Class / Patent application number | Description | Number of patent applications / Date published |
156345530 | With means to cool the workpiece support | 14 |
20080289767 | PLASMA PROCESSING APPARATUS - The present invention provides a temperature control unit for an electrostatic adsorption electrode that is capable of controlling the wafer temperature rapidly over a wide temperature range without affecting in-plane uniformity while high heat input etching is conducted with high wafer bias power applied. A refrigerant flow path provided in the electrostatic adsorption electrode serves as an evaporator. The refrigerant flow path is connected to a compressor, a condenser, and a first expansion valve to form a direct expansion type refrigeration cycle. A second expansion valve is installed between the electrostatic adsorption electrode and the compressor to adjust the flow rate of a refrigerant. This makes it possible to compress the refrigerant in the refrigerant flow path of the electrostatic adsorption electrode and adjust the wafer temperature to a high level by raising the refrigerant evaporation temperature. Further, a thin-walled cylindrical refrigerant flow path is employed so that the thin-walled cylinder is deformed only slightly by the refrigerant pressure. | 11-27-2008 |
20100326602 | ELECTROSTATIC CHUCK - An isolator for heat transfer gas conduits of an electrostatic chuck is described. The isolator includes a sleeve and a body positioned in the sleeve to form an annulus between the body and sleeve that allows for flow of the heat transfer gas. The body is positioned against the puck of the chuck, and may be supported in this position by a spring. A silicon seal may be provided between the sleeve and the puck to prevent plasma from forming in the conduits. | 12-30-2010 |
20110024049 | LIGHT-UP PREVENTION IN ELECTROSTATIC CHUCKS - An electrostatic chuck assembly is provided comprising a ceramic contact layer, a patterned bonding layer, an electrically conductive base plate, and a subterranean arc mitigation layer. The ceramic contact layer and the electrically conductive base plate cooperate to define a plurality of hybrid gas distribution channels formed in a subterranean portion of the electrostatic chuck assembly. Individual ones of the hybrid gas distribution channels comprise surfaces of relatively high electrical conductivity presented by the electrically conductive base plate and relatively low electrical conductivity presented by the ceramic contact layer. The subterranean arc mitigation layer comprises a layer of relatively low electrical conductivity and is formed over the relatively high conductivity surfaces of the hybrid gas distribution channels in the subterranean portion of the electrostatic chuck assembly. Semiconductor wafer processing chambers are also provided. | 02-03-2011 |
20120043024 | SUBSTRATE PROCESSING APPARATUS AND TEMPERATURE ADJUSTMENT METHOD - There is provided a substrate processing apparatus including: a chamber in which plasma processing is performed on a substrate; a susceptor which is disposed in the chamber and on which the substrate is held; a shower head which is provided to face the susceptor with a processing space therebetween; a high frequency power source which generates plasma by applying high frequency power to the processing space; water spray devices which form a surface wet with water on a rear surface of a surface of the susceptor as a temperature adjustment surface; an evaporation chamber which isolates the wet surface from an atmosphere around the wet surface; and a pressure adjustment device which adjusts a pressure in the evaporation chamber, wherein the pressure in the evaporation chamber is adjusted by using the pressure adjustment device such that the water which forms the wet surface is evaporated, thereby controlling a temperature of the surface of the susceptor by using latent heat of evaporation of the water. | 02-23-2012 |
20120222818 | SUBSTRATE SUPPORTING TABLE, SUBSTRATE PROCESSING APPARATUS, AND MANUFACTURE METHOD FOR SEMICONDUCTOR DEVICE - The substrate supporting table includes a supporting plate that supports a substrate, a peripheral wall that encompasses a flow path of a coolant under the supporting plate and has an upper end enclosed by the supporting plate, a lower cover that encloses a bottom portion of the flow path and encloses a lower end of the peripheral wall. The substrate supporting table further includes a coolant supplying component that supplies a coolant through an upstream input of the flow path, a discharging component that discharges the coolant through a downstream output of the flow path, and a partition disposed between a supplying hole of the coolant supplying component and a discharging hole of the discharging component. A gap is formed between the partition and the bottom portion of the flow path. | 09-06-2012 |
20130048217 | ELECTROSTATIC CHUCK AND SEMICONDUCTOR/LIQUID CRYSTAL MANUFACTURING EQUIPMENT - An electrostatic chuck includes, a chuck function portion including a plurality of chuck regions on which an attractable object is placed respectively, and a concave surface portion provided in an outer region of the chuck regions, and electrodes arranged in an inner part of the chuck function portion corresponding to the chuck regions and an inner part of the chuck function portion corresponding to the concave surface portion, respectively. | 02-28-2013 |
20140209245 | MOUNTING TABLE AND PLASMA PROCESSING APPARATUS - A mounting table includes a base member, having a rear surface and a front surface facing the rear surface, in which a coolant path is formed, a groove portion having a bottom surface within the base member being annularly formed on the front surface, the base member being divided into a cylindrical inner base member portion positioned at an inner side of the groove portion and an annular outer base member portion positioned at an outer side of the groove portion by the groove portion; an annular focus ring supported by the outer base member portion, the annular focus ring having, at an inner side surface thereof, a protrusion that is protruded radially and inwardly to cover the groove portion; a first heat transfer member provided between the mounting surface and the coolant path; and a second heat transfer member provided between the focus ring and the coolant path. | 07-31-2014 |
20140238609 | MOUNTING TABLE AND PLASMA PROCESSING APPARATUS - A mounting table includes a base and an electrostatic chuck provided on the base. The base has first and second top surface on which the electrostatic chuck and a focus ring are respectively provided. The second top surface is provided below the first top surface. A coolant path in the base has central and peripheral paths extending below the first and second top surfaces, respectively. The peripheral path has a portion extending along a side surface toward the first top surface. The mounting surface has central and peripheral regions. The mounting surface has protrusions formed in a dot shape. The protrusions are formed such that a contact area between the protrusions of the peripheral region and the backside of an object per unit area becomes greater than a contact area between the protrusions of the central region and the backside of the object per unit area. | 08-28-2014 |
20150083333 | PLASMA PROCESSOR AND PLASMA PROCESSING METHOD - An etching chamber | 03-26-2015 |
20150122422 | THERMALLY CONDUCTIVE SILICONE SHEET, MANUFACTURING METHOD THEREOF, AND PLASMA PROCESSING APPARATUS USING THE SAME - A plasma processing apparatus includes a thermally conductive silicone sheet between a mounting table and a focus ring. The thermally conductive silicone sheet has 100 parts by weight to 2000 parts by weight of thermally conductive particles with respect to 100 parts by weight of polyorganosiloxane, and the sheet has a thermal conductivity of 0.2 W/m·K to 5 W/m·K. Further, when the sheet has a shape of 38 mm in length, 38 mm in width, and 3 mm in thickness and is interposed between filter papers each having a diameter of 70 mm and kept under a load of 1 kg at 70° C. for 1 week, a bleed-out amount of a liquid component is 30 mg or less. | 05-07-2015 |
20160013026 | PLASMA PROCESSING APPARATUS AND UPPER ELECTRODE ASSEMBLY | 01-14-2016 |
20160013028 | PLASMA PROCESSING APPARATUS AND UPPER ELECTRODE ASSEMBLY | 01-14-2016 |
20160027621 | PLASMA PROCESSING APPARATUS AND SAMPLE STAGE FABRICATING METHOD - A plasma processing apparatus includes: a vacuum vessel, a processing chamber disposed inside of the vacuum vessel, inside of which plasma is formed, a sample stage disposed below the processing chamber, on whose upper surface a sample that is a target processed by using the plasma is mounted, a sintered plate of dielectric material constituting a mounting surface of the sample stage on which the sample is mounted, abase material of metal bonded to the sintered plate below it with a bonding layer made of an adhesive agent intervening therebetween, and a cooling medium flow channel disposed inside of the base material, through which a cooling medium flows, in which a shearing force of the bonding layer generated in a portion on the peripheral side of the sample stage is made smaller than that generated in a portion on the center side. | 01-28-2016 |
20160203955 | COOLING STRUCTURE AND PARALLEL PLATE ETCHING APPARATUS | 07-14-2016 |