Class / Patent application number | Description | Number of patent applications / Date published |
216065000 | Using laser | 10 |
20090057268 | ENGRAVING OF PRINTING PLATES - An optical imaging apparatus ( | 03-05-2009 |
20090166324 | FULL-WAFER BACKSIDE MARKING PROCESS - Embodiments of silicon semiconductor wafers and die having surface marks are described herein. A laser, or other marking tool, may be used to mark, substantially all of a surface of an IC wafer with surface marks, such as microdimples, that camouflage or reduce or eliminate the visibility of any surface imperfections such as smudges, scratches, or other marks that may reduce the marketability of packaged IC's where such surface imperfections are visible to the end customer. By marking the wafer prior to dicing, the entire surface of each individual die may have its entire bottom surface marked. Other embodiments are also described. | 07-02-2009 |
20090283498 | METHOD FOR MANUFACTURING COORDINATE DETECTOR - A method for manufacturing a coordinate detector having a resistive film formed on a substrate formed of an insulating material and a common electrode for applying a voltage to the resistive film. The substrate includes a quadrangular shape. The method includes the steps of a) forming first resistive film removal regions by removing predetermined first regions of the resistive film provided along a peripheral edge of the substrate, b) forming the common electrode on the first resistive film removal regions, c) applying voltage to the resistive film, d) measuring an electric potential of the resistive film, e) calculating second resistive film removal region data according to the measured electric potential, and f) forming second resistive film removal regions by irradiating a laser beam to predetermined second regions of the resistive film according to the calculated second resistive film removal region data. | 11-19-2009 |
20100200546 | METHOD OF ETCHING MATERIALS WITH ELECTRON BEAM AND LASER ENERGY - We disclose a method of electron-beam induced of etching the surface of a specimen in a charged-particle beam instrument, where the charged-particle beam instrument has first and second laser beams, an electron beam, and a gas-injection system for applying etchant gas to the surface. Etching is accomplished by applying a photolytic pulse from the first laser to the surface; applying a pyrolytic pulse from the second laser to the surface; and, applying an etchant gas to the surface at least during the pyrolytic pulse. Two or more alternating pyrolytic laser pulses and photolytic laser pulses may be applied to the surface. The stage supporting the specimen may be tilted relative to the axis of the electron beam before applying the electron beam to the surface of the specimen. The electron beam is applied to the surface of the specimen during the time the etchant gas is present at the surface. | 08-12-2010 |
20100320171 | LASER-ASSISTED NANOMATERIAL DEPOSITION, NANOMANUFACTURING, IN SITU MONITORING AND ASSOCIATED APPARATUS - Laser-assisted apparatus and methods for performing nanoscale material processing, including nanodeposition of materials, can be controlled very precisely to yield both simple and complex structures with sizes less than 100 nm. Optical or thermal energy in the near field of a photon (laser) pulse is used to fabricate submicron and nanometer structures on a substrate. A wide variety of laser material processing techniques can be adapted for use including, subtractive (e.g., ablation, machining or chemical etching), additive (e.g., chemical vapor deposition, selective self-assembly), and modification (e.g., phase transformation, doping) processes. Additionally, the apparatus can be integrated into imaging instruments, such as SEM and TEM, to allow for real-time imaging of the material processing. | 12-23-2010 |
20110168672 | METHOD AND APPARATUS FOR PROCESSING SUBSTRATE EDGES - A method and apparatus for processing substrate edges is disclosed that overcomes the limitations of conventional edge processing methods and systems used in semiconductor manufacturing. The edge processing method and apparatus of this invention includes a laser and optical system to direct a beam of radiation onto a rotating substrate supported by a chuck, in atmosphere. The optical system accurately and precisely directs the beam to remove or transform organic or inorganic films, film stacks, residues, or particles from the top edge, top bevel, apex, bottom bevel, and bottom edge of the substrate. An optional gas injector system directs gas onto the substrate edge to aid in the reaction. Process by-products are removed via an exhaust tube enveloping the reaction site. This invention permits precise control of an edge exclusion zone, resulting in an increase in the number of usable die on a wafer. Wafer edge processing with this invention replaces existing solvent and/or abrasive methods and thus will improve die yield. | 07-14-2011 |
20140054267 | GAS-ASSISTED LASER ABLATION - An improved method for laser processing that prevents material redeposition during laser ablation but allows material to be removed at a high rate. In a preferred embodiment, laser ablation is performed in a chamber filled with high pressure precursor (etchant) gas so that sample particles ejected during laser ablation will react with the precursor gas in the gas atmosphere of the sample chamber. When the ejected particles collide with precursor gas particles, the precursor is dissociated, forming a reactive component that binds the ablated material. In turn, the reaction between the reactive dissociation by-product and the ablated material forms a new, volatile compound that can be pumped away in a gaseous state rather than redepositing onto the sample. | 02-27-2014 |
20150034596 | GAS-ASSISTED LASER MACHINING - A system of gas-assisted laser machining is provided. The system includes a nozzle that delivers a gas jet at the surface of the work piece and a laser source that can focus a laser beam on the surface of the work piece. A mixture of a reactive gas and a carrier gas is provided via the gas jet. The reactive gas reacts with the material and helps to enhance the evaporation rate of the material and at the same time helps reduce the temperature at which the enhanced evaporation rate can be achieved. Use of reactive gases also helps to reduce the residual stress on the material, minimize material flow during evaporation, reduce re-deposited material, and eliminate rims on the pit structures formed as a result of the material removal. | 02-05-2015 |
20150294840 | Laser Induced Plasma Micromachining (LIPMM) - A system for laser-induced plasma micromachining of a work-piece includes a dielectric fluid, a dielectric fluid supply device, a laser, a processor, and a memory. The dielectric fluid supply device is arranged to hold a work-piece in the dielectric fluid or to direct the dielectric fluid onto the work-piece. The laser is arranged to emit a pulsed laser-beam. The processor is in electronic communication with the laser. The memory is in electronic communication with the processor. The memory includes programming code for execution by the processor. The programming code is programmed to direct the laser to deliver the pulsed laser-beam into the dielectric fluid to create a plasma generated at a focal point of the pulsed laser-beam in the dielectric fluid to micromachine, using the plasma, the work-piece disposed adjacent to the focal point. | 10-15-2015 |
20160058067 | PLASMA PERFORATION - A method and device for the plasma perforation of tipping paper, wherein a low temperature plasma is generated on the surface of the tipping paper by briefly ionizing a gas mixture using an energy source that is as close in form to a point as possible, wherein the ionizable gas mixture is locally restricted to a very small surface region of the tipping paper. | 03-03-2016 |