Class / Patent application number | Description | Number of patent applications / Date published |
204298080 | Specified power supply or matching network | 51 |
20080202924 | Power Source Arrangement For Multiple-Target Sputtering System - An arrangement for concurrently powering a plurality of sputtering sources. A power supply is coupled to a charge accumulator. The charge accumulator is coupled to several sputtering sources via switching devices. The duty cycle of each switching device is used to individually control the power delivered to each sputtering source. In another arrangement, a power source is coupled to an impedance match circuit. The impedance match circuit is coupled to several sputtering sources via several balance elements. Each balance element is operated to individually control the power delivered to the sputtering source. | 08-28-2008 |
20090242392 | Stress adjustment in reactive sputtering - In a dual cathode magnetron, an adjustment circuit is provided between a pair of sputter targets having a coaxial (preferably frusto-conical) relationship to modify the distribution of ion and electron currents flowing from the plasma discharge to a substrate residing within a sputter chamber. A stress adjustment circuit is used to modify the ion bombardment of the growing films on the substrate resulting in a mechanism for control of the stress in the deposited films. In a preferred embodiment, the adjustment circuit comprises a variable resistor disposed between an internal shield that acts as a passive anode and a target. The value of the variable resistor influences the plasma discharge current distribution between the split sputter targets and the internal shields, and can effectively be used to adjust the properties of the deposited films. | 10-01-2009 |
20100096261 | PHYSICAL VAPOR DEPOSITION REACTOR WITH CIRCULARLY SYMMETRIC RF FEED AND DC FEED TO THE SPUTTER TARGET - In a PVD reactor having a sputter target at the ceiling, a conductive housing enclosing the rotating magnet assembly has a central port for the rotating magnet axle. A conductive hollow cylinder of the housing surrounds an external portion of the spindle. RF power is coupled to a radial RF connection rod extending radially from the hollow cylinder. DC power is coupled to another radial DC connection rod extending radially from the hollow cylinder. | 04-22-2010 |
20100096262 | ELECTROSTATIC CHUCK - An electrostatic chuck ( | 04-22-2010 |
20100101945 | MAGNETRON SPUTTERING APPARATUS - In a magnetron sputtering apparatus configured such that a magnetic field pattern on a target surface moves with time by means of a rotary magnet group, an object of this invention is to solve a problem that the failure rate of substrates to be processed becomes high upon plasma ignition or extinction, thereby providing a magnetron sputtering apparatus in which the failure rate of the substrates is smaller than conventional. | 04-29-2010 |
20100147680 | SHAPED ANODE AND ANODE-SHIELD CONNECTION FOR VACUUM PHYSICAL VAPOR DEPOSITION - A physical vapor deposition apparatus includes a vacuum chamber with side walls, a cathode, a radio frequency power supply, a substrate support, a shield, and an anode. The cathode is inside the vacuum chamber, and the cathode includes a sputtering target. The radio frequency power supply is configured to apply power to the cathode. The substrate support is inside and electrically isolated from the side walls of the vacuum chamber. The shield is inside and electrically connected to the side walls of the vacuum chamber. The anode is inside and electrically connected to the side walls of the vacuum chamber. The anode includes an annular body and an annular flange projecting inwardly from the annular body, and the annular flange is positioned to define a volume below the target for the generation of plasma. | 06-17-2010 |
20100147681 | CHAMBER SHIELD FOR VACUUM PHYSICAL VAPOR DEPOSITION - A physical vapor deposition apparatus includes a vacuum chamber with side walls, a cathode, a radio frequency power supply, a substrate support, and anode, and a shield. The cathode is inside the vacuum chamber and includes a sputtering target. The radio frequency power supply is configured to apply power to the cathode. The substrate support is inside and electrically isolated from the side walls of the vacuum chamber. The anode is inside and electrically connected to the side walls of the vacuum chamber. The shield is inside and electrically connected to the side walls of the vacuum chamber and includes an annular body and a plurality of concentric annular projections extending from the annular body. | 06-17-2010 |
20100181191 | SPUTTERING APPARATUS - It is an object of the present invention to provide a sputtering apparatus capable of suppressing local consumption of axial end portions of a rotatable cylindrical target to make uniform an erosion area in the cylindrical target and thereby improving the service life of the cylindrical target. The apparatus includes a pair of sputter evaporation sources | 07-22-2010 |
20100230280 | Self-ionized sputtering apparatus - There is provided a low-cost self-sputtering apparatus which is so arranged that, even when an arc discharge occurs for some reasons or other, failure in electric discharge can be prevented. The self-sputtering apparatus has a vacuum chamber in which a substrate to be processed is disposed; a target to be disposed opposite to the substrate; a sputtering power source for charging the target with a negative DC current; an anode shield which is disposed in a manner to enclose a space in front of the target and which is charged with a positive electric potential; and a gas introduction means for introducing a predetermined sputtering gas into the vacuum chamber. The apparatus further has an LC resonance circuit in parallel with an output circuit from the DC power source to the target. | 09-16-2010 |
20100230281 | THIN FILM FORMING APPARATUS - Provided are a thin film forming apparatus and a thin film forming method. The thin film forming apparatus comprises a first electrode provided for etching a thin film formed on the substrate, a second electrode provided for forming a plasma in the internal space, a third electrode provided for focusing the plasma, and a control unit controlling a voltage to be applied to the first through third electrodes. | 09-16-2010 |
20110036708 | MAGNETRON SPUTTERING DEVICE - An exemplary magnetron sputtering device includes a target, a magnet arrangement, and a driving system. The target defines a magnet-receiving space therein. The magnet arrangement is received within the magnet-receiving space. The driving system is configured for driving the magnet arrangement to spin and move back and forth. | 02-17-2011 |
20110048934 | SYSTEM AND APPARATUS TO FACILITATE PHYSICAL VAPOR DEPOSITION TO MODIFY NON-METAL FILMS ON SEMICONDUCTOR SUBSTRATES - Embodiments of the invention relate generally to semiconductor device fabrication and processes, and more particularly, to an apparatus and a system for implementing arrangements of magnetic field generators configured to facilitate physical vapor deposition (“PVD”) and/or controlling impedance matching associated with a non-metal-based plasma used to modify a non-metal film, such as a chalcogenide-based film. | 03-03-2011 |
20110062019 | SPUTTERING APPARATUS - There is provided an inexpensive sputtering apparatus in which self-sputtering can be stably performed by accelerating the ionization of the atoms scattered from a target. The sputtering apparatus has: a target which is disposed inside a vacuum chamber so as to lie opposite to the substrate W to be processed; a magnet assembly which forms a magnetic field in front of the sputtering surface of the target; and a DC power supply which charges the target with a negative DC potential. A first coil is disposed in a central portion of a rear surface of the sputtering surface of the target. The first coil is electrically connected between the first power supply and the output to the target. When a negative potential is charged to the target by the sputtering power supply, the electric power is charged to the first coil, whereby a magnetic field is generated in front of the sputtering surface. | 03-17-2011 |
20110100807 | POWER SUPPLY APPARATUS - There is provided a power supply apparatus which is easy in attempting to unify the thickness distribution of a thin film to be formed on the surface of a substrate even at the time of charging pulsed potential at a low frequency to targets that make respective pairs. The power supply apparatus of this invention has: a first discharge circuit which alternately charges predetermined potential to a pair of targets that are in contact with a plasma at a predetermined frequency; and a second discharge circuit which charges predetermined potential between the ground and the target, out of the pair of targets, that is not receiving output from the first discharge circuit. | 05-05-2011 |
20110120860 | BIPOLAR PULSED POWER SUPPLY AND POWER SUPPLY APPARATUS HAVING PLURALITY OF BIPOLAR PULSED POWER SUPPLIES CONNECTED IN PARALLEL WITH EACH OTHER - A bipolar pulsed power supply which supplies power in a bipolar pulsed mode at a predetermined frequency to a pair of electrodes that come into contact with a plasma is arranged to reduce the switching loss of the switching elements in a bridge circuit, and also to attain a high durability without using high-performance switching elements. The bipolar pulsed power supply has: a bridge circuit constituted by switching elements SW | 05-26-2011 |
20110120861 | POWER SUPPLY APPARATUS - There is provided a power supply apparatus that is capable of suppressing the occurrence of anomalous electric discharge due to charge-up of a substrate and that is capable of forming a good thin film on a large-area substrate. The power supply apparatus of this invention has: a first discharge circuit that alternately charges predetermined potential at a predetermined frequency to a pair of targets that are in contact with a plasma; and a second discharge circuit that charges predetermined potential between the grounding and the electrode, out of the pair of electrodes, that is not charged with potential from the first discharge circuit. The second discharge circuit is provided with a reverse potential charging means for charging, at the time of polarity reversal, at least one of the electrodes with potential that is reverse to the output potential. | 05-26-2011 |
20110147206 | SPUTTER DEVICE - In a sputter device ( | 06-23-2011 |
20110180401 | MAGNET UNIT AND MAGNETRON SPUTTERING APPARATUS - The present invention provides a magnet unit, which can realize uniform film thickness distribution of a thin film formed on a substrate without increasing the length and width of a target. | 07-28-2011 |
20110186425 | MAGNETRON SPUTTERING METHOD, AND MAGNETRON SPUTTERING APPARATUS - A sputtering method includes disposing a plurality of thin and long deposition regions such that the thin and long deposition regions each cross in a first direction a circular reference region having a diameter equal to that of a semiconductor wafer, and are arranged at predetermined intervals in a second direction perpendicular to the first direction; disposing one of the plurality of thin and long deposition regions such that one side of sides thereof extending in the first direction passes through a substantial center of the circular reference region; disposing another of the plurality of thin and long deposition regions such that one side of sides thereof extending in the first direction passes through a substantial edge of the circular reference region; setting each of widths of the plurality of thin and long deposition regions such that a value obtained by summing the widths of the plurality of thin and long deposition regions in the second direction is substantially equal to a radius of the circular reference region; disposing a plurality of thin and long targets to face the corresponding thin and long deposition regions such that sputtering particles emitted from the plurality of thin and long targets are incident on the corresponding thin and long deposition regions; disposing a semiconductor wafer, while overlapping with the circular reference region; confining a plasma generated by a magnetron discharge in the vicinity of the targets, and emitting the sputtering particles from the targets; and rotating the semiconductor wafer at a predetermined rotation speed by using a normal line passing through the center of the circular reference region as a rotation central axis, to deposit a film on a surface of the semiconductor wafer. | 08-04-2011 |
20110198219 | MAGNETRON SPUTTERING DEVICE - An object of the present invention is to improve a sputtering efficiency and a production efficiency in a magnetron sputtering method using a rectangular target. A magnetron sputtering apparatus | 08-18-2011 |
20110209995 | Physical Vapor Deposition With A Variable Capacitive Tuner and Feedback Circuit - Apparatus and methods for performing plasma processing on a wafer supported on a pedestal are provided. The apparatus can include a pedestal on which the wafer can be supported, a variable capacitor having a variable capacitance, a motor attached to the variable capacitor which varies the capacitance of the variable capacitor, a motor controller connected to the motor that causes the motor to rotate, and an output from the variable capacitor connected to the pedestal. A desired state of the variable capacitor is associated with a process recipe in a process controller. When the process recipe is executed the variable capacitor is placed in the desired state. | 09-01-2011 |
20110240465 | END-BLOCK AND SPUTTERING INSTALLATION - An end-block and a deposition apparatus including an end-block are provided. The end-block includes a base body which is adapted to be connected to the deposition apparatus in a non-rotational manner. The end-block further includes a rotary bearing arranged around the base body and a rotor which is arranged around the rotary bearing and adapted to receive a rotatable target. | 10-06-2011 |
20110240466 | PHYSICAL VAPOR DEPOSITION CHAMBER WITH ROTATING MAGNET ASSEMBLY AND CENTRALLY FED RF POWER - Embodiments of the present invention provide improved methods and apparatus for physical vapor deposition (PVD) processing of substrates. In some embodiments, an apparatus for physical vapor deposition (PVD) may include a target assembly having a target comprising a source material to be deposited on a substrate, an opposing source distribution plate disposed opposite a backside of the target and electrically coupled to the target along a peripheral edge of the target, and a cavity disposed between the backside of the target and the source distribution plate; an electrode coupled to the source distribution plate at a point coincident with a central axis of the target; and a magnetron assembly comprising a rotatable magnet disposed within the cavity and having an axis of rotation that is aligned with a central axis of the target assembly, wherein the magnetron assembly is not driven through the electrode. | 10-06-2011 |
20110303534 | AC POWER SUPPLY FOR SPUTTERING APPARATUS - There is provided an AC power supply for a sputtering apparatus in which the AC power supply can prevent the induction of an arc discharge by suppressing an overvoltage to be generated when the polarity of each electrode is reversed. A bridge circuit made up of a plurality of switching transistors SW | 12-15-2011 |
20120000774 | Plasma Processing Apparatus - A plasma processing apparatus includes a processing chamber to be depressurized and exhausted, a sample placement electrode provided in the processing chamber and having a sample placement surface on which a substrate to be processed is placed, an electromagnetic generation device to generate plasma in the processing chamber, a supply system that supplies processing gas to the processing chamber, a vacuum exhaust system that exhausts inside the processing chamber, a heater layer and a base temperature monitor that are disposed on the sample placement electrode, a wafer temperature estimating unit that estimates a wafer temperature from the base temperature monitor and plasma forming power supply, and a controller that regulates the heater corresponding to output from the temperature estimating unit. | 01-05-2012 |
20120103801 | FILM FORMATION APPARATUS - A film formation apparatus includes: a chamber having an inner space in which both a body to be processed and a target are disposed so that the body to be processed and the target are opposed to each other, a first magnetic field generation section generating a magnetic field in the inner space to which the target is exposed; a second magnetic field generation section generating a perpendicular magnetic field so as to allow perpendicular magnetic lines of force thereof to pass between the target the body to be processed; and a third magnetic field generation section disposed at upstream side of the target as seen from the second magnetic field generation section. | 05-03-2012 |
20120111722 | FILM-FORMING APPARATUS - There is provided a film forming apparatus for forming a coating film on a surface of an object to be processed by using a sputtering method, the film forming apparatus including: a chamber for accommodating the object and a target serving as a base material for the coating film that are placed so as to face each other; an exhaust unit for reducing the pressure inside the chamber; a magnetic field generating unit for generating a magnetic field in front of the sputtering surface of the target; a direct current power supply for applying a negative direct current voltage to the target; a gas introducing unit for introducing a sputtering gas into the chamber; and a unit for preventing the entering of sputtered particles onto the object until the plasma generated between the target and the object reaches a stable state. | 05-10-2012 |
20120118732 | FILM FORMATION APPARATUS - A film formation apparatus includes: a chamber having a side wall and an inner space in which both a body to be processed and a target are disposed a first magnetic field generation section generating a magnetic field in the inner space a second magnetic field generation section disposed at a position close to the target, the second magnetic field generation section generating a magnetic field so as to allow perpendicular magnetic lines of force thereof to pass through a position adjacent to the target; and a third magnetic field generation section disposed at a position close to the body to be processed, the third magnetic field generation section generating a magnetic field so as to induce the magnetic lines of force to the side wall of the chamber. | 05-17-2012 |
20120193225 | FILM FORMATION METHOD, FILM FORMATION DEVICE, PIEZOELECTRIC FILM, PIEZOELECTRIC DEVICE, LIQUID DISCHARGE DEVICE AND PIEZOELECTRIC ULTRASONIC TRANSDUCER - When a film containing constituent elements of a target is formed on a substrate through a vapor deposition process using plasma with placing the substrate and the target to face each other, a potential in a spatial range of at least 10 mm extending laterally from the outer circumference of the substrate is controlled to be equal to a potential on the substrate, and/or the substrate is surrounded with a wall surface having a potential controlled to be equal to the potential on the substrate. | 08-02-2012 |
20130001076 | MOUNTING TABLE STRUCTURE AND PLASMA FILM FORMING APPARATUS - A mounting table structure includes a mounting table body, made of a conductive material, for mounting thereon the processing target object and serving as an electrode; a base table, made of a conductive material, disposed below the mounting table body with a gap therebetween in a state insulated from the mounting table body; a support column, connected to the ground side, for supporting the base table; a high frequency power supply line, connected to the mounting table body, for supplying a high frequency bias power to the mounting table body; and a power stabilization capacitor provided between the ground side and a hot side to which the high frequency bias power is applied. Here, an electrostatic capacitance of the power stabilization capacitor is set to be larger than an electrostatic capacitance of a stray capacitance between the mounting table body and the protective cover member. | 01-03-2013 |
20130105309 | MAGNETRON SPUTTERING APPARATUS | 05-02-2013 |
20130105310 | FILM FORMATION APPARATUS AND FILM FORMATION METHOD | 05-02-2013 |
20130256126 | SUBSTRATE SUPPORT WITH RADIO FREQUENCY (RF) RETURN PATH - Apparatus for processing substrates are provided herein. In some embodiments, an apparatus for processing a substrate includes a substrate support that may include a dielectric member having a surface to support a substrate thereon; one or more first conductive members disposed below the dielectric member and having a dielectric member facing surface adjacent to the dielectric member; and a second conductive member disposed about and contacting the one or more first conductive members such that RF energy provided to the substrate by an RF source returns to the RF source by traveling radially outward from the substrate support along the dielectric member facing surface of the one or more first conductive members and along a first surface of the second conductive member disposed substantially parallel to a peripheral edge surface of the one or more first conductive members after travelling along the dielectric layer facing surface. | 10-03-2013 |
20130256127 | SUBSTRATE PROCESSING SYSTEM HAVING SYMMETRIC RF DISTRIBUTION AND RETURN PATHS - A processing system may include a target having a central axis normal thereto; a source distribution plate having a target facing side opposing a backside of the target, wherein the source distribution plate includes a plurality of first features such that a first distance of a first radial RF distribution path along a given first diameter is about equal to a second distance of an opposing second radial RF distribution path along the given first diameter; and a ground plate opposing a target opposing side of the source distribution plate and having a plurality of second features disposed about the central axis and corresponding to the plurality of first features, wherein a third distance of a first radial RF return path along a given second diameter is about equal to a fourth distance of an opposing second radial RF return path along the given second diameter. | 10-03-2013 |
20140048413 | FILM-FORMING APPARATUS - There is provided a film forming apparatus for forming a coating film on a surface of an object to be processed by using a sputtering method, the film forming apparatus including: a chamber for accommodating the object and a target serving as a base material for the coating film that are placed so as to face each other; an exhaust unit for reducing the pressure inside the chamber; a magnetic field generating unit for generating a magnetic field in front of the sputtering surface of the target; a direct current power supply for applying a negative direct current voltage to the target; a gas introducing unit for introducing a sputtering gas into the chamber; and a unit for preventing the entering of sputtered particles onto the object until the plasma generated between the target and the object reaches a stable state. | 02-20-2014 |
20140124364 | PLASMA GENERATION SOURCE INCLUDING BELT-TYPE MAGNET AND THIN FILM DEPOSITION SYSTEM USING THIS - The present invention is a plasma generation source and a thing that is in its application and it is for getting high quality thin film by generating even high density plasma in high vacuum and like this plasma generation source applying like this plasma generation source to sputtering system, neutral particle beam source, thin film deposition system combining sputtering system and neutral particle beam source. According to the present invention, it generates plasma by using microwave through the microwave irradiating equipment and magnetic field by more than one pair of the belt type magnets and above goal can be accomplished maximizing plasma confinement effect by inducing electron returning trajectory in accordance with above continuous structure on belt type magnet. | 05-08-2014 |
20140158530 | APPARATUS FOR SPUTTERING AND A METHOD OF FABRICATING A METALLIZATION STRUCTURE - A method of depositing a metallization structure ( | 06-12-2014 |
20140166479 | SPUTTERING APPARATUS - A sputtering apparatus including: a first target and a second target disposed to face each other; a magnetic field generating unit that is disposed on each rear surface of the first and second targets to generate a magnetic field; and a structure that is disposed between the first target and the second target and is formed of a doping material. | 06-19-2014 |
20140238849 | METHODS AND APPARATUS FOR CONTROLLING DOPANT CONCENTRATION IN THIN FILMS FORMED VIA SPUTTERING DEPOSITION - Sputtering chambers including one or more first sputtering targets within the sputtering chamber and one or more second sputtering targets are generally provided. Each first sputtering target comprises a source material, and each second sputtering target comprises the source material and a dopant. A conveyor system is configured to transport a plurality of substrates through the sputtering chamber to deposit a thin film onto a surface of each substrate. A power source is electrically connected to each of the first sputtering targets and the second sputtering target. A target shield can also be included within the sputtering chamber, and can be positioned between a portion of the second sputtering target and the conveyor system. The dopant can be present within the second sputtering target as a discrete insert within a cavity defined by the source material. Methods are also provided for making a sputtering target and depositing a thin film. | 08-28-2014 |
20140246311 | IN-SITU SPUTTERING APPARATUS - A sputtering apparatus that includes at least a target presented as an inner surface of a confinement structure, the inner surface of the confinement structure is preferably an internal wall of a circular tube. A cathode is disposed adjacent the internal wall of the circular tube. The cathode preferably provides a hollow core, within which a magnetron is disposed. Preferably, an actuator is attached to the magnetron, wherein a position of the magnetron within the hollow core is altered upon activation of the actuator. Additionally, a carriage supporting the cathode and communicating with the target is preferably provided, and a cable bundle interacting with the cathode and linked to a cable bundle take up mechanism provides power and coolant to the cathode, magnetron, actuator and an anode of the sputtering apparatus. | 09-04-2014 |
20140246312 | SPUTTERING APPARATUS - A magnetron assembly for a rotary target cathode comprises an elongated support structure, a magnet bar structure movably positioned below the support structure, and a plurality of drive modules coupled to the support structure. The drive modules each include a motorized actuation mechanism operatively coupled to the magnet bar structure. A controller and battery module is coupled to the support structure and is in operative communication with the drive modules. The controller and battery module includes an electronic controller and at least one rechargeable battery. The battery is configured to energize each motorized actuation mechanism and the electronic controller. One or more power generation modules is coupled to the support structure and in electrical communication with the battery, such that electrical energy output from the power generation modules recharges the battery. | 09-04-2014 |
20140251800 | SPUTTER SOURCE FOR USE IN A SEMICONDUCTOR PROCESS CHAMBER - In some embodiments, a sputter source for a process chamber may include: a first enclosure having a top, sides and an open bottom; a target coupled to the open bottom; an electrical feed coupled to the top of the first enclosure proximate a central axis of the first enclosure to provide power to the target via the first enclosure; a magnet assembly having a shaft, a support arm coupled to the shaft, and a magnet coupled to the support arm disposed within the first enclosure; a first rotational actuator disposed off-axis to the central axis of the first enclosure and rotatably coupled to the magnet to rotate the magnet about the central axis of the first enclosure; and a second rotational actuator disposed off-axis to the central axis of the first enclosure and rotatably coupled to the magnet to rotate the magnet about a central axis of the magnet assembly. | 09-11-2014 |
20140262764 | METHODS AND APPARATUS FOR REDUCING SPUTTERING OF A GROUNDED SHIELD IN A PROCESS CHAMBER - Methods and apparatus for physical vapor deposition are provided herein. In some embodiments, a process kit shield for use in a physical vapor deposition chamber may include an electrically conductive body having one or more sidewalls defining a central opening, wherein the body has a ratio of a surface area of inner facing surfaces of the one or more sidewalls to a height of the one or more sidewalls of about 2 to about 3. | 09-18-2014 |
20140291144 | PLASMA DEPOSITION ON A PARTIALLY FABRICATED BATTERY CELL THROUGH A MESH SCREEN - A plasma chamber for depositing a battery component material on a partially fabricated battery cell comprising a battery component layer containing charge-carrying metal species and having an exposed surface. The chamber comprises a support carrier to hold a battery support comprising the partially fabricated battery cell. A mesh screen is positioned at a preset distance from the support carrier, the mesh screen having a plurality of mesh openings. An exhaust maintains a pressure of the process gas in the plasma chamber. A plasma power source is capable of applying an electrical power to the process gas to generate a plasma from the process gas for plasma deposition, during which the mesh screen is capable of reducing migration of the charge-carrying metal species across the battery component layer. | 10-02-2014 |
20140332375 | ASSEMBLY FOR FEEDING IN HF CURRENT FOR TUBULAR CATHODES - An arrangement is provided for feeding in HF current for rotatable tubular cathodes in a vacuum chamber of a plasma coating system as well as a high frequency current source. Located inside the tubular cathode is a magnet arrangement that extends along said tubular cathode for generating a magnetic field. The arrangement enables a low loss infeed of HF current, so that a particularly homogeneous sputter removal from the tubular cathode is guaranteed. The HF current source is coupled to the tubular cathode inside the vacuum chamber by a capacitive infeed of HF current in the form of a coupling capacitor. The coupling capacitor includes a part of the surface of the tubular cathode and a metal plate or metal film that surrounds the tubular cathode, at least partially, at a specified distance. | 11-13-2014 |
20140346037 | SPUTTER DEVICE - There is provided a sputter device in which a conductive target having a planar and circular shape is disposed so as to face a workpiece substrate mounted on a mounting part located within a vacuum chamber, includes: a direct current power supply configured to apply a negative direct current voltage to the target; an opposing electrode installed at the opposite side of the workpiece substrate from the target so as to face the target; and a target high-frequency power supply connected to the target and configured to supply high-frequency power to the target in order to generate a high-frequency electric field between the opposing electrode and the target, wherein the distance between the target and the workpiece substrate during a sputtering process being 30 mm or less. | 11-27-2014 |
20150114835 | FILM FORMING APPARATUS - A film forming apparatus includes a stage provided in the processing chamber; three or more targets uniformly arranged along a circle centering around a vertical axis line that passes through a center of the stage, each of the targets having a substantially rectangular shape; a shutter provided between the targets and the stage, the shutter including an opening which allows one of the targets to be selectively exposed to the stage; and a rotation shaft coupled to the shutter, the rotation shaft extending along the vertical axis line. A width of the opening in a tangent direction to the circle centering around the vertical axis line is set such that two adjacent targets in a circumferential direction of the circle among the targets are allowed to be partially and simultaneously exposed to the stage. | 04-30-2015 |
20150311065 | PHYSICAL VAPOR DEPOSITION METHODS AND SYSTEMS TO FORM SEMICONDUCTOR FILMS USING COUNTERBALANCE MAGNETIC FIELD GENERATORS - Embodiments relate generally to semiconductor device fabrication and processes, and more particularly, to systems and methods that implement magnetic field generators configured to generate rotating magnetic fields to facilitate physical vapor deposition (“PVD”). In one embodiment, a system generates a first portion of a magnetic field adjacent a first circumferential portion of a substrate, and can generate a second portion of the magnetic field adjacent to a second circumferential portion of the substrate. The second circumferential portion is disposed at an endpoint of a diameter that passes through an axis of rotation to another endpoint of the diameter at which the first circumferential portion resides. The second peak magnitude can be less than the first peak magnitude. The system rotates the first and second portions of the magnetic fields to decompose a target material to form a plasma adjacent the substrate. The system forms a film upon the substrate. | 10-29-2015 |
20160027624 | SPUTTERING APPARATUS - A sputtering apparatus that forms a film on a substrate by sputtering in a chamber includes an electrode including a holding portion that holds a target, and configured to apply a potential to the target via the holding portion, a first magnet and second magnet arranged to sandwich a space between the holding portion, and a substrate arrangement surface on which the substrate should be arranged, and to be spaced apart from each other in a direction along the substrate arrangement surface, a shield arranged between the first magnet and the second magnet, and between the substrate arrangement surface and the holding portion, and a rotation driving unit configured to integrally rotate the target, the first magnet, and the second magnet. | 01-28-2016 |
20160172168 | APPARATUS FOR PVD DIELECTRIC DEPOSITION | 06-16-2016 |
20160181074 | CHARGE REMOVAL FROM ELECTRODES IN UNIPOLAR SPUTTERING SYSTEM | 06-23-2016 |