Class / Patent application number | Description | Number of patent applications / Date published |
204298040 | Ion beam sputter deposition | 16 |
20100264022 | Sputtering And Ion Beam Deposition - An apparatus for depositing an oxide thin film using sputtering and ion beam deposition includes a metal target (made of Nb or Si) installed on the wall of a chamber, an ion source gun for improving properties of an optical thin film, and a substrate installed on a drum jig in the center of the chamber, thereby enabling a high-quality optical thin film to be deposited in the chamber at temperature of 60° C.±5° C. The apparatus includes a chamber in which a substrate holder drum is installed, a substrate mounted on the substrate holder drum, metal targets installed on opposite outer walls of the chamber so as to deposit a metal thin film onto the substrate, and an ion source gun installed on the chamber and generating oxygen ions for oxidizing the metal thin film. | 10-21-2010 |
20110048933 | GAS-INPUTTING DEVICE FOR VACUUM SPUTTERING APPARATUS - A gas-inputting device for a vacuum sputtering apparatus includes at least one tapered tube. Each tapered tube includes a open end, a closed end, and a conical surface. The small end is configured for introducing gas into the tapered tube. The large end opposes to the open end. Each of the at least one tapered tube tapers from the closed end to the open end. The conical surface connects the open end to the closed end. A plurality of gas holes of a same size are defined in the conical surface and equidistantly arranged along the center axis of the tapered tube from the open end to the closed end. | 03-03-2011 |
20110226617 | DIELECTRIC DEPOSITION USING A REMOTE PLASMA SOURCE - A sputter deposition system comprises a vacuum chamber including a vacuum pump for maintaining a vacuum in the vacuum chamber, a gas inlet for supplying process gases to the vacuum chamber, a sputter target and a substrate holder within the vacuum chamber, and a plasma source attached to the vacuum chamber and positioned remotely from the sputter target, the plasma source being configured to form a high density plasma beam extending into the vacuum chamber. The plasma source may include a rectangular cross-section source chamber, an electromagnet, and a radio frequency coil, wherein the rectangular cross-section source chamber and the radio frequency coil are configured to give the high density plasma beam an elongated ovate cross-section. Furthermore, the surface of the sputter target may be configured in a non-planar form to provide uniform plasma energy deposition into the target and/or uniform sputter deposition at the surface of a substrate on the substrate holder. The sputter deposition system may include a plasma spreading system for reshaping the high density plasma beam for complete and uniform coverage of the sputter target. | 09-22-2011 |
20120055786 | Holding unit, assembly system, sputtering unit, and processing method and processing unit - Because an electromagnetic chuck supplies current to a specific microcoil among a plurality of microcoils and makes an object exert an electromagnetic force working together with a magnet of the object, the object can be held in a state where the object is set at a desired position (a position that corresponds to the microcoil to which current has been supplied) on a base surface. Further, by gas that blows out from a gas supply passage, a levitation force is given to the object, which can reduce effects of a friction force that acts between the object and an upper surface of the electromagnetic chuck when the position of the object is set. | 03-08-2012 |
20120090990 | Deposition Apparatus and Methods to Reduce Deposition Asymmetry - One or more embodiments of the invention are directed to deposition apparatuses comprising a grounded top wall, a processing chamber and a plasma source assembly having a conductive hollow cylinder and a magnet outside the conductive hollow cylinder capable of affecting the current density on the conductive hollow cylinder. | 04-19-2012 |
20120211358 | INTERIOR ANTENNA FOR SUBSTRATE PROCESSING CHAMBER - An interior antenna is provided for coupling RF energy to a plasma in a process chamber having a wall. The antenna comprises a coil having a face exposed to the plasma in the process chamber. A plurality of standoffs are provided to support the coil at a spacing from the wall of the process chamber. At least one standoff comprises a terminal thorough which an electrical power can be applied to the coil, the terminal comprising a conductor receptacle. A conductor cup is around the standoff having the terminal. The conductor cup comprises a sidewall having an inner diameter that is sufficiently large to maintain a sidewall gap between the sidewall and the terminal. | 08-23-2012 |
20120228130 | IBAD APPARATUS AND IBAD METHOD - An IBAD apparatus includes, a target, a sputter ion source irradiating the target with sputter ions to sputter some of constituent particles of the target, a film formation region in which a base material for depositing thereon the particles sputtered from the target is disposed, and an assist ion beam irradiation device irradiating assist ion beams from a direction oblique to the direction of a normal of the film formation surface of the base material disposed in the film formation region, where the sputter ion source includes a plurality of ion guns arranged so as to be able to irradiate the target from an end portion on one side to an end portion on the other side with sputter ion beams, and current values for generating the sputter ion beams of the plurality of ion guns are set respectively. | 09-13-2012 |
20130075253 | TITANIUM DIBORIDE COATING FOR PLASMA PROCESSING APPARATUS - An improved plasma processing chamber is disclosed, wherein some or all of the components which are exposed to the plasma are made of, or coated with, titanium diborane. Titanium diborane has a hardness in excess of 9 mhos, making it less susceptible to sputtering. In addition, titanium diborane is resistant to fluoride and chlorine ions. Finally, titanium diborane is electrically conductive, and therefore the plasma remains more uniform over time, as charge does not build on the surfaces of the titanium diborane components. This results in improved workpiece processing, with less contaminants and greater uniformity. In other embodiments, titanium diborane may be used to line components within a beam line implanter. | 03-28-2013 |
20130112553 | METHOD FOR TREATING A SURFACE OF A POLYMERIC PART BY MULTI-ENERGY IONS - A treatment method for treating at least one surface of a solid polymer part wherein multi-energy ions X | 05-09-2013 |
20130126342 | IONIZATION DEVICE AND EVAPORATION DEPOSITION DEVICE USING THE IONIZATION DEVICE - An ionization device used in an evaporation deposition device includes a main body, and an electron-beam system, a magnetic field generator all mounted to the main body. The main body includes a peripheral wall and a cavity enclosing by the peripheral wall. The electron-beam system includes an electric filament. The electric filament connects with a first power source. The electric filament and the main body connect with a direct current power source. The magnetic field generator includes a coil and a second power source connecting with the coil. An evaporation deposition device using the ionization device is also described. | 05-23-2013 |
20130146451 | Magnetic Confinement and Directionally Driven Ionized Sputtered Films For Combinatorial Processing - A combinatorial processing chamber having an integrated magnetic confinement system is described herein. The chamber comprises source magnetic confinement assemblies that are configured to shape ion beams produced by associated sputter sources. The chamber further comprises magnetic confinement assemblies that are configured to drive a combined ion beam onto an exposed surface of the substrate to combinatorial process regions of the substrate. | 06-13-2013 |
20140124363 | ION BEAM GENERATOR AND ION BEAM PLASMA PROCESSING APPARATUS - The invention provides: an ion beam generator and an ion beam plasma processing apparatus including a movable member (for example, a plug) which is capable of reducing formation of an adhering film on a sidewall of the member even when an electrode included in a grid assembly is sputtered. The ion beam generator of an aspect of the invention includes: a grid assembly provided opposed to an upper wall; a plug movable in a first direction from the upper wall toward the grid assembly and in a second direction from the grid assembly toward the upper wall; and a shield configured to shield a sidewall of the plug. | 05-08-2014 |
20150075979 | INTAGLIO PRINTING PLATE COATING APPARATUS - There is described an intaglio printing plate coating apparatus ( | 03-19-2015 |
20160027608 | CLOSED DRIFT MAGNETIC FIELD ION SOURCE APPARATUS CONTAINING SELF-CLEANING ANODE AND A PROCESS FOR SUBSTRATE MODIFICATION THEREWITH - A process for modifying a surface of a substrate is provided that includes supplying electrons to an electrically isolated anode electrode of a closed drift ion source. The anode electrode has an anode electrode charge bias that is positive while other components of the closed drift ion source are electrically grounded or support an electrical float voltage. The electrons encounter a closed drift magnetic field that induces ion formation. Anode contamination is prevented by switching the electrode charge bias to negative in the presence of a gas, a plasma is generated proximal to the anode electrode to clean deposited contaminants from the anode electrode. The electrode charge bias is then returned to positive in the presence of a repeat electron source to induce repeat ion formation to again modify the surface of the substrate. An apparatus for modification of a surface of a substrate by this process is provided. | 01-28-2016 |
20160071708 | METHOD AND APPARATUS FOR SURFACE PROCESSING OF A SUBSTRATE USING AN ENERGETIC PARTICLE BEAM - Method and apparatus for processing a substrate with an energetic particle beam. Features on the substrate are oriented relative to the energetic particle beam and the substrate is scanned through the energetic particle beam. The substrate is periodically indexed about its azimuthal axis of symmetry, while shielded from exposure to the energetic particle beam, to reorient the features relative to the major dimension of the beam. | 03-10-2016 |
20220139686 | SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD - A substrate processing apparatus that processes a substrate using particles, includes a conveyance mechanism configured to convey the substrate along a conveyance surface, a particle source configured to emit particles, a rotation mechanism configured to make the particle source pivot about a rotation axis, and a movement mechanism configured to move the particle source such that a distance between the particle source and the conveyance surface is changed. | 05-05-2022 |