Class / Patent application number | Description | Number of patent applications / Date published |
219121490 | Cooling system | 38 |
20080210669 | Plasma Arch Torch Cutting Component With Optimized Water Cooling - A nozzle or retaining cap for a plasma arc torch that includes a surface defining a conductive contact portion for exchanging heat with an adjacent torch component. The adjacent torch component can be a retaining cap, electrode or nozzle. The surface of the nozzle or retaining cap can also at least partially define a cooling channel having a curvilinear surface. A sealant portion can be positioned between the conductive contact portion and the cooling channel. The sealant portion can form or create a fluid barrier between the cooling channel and the conductive portion. | 09-04-2008 |
20080217305 | Gas-Cooled Plasma Arc Cutting Torch - A method and apparatus for a gas-cooled plasma arc torch. Components of the torch can include an electrode, nozzle and a shield, each of which can be gas-cooled. The nozzle can be disposed relative to the electrode and can include a generally hollow conductive body and a cooling gas flow channel defined by at least one fin disposed about an exterior surface of the body, the body providing a thermal conductive path that transfers heat between the nozzle to the cooling gas flow channel during operation of the torch. The shield can be disposed relative to the nozzle and can include a generally hollow conductive body and a cooling gas flow channel defined by at least one fin disposed about an exterior surface of the body, the body providing a thermal conductive path that transfers heat between the shield to the cooling gas flow channel during operation of the torch. | 09-11-2008 |
20090026180 | PLASMA ARC TORCH CUTTING COMPONENT WITH OPTIMIZED WATER COOLING - A nozzle, retaining cap, or shield for a plasma arc torch that includes a surface defining a conductive contact portion for exchanging heat with an adjacent torch component. The adjacent torch component can be a retaining cap, electrode or nozzle. The surface of the nozzle, retaining cap, or shield can also at least partially define a cooling channel having a curvilinear surface. A sealant portion can be positioned between the conductive contact portion and the cooling channel. The sealant portion can form or create a fluid barrier between the cooling channel and the conductive portion. | 01-29-2009 |
20090206063 | Highly Ordered Structure Pyrolitic Graphite or Carbon-Carbon Composite Cathodes for Plasma Generation in Carbon Containing Gases - A DC plasma torch which includes a long lasting thermionic cathode and has a high thermal efficiency. The DC plasma torch employs a solid cathode made of graphite with highly ordered structure such as Pyrolitic Graphite or Carbon-Carbon composites. Furthermore, carbon containing gases will be used as plasma gas. The cathode will allow for theoretically an unlimited lifetime of the cathode. | 08-20-2009 |
20090230096 | Vapor plasma burner - The invention relates to a vapor plasma burner ( | 09-17-2009 |
20090230097 | LIQUID COOLED SHIELD FOR IMPROVED PIERCING PERFORMANCE - A shield for a plasma arc torch that pierces and cuts a metallic workpiece producing a splattering of molten metal directed at the torch, the shield protecting consumable components of the plasma arc torch from the splattering molten metal. The shield can include a body, a first surface of the body configured to be contact-cooled by a gas flow, a second surface of the body configured to be contact-cooled by a liquid flow, and a seal assembly configured to be secured to the body and disposed relative to the second surface configured to retain the liquid flow contact-cooling the second surface. | 09-17-2009 |
20090261081 | TRANSFERRED-ARC PLASMA TORCH - A transferred-arc plasma torch comprising a sheath cooled using a cooling fluid and an electrode inserted in said sheath. The electrode is made of a consumable material and the torch comprises means to supply the electrode with this material so as to offset its erosion. | 10-22-2009 |
20090277883 | PLASMA PROCESSING APPARATUS AND PLASMA PROCESSING METHOD - The present invention provides means for controlling the temperature of a semiconductor wafer rapidly and uniformly in plane during etching processing by a large quantity of input heat by use of a refrigerating system by the heat of evaporation. A ring-shaped refrigerant passage is formed in a sample stand. Since the heat transfer rate and pressure loss of a refrigerant increase from a refrigerant supply port to a refrigerant ejection port as dryness degrees increase, these must be restricted. Therefore, constructionally, a supply refrigerant quantity is controlled to prevent the refrigerant from completely evaporating within the refrigerant passage, and the sectional areas of the refrigerant passage increase successively from a first passage to a third passage. | 11-12-2009 |
20090308849 | Method and Apparatus for Alignment of Components of a Plasma Arc Torch - A coolant tube and electrode are adapted to mate with each other to align the tube relative to the electrode during operation of the torch. Improved alignment ensures an adequate flow of coolant along an interior surface of the electrode. In one aspect, an elongated body of the coolant tube has a surface adapted to mate with the electrode. In another aspect, an elongated body of the electrode has a surface adapted to mate with the coolant tube. The surfaces of the tube and electrode may, for example, be flanges, tapered surfaces, contours, or steps. | 12-17-2009 |
20110056918 | PLASMA TORCH ASSEMBLY - This application relates to a plasma torch assembly comprising
| 03-10-2011 |
20120055906 | Forward Flow, High Access Consumables for a Plasma Arc Cutting Torch - A nozzle for a plasma arc cutting torch includes a substantially hollow, elongated body capable of receiving an electrode. The nozzle body defines a longitudinal axis and has a length along the axis from a first end of the nozzle body to a second end of the nozzle body. The nozzle also includes a plasma exit orifice disposed at the first end of the body. The first end of the nozzle body has a width and a ratio of the length of the nozzle body to the width of the nozzle body is greater than about 3. | 03-08-2012 |
20120132626 | Cooling Pipes, Electrode Holders & Electrode for an Arc Plasma Torch - A cooling tube for an arc plasma torch, comprising an elongate body with an end which can be arranged in the open end of an electrode, and a coolant duct extending therethrough, characterised in that at said end there is a bead-like thickening of the wall of the cooling tube pointing inwards and/or outwards, and an arrangement of a cooling tube for an arc plasma torch, comprising an elongate body with a rear end which can be releasably connected to an electrode holder of an arc plasma torch, and a coolant duct extending therethrough, and an electrode holder for an arc plasma torch, comprising an elongate body with an end for receiving an electrode and a hollow interior, and characterised in that on the outer surface of the cooling tube at least one projection is provided for centring the cooling tube in the electrode holder. | 05-31-2012 |
20120248073 | PLASMA CUTTING TIP WITH ADVANCED COOLING PASSAGEWAYS - A plasma arc torch is provided that includes a tip having an improved life. The tip defines a first set of fluid passageways, a second set of fluid passageways and an internal cavity in fluid communication with the first and second fluid passageways. The internal cavity includes a base portion disposed proximate and surrounding a central orifice of the tip. A first set of fluid passageways allow for entry of a cooling fluid into the tip and a second set of fluid passageways allow for exit of the cooling fluid from the tip. | 10-04-2012 |
20120261390 | High Performance Induction Plasma Torch - An induction plasma torch comprises a tubular torch body, a plasma confinement tube disposed in the tubular torch body coaxial therewith, a gas distributor head disposed at one end of the plasma confinement tube and structured to supply at least one gaseous substance into the plasma confinement tube; an inductive coupling member for applying energy to the gaseous substance to produce and sustain plasma in the plasma confinement tube, and a capacitive shield including a film of conductive material applied to the outer surface of the plasma confinement tube or the inner surface of the tubular torch body. The film of conductive material is segmented into axial strips interconnected at one end. The film of conductive material has a thickness smaller than a skin-depth calculated for a frequency of a current supplied to the inductive coupling member and an electrical conductivity of the conductive material of the film. | 10-18-2012 |
20130026141 | Apparatus and Method for a Liquid Cooled Shield for Improved Piercing Performance - In some aspects, a retaining cap for a plasma arc torch can include a shell having an exterior surface that defines, at least in part, a first liquid coolant channel, a liner circumferentially disposed within the shell and having an interior surface that defines, at least in part, a second liquid coolant channel, and a gas flow channel defined at least in part by and located between the shell and the liner. | 01-31-2013 |
20130292363 | NON-TRANSFERRED AND HOLLOW TYPE PLASMA TORCH - A plasma torch includes a rear torch unit and a front torch unit which are connected through an insulating body. The insulating body is made of an insulator, is injected with gas required to generate plasma, and includes an inflow chamber that may move the injected gas. The rear torch unit coupled with a rear side of the insulation body communicates with the inflow chamber and has a magnetic coil generating a magnetic field within a cavity of the rear electrode wound around an outer circumferential surface thereof. The front torch unit disposed at a front side of the insulating body so as to face the rear torch unit communicates with the inflow chamber of the insulating body and has the front electrode disposed therein. The front torch unit does not include a magnetic coil winding the front electrode, and thus may be easily detached from the insulating body. | 11-07-2013 |
20140021175 | Composite Consumables for a Plasma Arc Torch - An electrode is provided for use in a plasma arc torch. The electrode includes a body having a forward portion, a middle portion and an aft portion. The forward portion includes an electrode tip comprising a conductive first material, wherein the electrode tip includes: 1) a pilot contact region for initiating a pilot arc across the nozzle and | 01-23-2014 |
20140103017 | ELECTRODE FOR PLASMA TORCH WITH NOVEL ASSEMBLY METHOD AND ENHANCED HEAT TRANSFER - Embodiments of the present invention are related to an electrode for a plasma arc torch, the electrode comprising a generally tubular outer wall, an end wall, and a protrusion. The end wall is joined to a distal end of the outer wall and supports an emissive element in a generally central region. The protrusion extends from the generally central region of the end wall and is configured to connect with an electrode holder by a releasable connection, wherein the protrusion is configured such that at least one coolant passage forms between the protrusion and the electrode holder when the electrode is connected with the electrode holder. In some embodiments, the releasable connection comprises a threaded connection, wherein the protrusion is threaded to releasably connect to a threaded coolant tube of the electrode holder. In other embodiments, at least one coolant passage is defined by the threaded connection. | 04-17-2014 |
20140110382 | Thermal Torch Lead Line Connection Devices and Related Systems and Methods - In some aspects, lead connector assemblies for plasma arc torches for providing electrical and fluid connections can include male and female connectors. The female connector can include a current conductive member, a sealing member, clearance region, binding region, and a locking ring having a locking flange. The male connector can include a body defining an internal fluid passage, an electrical contact region, a sealing region, a locking trough, and a driving lip. The male connector, when assembled to the female connector, typically has an engaged configuration and a disengaged configuration. In the engaged configuration, the male connector is locked within the female connector, the electrical contact region forms an electrical connection with the current conducting member, the sealing region forms a seal against the sealing member, the locking trough receives the locking flange, and the locking flange is positioned between the driving lip and the binding region. | 04-24-2014 |
20140138361 | MICROWAVE PLASMA GENERATING DEVICES AND PLASMA TORCHES - The invention relates to a plasma generating device that comprises at least one very high frequency source (>100 MHz) connected via an impedance adaptation device to an elongated conductor attached on a dielectric substrate, at least one means for cooling said conductor, and at least one gas supply in the vicinity of the dielectric substrate on a side opposite to that bearing the conductor. The invention also relates to plasma torches using said device. | 05-22-2014 |
20140246410 | NON-TRANSFERRED AND HOLLOW TYPE PLASMA TORCH - A non-transferred and hollow type plasma torch includes a rear torch unit, and a front torch unit. The rear torch unit includes a rear electrode housing whose both sides are opened, a hollow rear electrode body that is fixed inside the rear electrode housing, a magnetic coil that is wound around the rear electrode housing corresponding to the rear electrode body, and a rear electrode cover that is inserted into the opened side of the rear electrode housing and detachably formed on an end of the rear electrode body. | 09-04-2014 |
20140291303 | Plasma electrode for a plasma arc torch with replaceable electrode tip - Plasma electrode ( | 10-02-2014 |
20140346151 | Plasma Arc Torch Nozzle with Curved Distal End Region - A nozzle for a plasma arc torch is provided with a distal region sidewall formed by rotation of a variably curved element about a nozzle axis. The distal region sidewall has an inclination to the nozzle axis that increases at an increasing rate as it approached a nozzle terminal plane that terminates an orifice of the nozzle. The distal region sidewall is substantially tangent to the nozzle terminal plane where it intersect the same. The desired curvature can be formed by rotation of a portion of an ellipse or parabola. The curvature of the distal region sidewall appears to draw a portion of the shield gas along the nozzle to provide improved cooling and greater stability to the plasma arc, which can improve the quality of cuts made by the arc and can increase nozzle life. | 11-27-2014 |
20150028000 | Devices for Gas Cooling Plasma Arc Torches and Related Systems and Methods - In some aspects, nozzles for a gas-cooled plasma torches can include a hollow generally cylindrical body having a first end and a second end that define a longitudinal axis, the second end of the body defining a nozzle exit orifice; a gas channel formed in the first end between an interior wall and an exterior wall of the cylindrical body, the gas channel directing a gas flow circumferentially about at least a portion of the body; an inlet passage formed substantially through a radial surface of the exterior wall and fluidly connected to the gas channel; and an outlet passage at least substantially aligned with the longitudinal axis and fluidly connected to the gas channel. | 01-29-2015 |
20150028001 | Devices for Gas Cooling Plasma Arc Torches and Related Systems and Methods - In some aspects, nozzles for gas-cooled plasma torches can include a body having a first end and a second end that define a longitudinal axis; a plenum region substantially formed within the body that extends from the first end and is configured to receive a plasma gas flow; an exit orifice located at the second end oriented substantially coaxially with the longitudinal axis, the exit orifice fluidly connected to the plenum region; and a feature on an outer surface of the body to increase cooling by receiving a high velocity cooling gas flow flowing in a direction along a length of the body, an impingement surface of the feature to receive the cooling gas flow at a substantially perpendicular direction relative to the impingement surface and to redirect the cooling gas flow to promote cooling and uniform shield flow. | 01-29-2015 |
20150028002 | Devices for Gas Cooling Plasma Arc Torches and Related Systems and Methods - In some aspects, methods for providing a uniform shield gas flow for an air-cooled plasma arc torch can include supplying a shield gas to a shield gas flow channel defined by an exterior surface of a nozzle and an interior surface of a shield; flowing the shield gas along the shield gas flow channel; reversing the flow of the shield gas along the shield gas flow channel using a recombination region, the recombination region comprising at least one flow reversing member; and flowing the shield gas from the mixing region to an exit orifice of the shield, thereby producing a substantially uniform shield gas flow at the exit orifice. | 01-29-2015 |
20150028003 | Apparatus and Method for a Liquid Cooled Shield for Improved Piercing Performance - A shield for a plasma arc torch is configured to protect consumable components of the plasma arc torch from splattering molten metal. The shield includes a generally conical unitary body defining (i) an interior surface to form a gas flow path with an outer surface of an adjacent nozzle of the plasma arc torch, and (ii) an exterior surface. The body includes (i) a distal first portion defining an exit orifice; and (ii) a proximal second portion formed of a flange sharing a common surface with the distal first portion. The shield also includes a seal assembly disposed on the common surface to retain the liquid coolant flow along the proximal second portion. | 01-29-2015 |
20150034610 | APPARATUS AND METHOD OF ALIGNING AND SECURING COMPONENTS OF A LIQUID COOLED PLASMA ARC TORCH - An arc torch assembly or sub assembly having improved replacement and centering characteristics, where certain components of the torch head have particular characteristics which improve the operation, use and replaceability of the various components. | 02-05-2015 |
20150034611 | APPARATUS AND METHOD OF ALIGNING AND SECURING COMPONENTS OF A LIQUID COOLED PLASMA ARC TORCH USING A MULTI-THREAD CONNECTION - An arc torch assembly or sub assembly having improved replacement and centering characteristics, where certain components of the torch head have particular characteristics which improve the operation, use and replaceability of the various components. Other embodiments utilize a thread connection which employs multiple separate and distinct thread paths to secure the threaded connections. | 02-05-2015 |
20150083695 | Cooling Pipes, Electrode Holders and Electrode for an Arc Plasma Torch - An electrode holder for an arc plasma torch includes an elongate holder body. The holder body includes a holder end for receiving an electrode and a hollow interior. An internal thread is positioned in the hollow interior for screwing in a rear end of said cooling tube. A cylindrical inner surface adjoins the internal thread for centering the cooling tube relative to the electrode holder. | 03-26-2015 |
20150102020 | COOLING TUBE FOR A PLASMA ARC TORCH AND SPACER - The invention relates to a cooling pipe for a plasma arc torch, comprising a hollow cylindrical electrode body having a central internal core, at the front end of which an electrode core holder having an electrode core inserted therein is arranged, and a hollow cylindrical cooling pipe which is inserted into the internal bore in a sealing manner and which features an internal bore that form a cooling channel as a feed and, in the intermediate space between the outer circumference of the internal bore and the inner circumference of the electrode body, forms a cooling channel formed as a return, wherein the cooling pipe has, on the inner side thereof that is facing the electrode core holder, space-maintaining means (e.g. a spacer washer or wires or rods), which are suitable to rest on the front end of the electrode core holder. | 04-16-2015 |
20150144603 | High Access Consumables for a Plasma Arc Cutting System - A nozzle for a plasma arc torch is provided. The nozzle includes a substantially hollow, elongated nozzle body capable of receiving an electrode, the body defining a longitudinal axis, a distal end, and a proximal end. The nozzle also includes a swirl sleeve attachable to an interior surface of the nozzle body, the swirl sleeve configured to impart a swirling motion to a gas introduced to the nozzle. The nozzle additionally includes a nozzle tip connected to the proximal end of the nozzle body, a nozzle shield, and an insulator configured to connect the nozzle tip and the nozzle shield to electrically insulate the nozzle shield and the nozzle tip from one another while transferring thermal energy therebetween. | 05-28-2015 |
20150319836 | Consumable Cartridge For A Plasma Arc Cutting System - The invention features a frame for a plasma arc torch cartridge. The frame includes a thermally conductive frame body having a longitudinal axis, a first end configured to connect to a first consumable component, and a second end configured to mate with a second consumable component. The frame body surrounds at least a portion of the second consumable component. The frame also includes a set of flow passages formed within the frame body. The set of flow passages fluidly connects an internal surface of the frame body and an external surface of the frame body. The set of flow holes is configured to impart a fluid flow pattern about the second consumable component. | 11-05-2015 |
20150334815 | ELECTROMAGNETIC WAVE HIGH FREQUENCY HYBRID PLASMA TORCH - The purpose of the present invention is to solve the problems of conventional high frequency plasma torches and develop a plasma torch which enables quick quenching of high frequency plasma and which overcomes instability resulting from the quick quenching. To accomplish the abovementioned objective, according to one embodiment of the present invention, disclosed is an electromagnetic wave high frequency hybrid plasma torch. The electromagnetic wave high frequency hybrid plasma torch may comprise: an electromagnetic wave oscillator for oscillating electromagnetic waves; a power supply unit for supplying power to the electromagnetic wave oscillator; an electromagnetic wave transmission line for transmitting the electromagnetic waves generated by the electromagnetic wave oscillator; a first plasma-forming gas supply unit for injecting a plasma-forming gas; an electromagnetic wave discharge pipe for generating plasma by the electromagnetic waves introduced from the electromagnetic wave transmission line and the plasma-forming gas injected by the first plasma-forming gas supply unit; a high frequency discharge pipe for introducing an electromagnetic wave plasma flow from the electromagnetic wave discharge pipe; an induction coil structure which is coaxial with the high frequency discharge pipe and which has an interior with an induction coil inserted therein; a cooling water channel for introducing cooling water around the high frequency discharge pipe and discharging the cooling water; and a second plasma-forming gas supply unit for introducing a plasma-forming gas into the high frequency discharge pipe. | 11-19-2015 |
20150342018 | PLASMA CUTTING TIP WITH ADVANCED COOLING PASSAGEWAYS - A plasma arc torch is provided that includes a tip having an improved life. The tip defines a first set of fluid passageways, a second set of fluid passageways and an internal cavity in fluid communication with the first and second fluid passageways. The internal cavity includes a base portion disposed proximate and surrounding a central orifice of the tip. A first set of fluid passageways allow for entry of a cooling fluid into the tip and a second set of fluid passageways allow for exit of the cooling fluid from the tip. | 11-26-2015 |
20150351214 | Cooling Plasma Cutting System Consumables and Related Systems and Methods - In some aspects, electrodes can include a front portion shaped to matingly engage a nozzle of the plasma cutting system, the front portion having a first end comprising a plasma arc emitter disposed therein; and a rear portion thermally connected to a second end of the front portion, the rear portion shaped to slidingly engage with a complementary swirl ring of the plasma cutting system and including: an annular mating feature extending radially from a proximal end of the rear portion of the electrode to define a first annular width to interface with the swirl ring, the annular mating feature comprising a sealing member configured to form a dynamic seal with the swirl ring to inhibit a flow of a gas from a forward side of the annular mating feature to a rearward side of the annular mating feature. | 12-03-2015 |
20150382441 | HIGH POWER DC NON TRANSFERRED STEAM PLASMA TORCH SYSTEM - A high power DC steam plasma torch system (S) includes a steam plasma torch assembly ( | 12-31-2015 |
20160095195 | Plasma Cutting Torch, Nozzle And Shield Cap - A plasma torch assembly, and components thereof, is provided with optimized attributes to allow for improved torch durability add versatility. A torch nozzle is provided having a novel design, including exterior cooling channels running along a length of the nozzle. An improved inner retaining cap assembly is provided which imparts a swirl on shield gas flow. Additionally, a shield cap and outer retainer have optimized geometries to allow the torch to be made narrower to facilitate the cutting of complex 3-D shapes and bevel cuts not attainable with known mechanized plasma torches. | 03-31-2016 |