121520 | Electrode structure | 41 |
20080237202 | Plasma Arc Torch Having an Electrode With Internal Passages - An electrode for a plasma arc cutting torch which minimizes the deposition of high emissivity material on the nozzle, reduces electrode wear, and improves cut quality. The electrode has a body having a first end, a second end in a spaced relationship relative to the first end, and an outer surface extending from the first end to the second end. The body has an end face disposed at the second end. The electrode also includes at least one passage extending from a first opening in the body to a second opening in the end face. A controller can control the electrode gas flow through the passages as a function of a plasma arc torch parameter. Methods for operating the plasma arc cutting torch with the electrode are disclosed. | 10-02-2008 |
20080308535 | Atmospheric-Pressure Plasma Jet - A plasma jet apparatus for performing plasma processing of an article includes: an elongated central electrode ( | 12-18-2008 |
20090065485 | Plasma System - In a process for plasma treating a surface, a non-equilibrium atmospheric pressure plasma is generated within a dielectric housing having an inlet and an outlet through which a process gas flows from the inlet to the outlet. A tube formed at least partly of dielectric material extends outwardly from the outlet of the housing, whereby the end of the tube forms the plasma outlet. The surface to be treated is positioned adjacent to the plasma outlet so that the surface is in contact with the plasma and is moved relative to the plasma outlet. | 03-12-2009 |
20090188898 | Electrode Assemblies, Plasma Apparatuses and Systems Including Electrode Assemblies, and Methods for Generating Plasma - Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode. | 07-30-2009 |
20100051592 | ELECTRODE DESIGN FOR PLASMA PROCESSING CHAMBER - An upper electrode for use in a plasma processing chamber is provided, which includes a center segment and a plurality of outer segments. The outer segments are attached to the center segment to adjust the area of the overall electrode. Gas distribution holes may be selectively formed on the center and outer segments, or both. By adding or removing the outer segments and stacking layers, the dimension of the electrode, the area of gas spurting region and the thickness of the provided upper electrode may be adjusted. | 03-04-2010 |
20110031224 | RETRACT START PLASMA TORCH WITH REVERSIBLE COOLANT FLOW - An improved plasma torch and method of starting the torch are provided. The torch may comprise a main torch body with an electrode assembly coupled to a piston therein. The piston and electrode assembly are moveable between a starting position whereby the electrode assembly contacts a nozzle, and an operating position whereby the electrode assembly does not contact the nozzle. The piston is moveable by directing fluid, which may comprise coolant, through the plasma torch either in a first direction which biases the piston to the starting position, or in an opposite second direction which biases the piston so as to retract the electrode assembly to the operating position. A reversing valve or reversible pump may be used to control the direction of the flow of the fluid. Thereby, the coolant supply may be used to both cool the torch and control the starting and operation of the torch. | 02-10-2011 |
20110073574 | ELECTRODE AND ELECTRODE HOLDER WITH THREADED CONNECTION - A threaded connection for an electrode holder and an electrode in a plasma arc torch is provided. The threaded connection has relatively low height, and the engaged portion of a male threaded portion of the electrode and a female threaded portion of the electrode holder are positioned at least partially within a nozzle chamber. In one inventive aspect, the nominal pitch diameter of the electrode is less than the minor diameter of the electrode. In another, the width of the root area of the electrode thread is wider than the width of the root area of the electrode holder thread by at least about 35%. The width of the root area of the electrode is at least about 15% wider than the width of the crest portion of the electrode. As such, the less consumable of the two parts, the electrode holder, is provided with a thread that is less likely to be worn and damaged. In one particular embodiment, the crest profile of the electrode is that of a Stub Acme thread separated by a larger root profile. | 03-31-2011 |
20110240609 | Electrode for a Plasma Torch - An electrode for a plasma torch and a plasma torch head comprise an elongated electrode holder with a front surface on the electrode tip and a hole arranged in the electrode tip along a central axis through the electrode holder, and an emission insert arranged iii the hole such that an emission surface of the emission insert is exposed. The emission surface is set back relative to the front surface of the electrode holder. An electrode for a plasma torch and a plasma torch head also comprise an electrode socket and an electrode holder, the electrode socket having an internal thread, and the electrode holder having an external thread and an O-ring in a groove in the cylindrical outer surface. The electrode holder is screwed together with the electrode socket via the external thread and the internal thread and sealed by means of the O-ring. | 10-06-2011 |
20110253683 | High Visibility Plasma Arc Torch - An improved torch providing high visibility of the work zone to the operator, an increased viewing angle, and a reduced obstruction angle. The high visibility torch includes consumables adapted to maintain torch and consumables performance while reducing visual obstruction to the user, by coordinating, balancing, and optimizing design requirements and stack up tolerances. The invention also includes a related low-profile safety switch that promotes workpiece visibility and minimizes view obstruction. | 10-20-2011 |
20110272386 | INDUCTIVE DEVICES AND LOW FLOW PLASMAS USING THEM - Certain embodiments described herein are directed to devices that can be used to sustain a low flow plasma. In certain examples, the low flow plasma can be sustained in a torch comprising an outer tube and an auxiliary tube within the outer tube. In some examples, the auxiliary tube comprises an effective length to match the shape of a low flow plasma sustained in the torch using a flat plate electrode. Methods and systems using the torches are also described. | 11-10-2011 |
20110284504 | METHOD OF MONITORING THE WEAR OF AT LEAST ONE OF THE ELECTRODES OF A PLASMA TORCH - Method of controlling the wear of at least one of the electrodes of a plasma torch including two electrodes having the same main axis, and being separated by a chamber designed to receive a plasma-generating gas, and at least one element for generating a magnetic field placed locally to the at least one electrode for which the control of wear is sought, in which the arc root is made to sweep longitudinally over a portion of the surface of this electrode from an initial position until the arc root reaches a defined final position of the portion, the longitudinal progression of the arc root being defined by a function dependent on at least the time, f(t), which is fixed. At least the electrical energy consumed by the torch as a function of the time since the electrode was commissioned is measured, the measurements are recorded in a storage device and, from the temporal evolution of at least the electrical energy consumed over at least part of the measurements, an adjustment variable ξ(t) is defined for the function f(t) over a period of time τ determined by the state of wear of the electrode. | 11-24-2011 |
20120097648 | Inductively Coupled Plasma Arc Device - The present invention provides an inductively coupled plasma device with a cylindrical vessel having a first end and a second end, wherein at least a portion of the cylindrical vessel is transparent or semi-transparent to a wave energy. A tangential inlet is connected to or proximate to the first end. A tangential outlet is connected to or proximate to the second end. An electrode housing is connected to the first end of the cylindrical vessel such that a first electrode is (a) aligned with a longitudinal axis of the cylindrical vessel, and (b) extends into the cylindrical vessel. A hollow electrode nozzle is connected to the second end of the cylindrical vessel such that the center line of the hollow electrode nozzle is aligned with the longitudinal axis of the cylindrical vessel. An electromagnetic radiation source that produces a wave energy and is disposed around or within the cylindrical vessel. | 04-26-2012 |
20120138584 | ELECTRODE FOR PLASMA TORCH WITH NOVEL ASSEMBLY METHOD AND ENHANCED HEAT TRANSFER - Embodiments of the present invention are related to an electrode for a plasma arc torch, the electrode comprising a generally tubular outer wall, an end wall, and a protrusion. The end wall is joined to a distal end of the outer wall and supports an emissive element in a generally central region. The protrusion extends from the generally central region of the end wall and is configured to connect with an electrode holder by a releasable connection, wherein the protrusion is configured such that at least one coolant passage forms between the protrusion and the electrode holder when the electrode is connected with the electrode holder. In some embodiments, the releasable connection comprises a threaded connection, wherein the protrusion is threaded to releasably connect to a threaded coolant tube of the electrode holder. In other embodiments, at least one coolant passage is defined by the threaded connection. | 06-07-2012 |
20120193332 | Electrode head of the Plasma Cutting Machine - An electrode head of the plasma cutting machine is provided. The electrode head comprises a sheath, a bearing means, an electrode core, a first brazing means and a second brazing means. The sheath has a first end and a second end. A first flange extends radially inward from the first end. The bearing means has a third end and a fourth end. A second flange extending from the third end is fixed to the first flange of the sheath via the first brazing means. A protrusion portion is provided axially from the interior of the fourth end. A recess portion is extending from the third end into the interior of the protrusion portion. The electrode core is fixed in the recess portion via the second brazing means. | 08-02-2012 |
20120248074 | HIGH CURRENT ELECTRODE FOR A PLASMA ARC TORCH - An electrode for a plasma arc torch is provided by the teachings of the present disclosure. In one form, the electrode includes a conductive body, a plurality of deformed emissive inserts, and a dimple. In one form, the plurality of emissive inserts are concentrically nested about the centerline of the conductive body, and the dimple is positioned concentrically about a centerline of the conductive body. The plurality of emissive inserts and the dimple increase the life of the electrode. | 10-04-2012 |
20120261391 | ATMOSPHERIC PRESSURE PLASMA METHOD FOR PRODUCING SURFACE-MODIFIED PARTICLES AND COATINGS - Disclosed is a method for producing surface-modified particles in atmospheric pressure plasma, and a method for producing a coating with particles dispersed therein using an atmospheric pressure plasma. The plasma is produced by a discharge between electrodes in a process gas. In both methods one of the electrodes is a sputter electrode, which sputters the particles due to the discharge. Also disclosed are methods for producing composite material, with which surface-modified particles are built in a matrix, and to said composite materials. Also disclosed are plasma nozzles and devices containing said nozzles for producing surface-modified particles and coatings with the particles dispersed therein. | 10-18-2012 |
20120267346 | SUPPORT ASSEMBLY - A method and apparatus for removing native oxides from a substrate surface is provided. In one aspect, the apparatus comprises a support assembly. In one embodiment, the support assembly includes a shaft coupled to a disk-shaped body. The disk-shaped body includes an upper surface, a lower surface and a cylindrical outer surface. A flange extends radially outward from the cylindrical outer surface. A fluid channel is formed in the disk-shaped body and is coupled to the heat transfer fluid conduit of the shaft. A plurality of grooves formed in the upper surface are coupled by a hole to the vacuum conduit of the shaft. A gas conduit formed through the disk-shaped body couples the gas conduit of the shaft to the cylindrical outer surface of the disk-shaped body. | 10-25-2012 |
20120292296 | PLASMA TORCH WITH ELECTRODE WEAR DETECTION SYSTEM - A plasma arc torch is provided that includes a wear stop designed to detect wear of an electrode and prevent the use of the electrode once the electrode has experienced a certain amount of wear. Either the electrode or the nozzle is movable with respect to the main torch body, and the movable component defines a projection. The wear stop is positioned a predetermined distance from a nozzle of the torch, such that prior to experiencing an excessive amount of wear, the electrode is able to contact the nozzle and initiate a pilot arc for starting a torch operation. Once the length of the electrode becomes shorter than a predetermined length due to wear, the projection of the electrode engages the wear stop, and the wear stop prevents the electrode from contacting the nozzle. In this way, an electrode that is excessively worn cannot be used in subsequent torch operations. | 11-22-2012 |
20130043224 | PLASMA TORCH AND COMPONENTS - A plasma torch is provided having an electrode with a frustoconical end portion. The electrode is received by a plunger during a contact start sequence of the plasma torch and is self-releasing from the torch. The electrode may include a shoulder portion that provides concentric alignment and centering of the electrode with respect to the central longitudinal axis of the components. Other components of the torch include a nozzle, a swirl ring, and retaining cup, such that the consumables of the torch may be toollessly removed and installed. | 02-21-2013 |
20130082034 | PLASMA ARC TORCH HAVING MULTIPLE OPERATING MODES - The present invention provides a multi-mode plasma arc torch that includes a cylindrical vessel having a first end and a second end, a first tangential inlet/outlet connected to or proximate to the first end, a second tangential inlet/outlet connected to or proximate to the second end, an electrode housing connected to the first end of the cylindrical vessel such that a first electrode is (a) aligned with a longitudinal axis of the cylindrical vessel, and (b) extends into the cylindrical vessel, and a hollow electrode nozzle connected to the second end of the cylindrical vessel such that the center line of the hollow electrode nozzle is aligned with the longitudinal axis of the cylindrical vessel. Adjusting a position of the electrode with respect to the hollow electrode causes the multi-mode plasma arc torch to operate in a dead short resistive mode, a submerged arc mode, an electrolysis mode, a glow discharge mode or a plasma arc mode. | 04-04-2013 |
20130134138 | GAS FEED INSERT IN A PLASMA PROCESSING CHAMBER AND METHODS THEREFOR - A gas feed insert configured to be disposed in a passage through an electrode assembly comprising a first insert end having therein a first bore aligned parallel with a linear axis of the gas feed insert. The gas feed insert further includes a second insert end opposite the first insert end, the second insert end having therein a second bore aligned parallel with the linear axis of the gas feed insert and a bore-to-bore communication channel in gas flow communication with the first bore and the second bore. The bore-to-bore communication channel is formed in an outer surface of the gas feed insert so as to prevent a line-of-sight when a gas flows from the first insert end through the bore-to-bore communication to the second insert end. | 05-30-2013 |
20130161298 | Plasma Torch Device Using Moving Magnets - The present invention provides a plasma torch device. The device comprises a front electrode, a back electrode and a vortex flow generator. The torch roots of the back electrode are moved by fixed magnets. By controlling the magnets coordinated with vortex air flow, the torch roots are moved back and forth periodically on inner surface of the back electrode. The torch roots do not stay at the same place for long for preventing increasing local heat burden of the electrode. Thus, life time and maintenance cycle of the electrode is prolonged with reduced operational cost of plasma torch and enhanced reliability of the device. | 06-27-2013 |
20130240492 | Apparatus For Generating Hollow Cathode Plasma And Apparatus For Treating Large Area Substrate Using Hollow Cathode Plasma - A method of generating hollow cathode plasma and a method of treating a large area substrate using the hollow cathode plasma are disclosed. In the methods, the hollow cathode plasma is generated by a gas introduced between a hollow cathode in which a plurality of lower grooves where plasma is generated is defined in a bottom surface thereof and a baffle in which a plurality of injection holes is defined. A substrate disposed on a substrate support member is treated using the hollow cathode plasma passing through the injection holes. The uniform plasma having high density can be generated by hollow cathode effect due to the hollow cathode having the lower grooves and the injection holes of the baffle. Also, since the substrate can be treated using a hydrogen gas and a nitrogen gas in an ashing process, a damage of a low dielectric constant dielectric can be minimized. | 09-19-2013 |
20130313231 | ELECTRODE FOR PLASMA CUTTING TORCHES AND USE OF SAME - The invention relates to an electrode for plasma torches for plasma cutting and to a use of the electrode for said plasma torch. The electrode in accordance with the invention for plasma cutting torches is formed from an electrode holder and from an emission insert which are connected to one another in a force-fitted and/or shape-matched manner. The emission insert has at least one section along its longitudinal axis which is arranged between two other sections or next to a section which has a reduced outer diameter in a rotationally symmetrical design of the emission insert or has a reduced cross-sectional surface in a non-rotationally symmetrical emission insert with respect to the other section(s). | 11-28-2013 |
20140014630 | ELECTRODE FOR A PLASMA ARC CUTTING TORCH - An electrode for a plasma arc torch is provided with features for improving electrode wear. An emissive insert is received into a cavity formed along one end of the torch body. A portion of the emissive insert is separated from the torch body by a sleeve positioned along the insert near the emission surface of the insert. The sleeve can operate to slow the erosion of the electrode body and thereby improve overall electrode life. | 01-16-2014 |
20140076861 | ATMOSPHERIC-PRESSURE PLASMA PROCESSING APPARATUS AND METHOD - A plasma processing apparatus including powered electrodes having elongated planar surfaces; grounded electrodes having elongated planar surfaces parallel to and coextensive with the elongated surfaces of the powered electrodes, and spaced-apart a chosen distance therefrom, forming plasma regions, is described. RF power is provided to the at least one powered electrode, both powered and grounded electrodes may be cooled, and a plasma gas is flowed through the plasma regions at atmospheric pressure; whereby a plasma is formed in the plasma regions. The material to be processed may be moved into close proximity to the exit of the plasma gas from the plasma regions perpendicular to the gas flow, and perpendicular to the elongated electrode dimensions, whereby excited species generated in the plasma exit the plasma regions and impinge unimpeded onto the material. | 03-20-2014 |
20140091068 | WELDING TORCH - In a multi-electrode welding torch, electrodes ( | 04-03-2014 |
20140183170 | HIGH CURRENT ELECTRODE FOR A PLASMA ARC TORCH - An electrode for a plasma arc torch includes a conductive body and a plurality of emissive inserts. The conductive body includes a proximal end portion, a distal end portion and a cavity extending from the proximal end portion to the distal end portion. The distal end portion defines a distal end face. The plurality of emissive inserts extend through the distal end face. The conductive body further defines a dimple extending into the distal end face and at least partially into the emissive inserts. The dimple is positioned concentrically about a centerline of the conductive body. | 07-03-2014 |
20140305915 | HEAT TREATMENT APPARATUS - A heat treatment apparatus, for enabling stable plasma discharge, with preventing desorption of silicon from silicon carbonite suppressing an amount of discharge of thermions therefrom, comprises a treatment chamber for heating a heating sample therein, a plate-shaped upper electrode, being disposed in the treatment chamber, a plate-shaped lower electrode, facing to the upper electrode and for producing plasma between the upper electrode, and a gas supplying means for supplying a gas into the treatment chamber, wherein the upper electrode and the lower electrode are made of a base material of silicon carbonite, and each being covered by a carbon film around thereof. | 10-16-2014 |
20140332506 | CAPACITIVELY COUPLED DEVICES AND OSCILLATORS - Certain embodiments described herein are directed to devices that can be used to sustain a capacitively coupled plasma. In some examples, a capacitive device can be used to sustain a capacitively coupled plasma in a torch in the absence of any substantial inductive coupling. In certain embodiments, a helium gas flow can be used with the capacitive device to sustain a capacitively coupled plasma. | 11-13-2014 |
20150021302 | Plasma ARC Torch Electrode with Symmetrical Plasma Gas Flow - An electrode for a plasma arc torch includes a generally cylindrical elongated body formed of an electrically conductive material. The elongated body includes a proximal end that connects to a power supply and a distal end that receives an emissive element. The electrode can include a flange that is disposed about a surface relative to the distal end of the elongated body, extends radially from the surface of the elongated body, and is utilized to establish a uniform gas flow distribution of a plasma gas flow about the distal end of the elongated body. The electrode can include a contact element that is in electrical communication with the proximal end of the electrode. The contact element includes seating portion that has an outer width that is greater than the outermost diameter of the electrode body and is configured to position the contact element within the plasma arc torch. | 01-22-2015 |
20150041444 | Composite Consumables for a Plasma Arc Torch - An electrode is provided for use in a plasma arc torch. The electrode includes a body having an elongated forward portion and a ring-shaped aft portion. The forward portion is configured to provide an electrically conductive path from the distal end to the proximal end. The forward portion comprises a first conductive material. The ring-shaped aft portion, defining a hollow center, is configured to substantially surround a portion of the forward portion when the forward portion is located inside of the hollow center. The aft portion includes a pneumatic reaction region for receiving a biasing flow of a pressurized gas. The aft portion comprises a second material. In some embodiments, the first conductive material is the same as the second material. | 02-12-2015 |
20150048061 | OXIDATION RESISTANT INDUCTION DEVICES - Certain embodiments described herein are directed to induction devices comprising an oxidation resistant material. In certain examples, the induction device comprises a coil of wire that is produced from the oxidation resistant material. In some examples, the oxidation resistant induction device can be used to sustain an inductively coupled plasma in a torch. | 02-19-2015 |
20150076123 | ELECTRODE STRUCTURE FOR PLASMA CUTTING TORCHES - The invention relates to an electrode structure for plasma cutting torches, wherein a recess or borehole open at one side in the direction of a workpiece to be processed is formed in an electrode holder or in a holding element for receiving an emission insert, in which recess or borehole the inserted emission insert can be fastened in a force transmitting manner, in a shape-matching manner and/or with material continuity. At least one pressure equalization passage and/or an at least temporarily active pressure equalization passage is present between a hollow space formed in a recess or borehole and the emission insert and the environment through the emission insert and/or between an outer jacket surface region of the emission insert and the inner wall of the recess or borehole, which is formed in the holding element or in the electrode holder ( | 03-19-2015 |
20150090700 | Plasma Torch Electrode Materials and Related Systems and Methods - In some aspects, multi-metallic emissive inserts shaped to be disposed within an electrode for a plasma arc torch electrode can include an exposed emitter surface at a distal end of the emissive insert to emit a plasma arc from the electrode, wherein the emissive insert comprises a first emissive material and about 8 weight percent to about 50 weight percent yttrium. | 04-02-2015 |
20150305133 | Plasma Torch - A plasma torch is provided and adapted to generate very high operating temperatures to gasify various types of materials, such as biomass materials and various carbonaceous materials. The plasma torch is composed of a ceramic body that has first, second, and third intersecting bores. Each of the first, second, and third intersecting bores defines a threaded portion therein. A first and second tungsten carbide electrode is adjustably disposed in the first and second intersecting bores and operative to be adjustable to establish a controlled gap size therebetween. A compressed gas connection is threadably disposed in the threaded portion of the third bore and is operative to introduce a flow of compressed gas through the controlled gap. The first and second tungsten carbide electrodes are connectable to a source of electrical energy and functions to produce an electrical arc across the controlled gap. The resulting flame produced by the electrical arc burns at an extreme temperature. | 10-22-2015 |
20150334817 | IMPROVED AIR COOLED PLASMA TORCH AND COMPONENTS THEREOF - Embodiments of the present invention are directed to an air cooled, retract-start plasma cutting torch having improved performance. The torch comprises any one, or a combination of an improved nozzle, electrode, shield cap and swirl ring, where these components have improved geometries and physical properties which optimize plasma jet performance during cutting. | 11-19-2015 |
20150373825 | TORCH FOR A ROTATING SOURCE OF PLASMA EXCITATION - A torch consists of an inner tube ( | 12-24-2015 |
20160057848 | Multi-Component Electrode For A Plasma Cutting Torch And Torch Including The Same - Embodiments of the present invention are directed to a plasma arc cutting torch and an electrode assembly used in the torch. The electrode assembly includes a high thermionic emissive insert and a high thermally conductive and high work function shell into which the insert is inserted. The shell aids in cooling the insert during operation and also has a design which ensures that the shell remains in a proper position during manufacture of the electrode assembly. | 02-25-2016 |
20160120015 | ELECTRODE-SUPPORTING ASSEMBLY FOR CONTACT-START PLASMA ARC TORCH - An electrode-supporting assembly for a contact-start plasma arc torch has an insulator that partially houses an electrode, and employs a spring-loaded plunger to bias the electrode to a forward position. The spring is engaged between the plunger and a contact element attached to the insulator, and may conduct electrical current to the electrode. The plunger, spring, and contact element are retained in the insulator when the torch is opened to replace the electrode, which is a consumable part. The electrode and the plunger have axially-engagable mating surfaces to assure good thermal and electrical conductivity therebetween. Conductivity can be further enhanced by forming the plunger of silver or a silver-bearing alloy. In some embodiments, a passage through the insulator is partitioned into forward and rear chambers, with the plunger, spring, and contact element trapped in the rear chamber. | 04-28-2016 |
20160165711 | Cost Effective Cartridge for a Plasma Arc Torch - A consumable cartridge for a plasma arc torch is provided. The consumable cartridge includes an outer component defining a substantially hollow body, an inner component disposed substantially within the hollow body of the outer component, and a hollow region between the rear portion of the inner component and the outer component. The inner component includes a forward portion configured to axially secure and rotatatably engage the outer component to the inner component and a rear portion substantially suspended within the hollow body of the outer component. The rear portion is axially secured and rotatably engaged with the outer component via the forward portion. The hollow region is configured to receive a torch head to enable mating between the rear portion of the inner component and a cathode of the torch head. | 06-09-2016 |