Class / Patent application number | Description | Number of patent applications / Date published |
204298070 | Specified gas feed or withdrawal | 39 |
20080217170 | SPUTTERING SYSTEM - A sputtering system including a vacuum chamber, at least one cathode located in said vacuum chamber, a first gas introduction mechanism for supplying a gas along a surface of the cathode, which first gas introduction mechanism is located in the vacuum chamber and provided through the at least one cathode, a second gas introduction mechanism for supplying a gas along a surface of the at least one cathode, which second gas introduction mechanism is located in the vacuum chamber and provided around the at least one cathode, a third gas introduction mechanism for supplying a gas into the vacuum chamber, which third gas introduction mechanism has gas supply inlets positioned at a location radially outside of said second gas introduction mechanism and above said at least one cathode, and a vacuum evacuation unit for evacuating the inside of said vacuum chamber. | 09-11-2008 |
20080257723 | Physical Vapor Deposition System - A physical vapor deposition system for making microparticles generated by using a non-transfer type plasma torch not generating an outgas even in an ultra-high vacuum environment accelerate by a supersonic gas flow and depositing microparticles on a substrate to form a coating film is provided. Provision is made of an evaporation chamber ( | 10-23-2008 |
20080264784 | Media Injector - The invention relates to a media injector for transporting a particularly fluid medium into a processing chamber, preferably consisting of a supply device and at least one gap acting as a transport opening for the medium, wherein said gap comprises at least two gap defining surfaces with a gap arranged therebetween. According to the invention, at least one gap defining surface is defined by at least one part of at least one front surface of a first tubular element. | 10-30-2008 |
20090159440 | Batch-Type Remote Plasma Processing Apparatus - A plasma processing apparatus comprises a processing chamber in which a plurality of substrates are stacked and accommodated; a pair of electrodes extending in the stacking direction of the plurality of substrates, which are disposed at one side of the plurality of substrates in said processing chamber, and to which high frequency electricity is applied.; and a gas supply member which supplies processing gas into a space between the pair of electrodes. | 06-25-2009 |
20090218217 | SPUTTERING APPARATUS FOR DEPOSITING A HIGHER PERMITTIVITY DIELECTRIC FILM - A method of depositing a high permittivity dielectric film on a doped silicon or silicon compound layer of a wafer. The method includes a first step of nitriding a specific element (A) such as hafnium Hf to form a nitride film (A | 09-03-2009 |
20090266711 | SUBSTRATE PROCESSING APPARATUS - The substrate processing apparatus includes: at least one processing chamber in which a semiconductor wafer is processed; a transfer chamber disposed adjacent to the at least one processing chamber; a vacuum pump for depressurizing an inside of the transfer chamber; a transfer device for carrying the semiconductor wafer between the transfer chamber and the at least one processing chamber; and a foreign substance removing unit for removing foreign substances adhered to the transfer device in the transfer chamber. | 10-29-2009 |
20100059367 | SPUTTER-COATING APPARATUS - A sputter-coating apparatus is configured for coating a substrate with a target material, and includes an upper housing defining an opening, a lower housing, an infrared heating unit, and a shielding member. The lower housing and the upper housing cooperatively defines an airtight chamber. The substrate and the target material are positioned in the lower housing. The infrared heating unit is fixed to the upper housing and configured for heating the substrate. The shielding member is fixed to the upper housing to seal the opening and is transparent to infrared rays generated by the infrared heating unit. | 03-11-2010 |
20100078320 | MICROWAVE PLASMA CONTAINMENT SHIELD SHAPING - The present invention provides microwave systems and methods for achieving better control of process and film properties by optimizing plasma containment shield shaping around an antenna. By using a containment shield, plasma generated by microwave may become more homogeneous, and the pressure inside a processing chamber may be reduced. By optimizing the shape of the containment shield, the lifetime of metastable radical species may be increased. One aspect of extending the lifetime of metastable radical species is to allow better control of chemical reaction and thus help achieve the desired film properties. For an array of antennas, the containment shield comprises a dielectric coated metal base with dividers between the antennas. The divider comprises a dielectric material or a mixture of a dielectric layer and a dielectric coated metal layer, and allows coupling among the antennas. Such a dielectric coated metal containment shield may be easier to be manufactured at lower cost than a containment shield comprising only dielectric material such as quartz. | 04-01-2010 |
20100206723 | PHOTOCATALYST ELEMENT, METHOD AND DEVICE FOR PREPARING THE SAME - A photocatalyst according to the invention comprises a photocatalytic film of a compound of titanium and oxygen and is characterized in that the photocatalytic film is made porous and has 0.02 or higher value as a value calculated by dividing the arithmetical mean deviation of profile Ra with the film thickness. The photocatalytic film can also be specified by the intensity ratio between x-ray diffraction peaks of the anatase structure of titanium oxide. Such a porous photocatalytic material can be obtained by a reactive sputtering method in conditions of adjusting film formation parameters such as the film formation rate, the sputtering pressure, the substrate temperature, the oxygen partial pressure and the like in proper ranges, respectively, and the photocatalyst material is provided with excellent decomposition and hydrophilization capability. | 08-19-2010 |
20100243436 | SPUTTERING DEVICE WITH GAS INJECTION ASSEMBLY - A sputtering device includes a chamber; and a substrate transferring unit for loading a substrate into, or unloading the substrate from the chamber, the substrate transferring unit including a gas injection assembly forming a gas cushion between the substrate and an upper surface of the substrate transferring unit. | 09-30-2010 |
20100258437 | APPARATUS FOR REACTIVE SPUTTERING DEPOSITION - Provided is a reactive sputtering apparatus, and more particularly, a reactive sputtering apparatus capable of effectively ionizing a reactive gas using inductively coupled plasma (ICP). The reactive sputtering apparatus includes: a chamber having an inlet port for introducing a plasma gas thereinto and an outlet port for exhausting the gas used during reactive sputtering to the exterior; an ICP generator disposed on the chamber, ionizing a reactive gas, and injecting the ionized gas into the chamber; and at least one sputter gun located at a side surface of the chamber and supporting a target. Therefore, the reactive sputtering apparatus can improve an ionization rate of a reactive gas using inductively coupled plasma to reduce a process temperature and improve uniformity and step coverage of thin film deposition at low cost. | 10-14-2010 |
20100288630 | PHYSICAL VAPOR DEPOSITION DEVICE - A physical vapor deposition device includes a chamber; a cathode and an opposite anode, a target material, and supporting device arranged in the chamber. The target material and the supporting device are positioned between the cathode and the anode. The supporting device includes a rotatable device and a hollow supporting plate. The hollow supporting plate is configured for securing the workpiece and exposing part of the workpiece where is needed to be coated. The hollow supporting plate is movably fastened to the rotatable device. A distance from the hollow supporting plate to the rotatable device can be adjusted when the hollow supporting plate is rotated together with the rotatable device in order to align workpiece with the target material. | 11-18-2010 |
20110083960 | SPUTTERING APPARATUS - A sputtering apparatus that is capable of uniformly depositing an ultra-low concentration metal catalyst on a substrate having an amorphous silicon layer in order to crystallize the amorphous silicon layer. The sputtering apparatus includes a process chamber, a metal target located inside the process chamber, a substrate holder located opposite the metal target, and a vacuum pump connected with an exhaust pipe of the process chamber. An area of the metal target is more than 1.3 times an area of a substrate placed on the substrate holder. | 04-14-2011 |
20110168553 | SPUTTERING SYSTEM - A sputtering system is disclosed. The sputtering system includes: a first sputter unit including: a first deposition material plate, a second deposition material plate, where the first and second deposition material plates face each other, and a first magnetic field generator disposed behind each of the first deposition material plate and the second deposition material plate, configured to generate a magnetic field, a second sputter unit including: a third deposition material plate, disposed next to the first deposition material plate, a fourth deposition material plate, disposed next to the second deposition plate, where the third and fourth deposition material plates face each other, and a second magnetic field generator disposed behind each of the third deposition material plate and the fourth deposition material plate, configured to generate a magnetic field, a first gas supply pipe disposed between the first and third deposition material plates, configured to discharge gas to the second and fourth deposition material plates, a second gas supply pipe disposed between the second fourth deposition material plates, configured to discharge gas to the first and third deposition material plates, a first substrate support unit, configured to support a first deposition substrate, oriented toward outer edges of the first and second deposition material plates, and a second substrate support unit, configured to support a second deposition substrate, oriented toward outer edges of the third and fourth deposition material plates. | 07-14-2011 |
20110253529 | RING CATHODE FOR USE IN A MAGNETRON SPUTTERING DEVICE - The present invention relates to a magnetron sputtering device including a large ring cathode having a defined inner radius. The position of the ring cathode is offset in relation to a center point of a planetary drive system. An anode or reactive gas source may be located within the inner radius of the ring cathode. Lower defect rates are obtained through the lower power density at the cathode which suppresses arcing, while runoff is minimized by the cathode to planet geometry without the use of a mask. | 10-20-2011 |
20110266143 | SPUTTERING SYSTEM - A sputtering system includes at least two treatment chambers, at least two antechambers, a gas withdrawal device, a placement device, a removal device, and a transport device. The antechambers and the treatment chambers are connected to each other alternatively to form a loop. Each of the treatment chambers includes arcing sources received therein. The arcing sources are configured for carrying target materials and ionizing the target materials by electronic arc. The gas withdrawal device is configured for vacuuming the treatment chambers and the antechambers. When working, the placement device places workpieces into the loop, the transport device transports the workpieces in the loop for undergoing continuously sputtering, the removal device removes the workpieces from the loop after the sputtering process is finished. | 11-03-2011 |
20110272279 | APPARATUS FOR MANUFACTURING SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE BY USING THE SAME - In a process for manufacturing a hyperfine semiconductor device, an apparatus for manufacturing a semiconductor device such as a schottky barrier MOSFET and a method for manufacturing the semiconductor device using the same are provided. Two chambers are connected with each other. A cleaning process, a metal layer forming process, and subsequent processes can be performed in situ by using the two chambers, thereby the attachment of the unnecessary impurities and the formation of the oxide can be prevented and the optimization of the process can be accomplished. | 11-10-2011 |
20110278163 | GAS SUPPLY SYSTEM AND SPUTTERING APPARATUS HAVING SAME - An exemplary gas supply system, includes a plurality of first input lines for supplying gas, a plurality of second input lines, a plurality of third input lines, a first mixing tank communicating with the second input lines, a second mixing tank communicating with the third input lines, and a plurality of three-way valves. Each three-way valve is communicated with a first input line, a second input line and a third input line such that gas in the first input lines can be selectively introduced into the first mixing tank or the second mixing tank. | 11-17-2011 |
20110278164 | SPUTTERING DEVICE - A sputtering device includes a chamber having a number of targets mounted therein, a supporting frame, and a gas supplying frame. The chamber defines an engaging hole and a gas input hole therein. The supporting frame is capable of having a revolution in the chamber, the supporting frame includes a number of supporting poles for supporting workpieces, and the supporting poles is capable of having a rotation relative to the supporting frame. The gas supplying frame is received in the supporting frame, the gas supplying frame includes a gas input pipe engaging in and extending through the engaging hole of the chamber, and a number of gas guiding pipes are in communication with the gas input pipe and are substantially parallel with the supporting poles. Each of the gas guiding pipes has a number of gas output holes around the workpieces. | 11-17-2011 |
20120000773 | REACTIVE SPUTTERING ZINC OXIDE TRANSPARENT CONDUCTIVE OXIDES ONTO LARGE AREA SUBSTRATES - The present invention generally comprises one or more cooled anodes shadowing one or more gas introduction tubes where both the cooled anodes and the gas introduction tubes span a processing space defined between one or more sputtering targets and one or more substrates within a sputtering chamber. The gas introduction tubes may have gas outlets that direct the gas introduced away from the one or more substrates. The gas introduction tubes may introduce reactive gas, such as oxygen, into the sputtering chamber for depositing TCO films by reactive sputtering. During a multiple step sputtering process, the gas flows (i.e., the amount of gas and the type of gas), the spacing between the target and the substrate, and the DC power may be changed to achieve a desired result. | 01-05-2012 |
20120012459 | INTEGRATED ANODE AND ACTIVATED REACTIVE GAS SOURCE FOR USE IN A MAGNETRON SPUTTERING DEVICE - The invention relates to an integrated anode and activated reactive gas source for use in a magnetron sputtering device and a magnetron sputtering device incorporating the same. The integrated anode and activated reactive gas source comprises a vessel having an interior conductive surface, comprising the anode, and an insulated outer body isolated from the chamber walls of the coating chamber. The vessel has a single opening with a circumference smaller that that of the vessel in communication with the coating chamber. Sputtering gas and reactive gas are coupled through an input into the vessel and through the single opening into the coating chamber. A plasma is ignited by the high density of electrons coming from the cathode and returning to the power supply through the anode. A relatively low anode voltage is sufficient to maintain a plasma of activated reactive gas to form stoichiometric dielectric coatings. | 01-19-2012 |
20120090991 | MAGNETRON SPUTTERING APPARATUS - A magnetron sputtering apparatus comprising: a deposition chamber; a processing chamber in communication with the deposition chamber, wherein a target area composed of targets is located at the place where the processing chamber is connected with the deposition chamber; a transfer chamber provided adjacent to the processing chamber, wherein a first gas-tight gate is provided on a wall of the transfer chamber, the first gas-tight gate being opened or closed so as to control the vacuum degree in the transfer chamber and to replace the targets; a transfer device which is provided in the processing chamber and/or the transfer chamber, transfers the target between the transfer chamber and the processing chamber via a second gas-tight gate provided on the adjacent walls of the transfer chamber and the processing chamber for replacement when the transfer chamber is in a set vacuum degree state. | 04-19-2012 |
20120152736 | REACTIVE SPUTTERING APPARATUS - A reactive sputtering apparatus includes a chamber, a substrate holder provided in the chamber, a target holder which is provided in the chamber and configured to hold a target, a deposition shield plate which is provided in the chamber so as to form a sputtering space between the target holder and the substrate holder, and prevents a sputter particle from adhering to an inner wall of the chamber, a reactive gas introduction pipe configured to introduce a reactive gas into the sputtering space, an inert gas introduction port which introduces an inert gas into a space that falls outside the sputtering space and within the chamber, and a shielding member which prevents a sputter particle from the target mounted on the target holder from adhering to an introduction port of the reactive gas introduction pipe upon sputtering. | 06-21-2012 |
20120168304 | Physical Vapor Deposition Tool with Gas Separation - Embodiments of the current invention describe a physical vapor deposition tool. The physical vapor deposition tool includes a housing, a substrate support positioned within the housing and configured to support a substrate, a first process head positioned over the substrate support and having a first target, a second process head positioned over the substrate support and having a second target, and a gas line to provide gas to the first process head. The first process head and the gas line are configured such that the gas provided to the first process head through the gas line interacts with ions ejected from the first target and does not interact with ions ejected from the second target. | 07-05-2012 |
20120273346 | FLOW DIVIDER SYSTEM - A flow divider system includes a gas box defining a chamber and an outlet gate, a shield located in the chamber and shielding the outlet gate, the shield including a main body, the main body defining a number of openings communicating the chamber with the outlet gate. The shielding can further includes a number of shield boards adjustably fixed to the main body, to adjustably shield portions of the openings. | 11-01-2012 |
20130062199 | FILM-FORMING APPARATUS FOR FORMING A CATHODE ON AN ORGANIC LAYER FORMED ON A TARGET OBJECT - A material having a low work function is quickly inserted near an interface between an organic layer and a cathode. A sputtering apparatus (Sp) includes a target material formed of silver (Ag), a dispenser formed outside a processing container and evaporating cesium (Cs) having a lower work function than silver (Ag) by heating the cesium (Cs), a first gas supply pipe communicating with the dispenser to transfer steam of the evaporated cesium (Cs) to the processing container by using argon gas as a carrier gas, and a high frequency power supply source supplying high frequency power to the processing container. A controller generates plasma by exciting the argon gas by using energy of the high frequency power, and while forming a metal electrode by using an silver (Ag) atom, wherein the Ag atom is generated from a the target material by using the generated plasma, controls a ratio of the cesium (Cs) mixed with the metal electrode. | 03-14-2013 |
20130270106 | Production of Nanoparticles - A production method for nanoparticles is disclosed which allows excellent control of the production parameters and elevated production rates. It comprises a plurality of sputter targets arranged in a coplanar manner, a first gas supply located between the plurality of sputter targets, for emitting a stream of gas; and a plurality of magnetrons, one located behind each of the sputter targets. Each magnetron can have an independently controlled power supply, allowing close control. For example, the targets could be of different materials allowing variation of the alloying compositions. A plurality of further gas supplies can be provided, each further gas supply providing a supply of gas over a sputter target. The sputter targets can be arranged in a rotationally symmetric manner, ideally symmetrically around the first gas supply. It is particularly convenient for the sputter targets to be located at a surface of a support, within a recessed portion on that surface bounded by an upstand, as this allows the plurality of further gas supplies to be located on the upstand, each directed towards a sputter target. This then permits close control of the gas flow rate and direction over each sputter target. | 10-17-2013 |
20130284594 | NARROW SOURCE FOR PHYSICAL VAPOR DEPOSITION PROCESSING - A narrow sputtering source and target which are designed to be installed in a series on a sputtering chamber. Each of the narrow sputtering source has length sufficient to traverse one direction of the sputtering zone, but is much narrower than the orthogonal direction of the sputtering zone. When the sputtering chamber performs a pass-by sputtering process, each of the narrow sputtering sources is sufficiently long to traverse the sputtering zone in the direction orthogonal to the substrate travel direction, but is much narrower than the sputtering zone in the direction of substrate travel. Several narrow sputtering sources are installed so as to traverse the entire sputtering zone in all directions. | 10-31-2013 |
20140001037 | WINDPIPE FOR VACUUM COATING DEVICE AND VACUUM COATING DEVICE USING THE WINDPIPE | 01-02-2014 |
20140110254 | Backing Plate for a Sputter Target, Sputter Target, and Sputter Device - A backing plate for a sputter target includes a target receiving part for receiving a target to be sputtered, and a structure for exposing the target receiving part through the backing plate. | 04-24-2014 |
20140131198 | SOLAR CELL FORMATION APPARATUS AND METHOD - Apparatuses for forming material films on a solar cell substrate of substantially uniform thickness and processes for forming the same are disclosed. The process performed in the apparatuses is physical vapor deposition (PVD) in some embodiments. In one embodiment, an apparatus includes a specially configured flow aperture. In another embodiment, an apparatus includes moveable shutters which open and close in synchronization with a rotating drum on which substrates are mounted for processing. In other embodiments, the apparatus includes a variable power supply or drum speed control which automatically vary the power supply to the apparatus or drum speed respectively in synchronization with the rotating drum. | 05-15-2014 |
20140251799 | Film Deposition Apparatus with Low Plasma Damage and Low Processing Temperature - A deposition system includes a magnetron sputter deposition source that includes a backing frame that includes a window and a closed loop around the window. The backing frame includes inside surfaces towards the window, one or more sputtering targets mounted on inside surfaces of the backing frame, and one or more magnets mounted on outside surfaces of the backing frame. The one or more sputtering targets include sputtering surfaces that define internal walls of the window. The one or more magnets can produce a magnetic field near the one or more sputtering surfaces. A substrate includes a deposition surface oriented towards the window in the backing frame. The deposition surface receives sputtering material(s) from the one or more sputtering targets. | 09-11-2014 |
20140262763 | SELECTIVELY GROUNDABLE COVER RING FOR SUBSTRATE PROCESS CHAMBERS - Embodiments of a process kit for substrate process chambers are provided herein. In some embodiments, a process kit for a substrate process chamber may include a ring having a body and a lip extending radially inward from the body, wherein the body has a first annular channel formed in a bottom of the body; an annular conductive shield having a lower inwardly extending ledge that terminates in an upwardly extending portion configured to interface with the first annular channel of the ring; and a conductive member electrically coupling the ring to the conductive shield when the ring is disposed on the conductive shield. | 09-18-2014 |
20140353149 | TUNNEL MAGNETO-RESISTANCE ELEMENT MANUFACTURING APPARATUS - The present invention provides a TMR element manufacturing apparatus capable of reducing contamination of impurities in magnetic films. According to an embodiment of the present invention, a tunnel magneto-resistance element manufacturing apparatus includes: a load lock device to load and unload a substrate from and to an outside; a first substrate transfer device that is connected to the load lock device, at least one substrate process device being connected to the first substrate transfer device; a first evacuation unit provided in the first substrate transfer device; a second substrate transfer device that is connected to the first substrate transfer device, multiple substrate process devices being connected to the second substrate transfer device; and a second evacuation unit provided in the second substrate transfer device. At least one of the multiple substrate process devices connected to the second substrate transfer device is an oxidation device. | 12-04-2014 |
20150021173 | SPUTTERING DEVICE - At least two gas supply pipes are connected to one gas pipe in a sputtering device. The sputtering device includes: a plurality of gas supply pipes provided outside a plurality of walls for surrounding a target, a plurality of gas pipes, and a plurality of gas supply ports each provided on an inner surface of each of the plurality of walls. The plurality of gas supply ports are each disposed on a side farther away from a film depositing roll than a surface of the target. The sputtering device further includes a plurality of cooling pipes for cooling the walls. | 01-22-2015 |
20150047975 | SPUTTERING TARGET WITH BACKSIDE COOLING GROOVES - Implementations of the present disclosure relate to a sputtering target for a sputtering chamber used to process a substrate. In one implementation, a sputtering target for a sputtering chamber is provided. The sputtering target comprises a sputtering plate with a backside surface having radially inner, middle and outer regions and an annular-shaped backing plate mounted to the sputtering plate. The backside surface has a plurality of circular grooves which are spaced apart from one another and at least one arcuate channel cutting through the circular grooves and extending from the radially inner region to the radially outer region of sputtering plate. The annular-shaped backing plate defines an open annulus exposing the backside surface of the sputtering plate. | 02-19-2015 |
20150307983 | DRUM SPUTTERING DEVICE - A drum sputtering device that can uniformly deposit target atoms on all over particles is provided. The drum sputtering device includes a vacuum container | 10-29-2015 |
20160027623 | SPUTTERING APPARATUS - A sputtering apparatus includes a shutter arranged having a first surface on a side of a substrate holder and a second surface on the opposite side, a first shield having a third surface including a portion facing the second surface and a fourth surface on the opposite side, a second shield having a fifth surface including a portion facing end portions of the shutter and the first shield, and a gas supply unit supplying a gas into a space arranged outside the first shield to communicate with a first gap between the second surface of the shutter and the third surface of the first shield. The second shield includes a protruding portion on the fifth surface to form a second gap between the protruding portion and the end portion of the shutter. | 01-28-2016 |
20160196956 | GAS INTAKE DEVICE OF MAGNETRON SPUTTERING VACUUM CHAMBER AND MAGNETRON SPUTTERING APPARATUS | 07-07-2016 |