Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


With vitrification or firing ceramic material

Subclass of:

156 - Adhesive bonding and miscellaneous chemical manufacture

156001000 - METHODS

156060000 - Surface bonding and/or assembly therefor

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
156890120 Forming electrical article or component thereof 78
156890220 Honeycomb-like 8
156890270 Nitride compound containing 6
156890250 Elemental carbon containing (e.g., graphite, etc.) 5
20100139841METHOD FOR THE MANUFACTURE OF A CERAMIC COMPONENT - The invention relates to a method for the manufacture of a ceramic component of desired final geometry using at least a cellulose-containing semi-finished moulded part, which is pyrolysed in non-oxidizing gas atmosphere. In order to manufacture complex components, it is suggested that at least two semi-finished moulded parts are firmly joined either in raw form or after at least partial carbonisation. The joined moulded parts are subsequently machined to achieve the desired final geometry or a geometry corresponding to the desired final geometry plus the machining allowance. Then, the carbon parts are available after carbonisation of the moulded parts in non-oxidizing atmosphere. Alternatively, these can be converted into a CMC composite material in a non-oxidizing gas atmosphere by a metal infiltration process with simultaneous reactive joining of at least two moulded parts.06-10-2010
20130206320Carbon-On-Carbon Manufacturing - The presently disclosed technology relates to carbon-on-carbon (C/C) manufacturing techniques and the resulting C/C products. One aspect of the manufacturing techniques disclosed herein utilizes two distinct curing operations that occur at different times and/or using different temperatures. The resulting C/C products are substantially non-porous, even though the curing operation(s) substantially gasify a liquid carbon-entrained filler material that saturates a carbon fabric that makes up the C/C products.08-15-2013
20160009602METHODS FOR REDUCING THE PROCESS-INDUCED SHRINKAGE IN A CERAMIC MATRIX COMPOSITE, AND ARTICLES MADE THEREFROM01-14-2016
20090032168METHOD FOR PRODUCING CERAMIC COMPACT - A method for producing a ceramic compact includes a laminate-preparing step of preparing an unfired laminate including a base layer including a ceramic powder and a glass material and a constraining layer that is in contact with at least one principal surface of the base layer and that primarily includes a burnable material which does not burn off when the burnable material is fired in a low-oxygen atmosphere but which burns off when the burnable material is fired at an oxygen partial pressure greater than that of the low-oxygen atmosphere, and a firing step of firing the unfired laminate to sinter the base layer. The firing step includes a first firing sub-step of firing the laminate including the constraining layer to sinter the base layer and a second firing sub-step of firing at an oxygen partial pressure greater than that of the first firing sub-step such that the burnable material included in the constraining layer burns off.02-05-2009
20100051173MANUFACTURING METHOD OF MULTI-LAYER CERAMIC SUBSTRATE - There is provided a method of manufacturing a multilayer ceramic substrate, the method including: providing a non-sintered multilayer ceramic substrate having a plurality of low temperature sintering green sheets laminated therein; disposing a hard-to-sinter constraining green sheet on at least one of top and bottom surfaces of the non-sintered multilayer ceramic substrate; sintering the non-sintered multilayer ceramic substrate having the hard-to-sinter constraining layer disposed thereon; immersing the sintered multilayer ceramic substrate into an acidic solution; and activating a contact between the hard-to-sinter constraining layer and the acidic solution such that the hard-to-sinter constraining layer is removed.03-04-2010
156890280 Elemental metal or alloy containing 3
20090126857MANUFACTURING METHOD OF LOW TEMPERATURE CO-FIRED CERAMICS SUBSTRATE - A method of manufacturing a low-temperature co-fired ceramics (LTCC) substrate includes the following steps of: preparing a plurality of ceramic sheets; forming a plurality of zones and at least one cutting pattern on each of the ceramic sheets, wherein the cutting pattern is formed between neighboring two of the zones; forming at least one conductive pattern on at least one of the ceramic sheets; and stacking the ceramic sheets.05-21-2009
20090272482MATERIAL AND METHOD FOR BONDING ZIRCON BLOCKS - A process for making large zircon blocks by bonding multiple zircon components, and bonding materials for use in such process. The invention enables the manufacture of large zircon blocks without the need of larger-size isopressing equipment. The invention is particularly useful in making large-size isopipes for use in a fusion down-draw process in making glass sheets for use in, e.g., LCD production.11-05-2009
20110088831METHOD FOR PRODUCING CERAMIC BODY - A laminated body includes, in sequence, a base layer mainly composed of a ceramic material and a glass material, a first constraining layer that is primarily made of a ceramic material that is not sintered at a temperature at which the base layer is sintered, a second constraining layer primarily made of a ceramic material and a glass material that are sintered at the temperature at which the base layer is sintered, and a third constraining layer primarily made of a ceramic material that is not sintered at the temperature at which the base layer is sintered. The laminated body is subsequently fired at the temperature at which the base layer is sintered. The first, second, and third constraining layers are removed from the fired laminated body to provide a ceramic body that is a sinter of the base layer. After the firing, adhesion between the base layer and the first constraining layer and adhesion between the second constraining layer and the first constraining layer are different from each other.04-21-2011
Entries
DocumentTitleDate
20080277043METHOD OF ADJUSTING FIRING PROFILE OF ALUMINA MATERIAL AND METHOD OF MANUFACTURING CERAMIC STACK BODY - A method of matching a firing profile of alumina material is disclosed as having a reference profile preparing step of preparing a reference profile of dissimilar material, an alumina profile preparing step of preparing an alumina profile of alumina material, a comparing step of comparing the reference profile and the alumina profile to determine whether to or not to perform correction on the alumina profile, and an adjusting step of adjusting the alumina material by increasing or decreasing a specific surface area of alumina raw material powder or by adding zirconia or magnesia to alumina material when a determination is made that the alumina profile needs to be corrected.11-13-2008
20080295948METHOD FOR PRODUCING CRYSTALLOGRAPHICALLY-ORIENTED CERAMIC - A method for producing a crystallographically-oriented ceramic includes the steps of forming a first sheet with a thickness of 10 μm or less containing a first inorganic material in which grain growth occurs at a first temperature or higher and a second sheet containing a second inorganic material in which grain growth occurs at a second temperature higher than the first temperature, laminating one or more each of the first and second sheets to form a laminated body, firing the laminated body at a temperature equal to or higher than the first temperature and lower than the second temperature to cause grain growth in the first inorganic material, and then firing the laminated body at a temperature equal to or higher than the second temperature to cause grain growth in the second inorganic material in the direction of a crystal plane of the first inorganic material.12-04-2008
20090090452PROCESS FOR PRODUCING NONFLAT CERAMIC SUBSTRATE - In the production of a ceramic substrate (04-09-2009
20090126856METHOD FOR MANUFACTURING MULTILAYER CERAMIC SUBSTRATE - A method for manufacturing a multilayer ceramic substrate includes: a) discharging a droplet of a conductive ink on each of a plurality of green sheets so as to draw a liquid pattern made of the conductive ink on each of the green sheets; b) drying the liquid pattern so as to form a dry pattern; c) laminating the green sheets including the dry pattern so as to form a laminated body, and applying hydrostatic pressure on the laminated body that is decompress-packaged so as to form a pressure-bonded body; and d) firing the pressure-bonded body so as to form a multilayer ceramic substrate. In the method, in the step a), the liquid pattern is drawn by drawing a wiring liquid pattern and a dummy liquid pattern drawn along a vicinity of the wiring liquid pattern.05-21-2009
20090133805METHOD OF MANUFACTURING MULTILAYER CERAMIC SUBSTRATE - There is provided a method of manufacturing a multilayer ceramic substrate that can be easily performed with high efficiency at low cost without affecting the performance of a multilayer ceramic substrate. A method of manufacturing a multilayer ceramic substrate according to an aspect of the invention may include: printing a cutting region onto at least one of a plurality of ceramic green sheets when the plurality of ceramic green sheets are laminated to form the ceramic laminate; firing the ceramic laminate; and cutting the fired ceramic laminate along the cutting region.05-28-2009
20090145535METHOD FOR FORMING FLUOROPLASTIC ARTICLES - The present invention relates to a method for forming fluoroplastic article, comprising inner and outer fluoroplastic layers and a metal meshwork, the metal meshwork being arranged between the inner and outer fluoroplastic layers, characterized by the meshwork can be stretched and compressed in the axial direction.06-11-2009
20090159179METHOD OF MANUFACTURING MULTILAYER CERAMIC SUBSTRATE - A method of manufacturing a multilayer ceramic substrate according to an aspect of the invention may include: manufacturing a ceramic laminate including a glass component; laminating constraining layers on upper and lower parts of the ceramic laminate; performing primary firing within a first temperature range that does not allow crystallization of the glass component included in the ceramic laminate; removing the constraining layers and forming an external electrode on the ceramic laminate after the primary firing is completed; and performing secondary firing of the ceramic laminate having the external electrode formed thereon within a second temperature range higher than the first temperature range.06-25-2009
20090165924METHOD OF MANUFACTURING CMC ARTICLES HAVING SMALL COMPLEX FEATURES - A method for forming a ceramic matrix composite (CMC) component for gas turbine engines. The method contemplates replacing a plurality of plies with insert material. The insert material can be partially cured or pre-cured and applied in place of a plurality of small plies or it may be inserted into cavities of a component in the form of a paste or a ply. The insert material is isotropic, being formed of a combination of matrix material and chopped fibers, tow, cut plies or combinations thereof. The use of the insert material allows for features such as thin edges with thicknesses of less than about 0.030 inches and small radii such as found in corners. The CMC components of the present invention replace small ply inserts cut to size to fit into areas of contour change or thickness change, and replace the small ply inserts with a fabricated single piece discontinuously reinforced composite insert, resulting in fewer defects, such as wrinkles, and better dimensional control.07-02-2009
20100059165METHOD OF MANUFACTURING MULTILAYER CERAMIC SUBSTRATE HAVING CAVITY - A method of manufacturing a multilayer ceramic substrate having a cavity includes preparing a first ceramic laminate having an opening for forming a cavity, and a second ceramic laminate which is to be provided on a bottom surface of the first ceramic laminate, forming a polymer layer in a region corresponding at least to the opening, on a top surface of the second ceramic laminate, forming a desired multilayer ceramic laminate by laminating the first and second ceramic laminates such that the polymer layer of the second ceramic laminate is placed under the opening, laminating first and second constraining layers on a top surface and a bottom surface of the multilayer ceramic laminate, respectively, and sintering the multilayer ceramic laminate including the laminated first and second constraining layers. Accordingly, the strength of a low temperature co-fired ceramic (LTCC) substrate having a cavity is enhanced, and an effective area for mounting built-in devices can be increased.03-11-2010
20100059166METHODS OF REPAIRING A SUBSTRATE - A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.03-11-2010
20100065189METHOD FOR MANUFACTURING A THREE-DIMENSIONAL FORMING PORTION03-18-2010
20100089518Method for Producing a Ceramic Filter Body - The invention concerns a method for producing a ceramic filter body (04-15-2010
20100096066MEMBRANE STRUCTURE AND METHOD OF MAKING - A membrane structure is provided. A membrane structure has a top surface and a bottom surface. The membrane structure includes a plurality of sintered layers including an inner layer disposed between two outer layers. The membrane structure further includes a nonmonotonic gradient in pore size extending between the top surface and the bottom surface. A method of making a membrane structure is provided. The method includes the steps of providing at least one inner layer; providing a plurality of outer layers; and laminating the inner layer and the outer layers to obtain a membrane structure.04-22-2010
20100116412Methods for synthesizing bulk, composite and hybrid structures from polymeric ceramic precursors as well as other polymeric substances and compounds - This invention relates to polymer derived ceramics (PDC's) and more particularly, to methods and product made by using polymeric derived ceramic precursors to synthesize dense, crack-free bulk ceramics in a technique using sacrificial molds, coating processes, replication processes, assembly processes and finishing processes; where gas release paths are created and maintained during these processes to release gases generated during pyrolysis of the ceramic precursor.05-13-2010
20100139840PROCESS FOR JOINING REFRACTORY CERAMIC PARTS BY SPARK PLASMA SINTERING (SPS) - A process for joining, by spark plasma sintering, at least two refractory ceramic parts, each of the parts having at least one surface to be joined by spark plasma sintering, in which surfaces to be joined are brought into contact without addition of any sort between the surfaces. Then, a joining pressure of 1 to 200 MPa is applied to the ceramic parts. A pulsed electric current having an intensity of 500 A to 8000 A is applied to the ceramic parts so as to raise the temperature of the parts to a joining temperature of at least 1300° C. Then, the electric current is terminated simultaneously with the pressure, and the parts are cooled, and the joined parts are recovered.06-10-2010
20110240205METHOD FOR MANUFACTURING HONEYCOMB STRUCTURE - A method for manufacturing a honeycomb structure includes the steps of: producing triangular segments as cut quadrangular prism honeycomb fired bodies in double by cutting half, forming a pseudo quadrangular segment by fitting a hollow auxiliary member whose outer peripheral shape is triangular on a cut triangular segment, disposing the honeycomb fired bodies and the pseudo quadrangular segments to form an assembly, bonding the assembly by applying a bonding material, and then applying pressure to thus bonded assembly to obtain a honeycomb block body with the hallow auxiliary members, drying the applied bonding material and then detaching the hollow auxiliary members to obtain a honeycomb block body, and grinding an outer peripheral portion of a resultant honeycomb block body to obtain a honeycomb structure.10-06-2011
20110272080METHOD OF FORMING AND ASSEMBLY OF METAL AND CERAMIC PARTS - A method of forming and assembling at least two parts together that may be metal, ceramic, or a combination of metal and ceramic parts. Such parts may have different CTE. Individual parts that are formed and sintered from particles leave a network of interconnecting porosity in each sintered part. The separate parts are assembled together and then a fill material is infiltrated into the assembled parts using a method such as capillary action, gravity, and/or pressure. The assembly is then cured to yield a bonded and fully or near-fully dense part that has the desired physical and mechanical properties for the part's intended purpose. Structural strength may be added to the parts by the inclusion of fibrous materials.11-10-2011
20120000595METHOD FOR MANUFACTURING A DROPLET DISCHARGE HEAD - In a method for manufacturing a droplet discharge head, a first mold is prepared having first convexity portions shaped like pressure chambers of the droplet discharge head. A slurry is filled into the first mold, and the first mold is placed on a first porous plate. A solvent included in the slurry permeates into the first porous plate. The slurry is dried to form a first compact. Similarly, a second mold is prepared which has second convexity portions shaped like nozzle sections of the droplet discharge head. The slurry is filled into the second mold, and the second mold is placed on a second porous plate. The solvent included in the slurry permeates into the second porous plate. The slurry is dried to form a second compact. Thereafter, the first compact and the second compact are press bonded and fired.01-05-2012
20120018074METHOD FOR PRODUCING CERAMIC JOINED BODY - This producing method includes: a preparing step of preparing a pair of ceramic sintered bodies at least one of which is formed by a reaction sintering method and contains free silicon; a forming step of interposing a joining slurry between the joined surfaces of the pair of ceramic sintered bodies and thereafter drying the joining slurry, to form a fine particle layer, the joining slurry obtained by dispersing fine particles containing a carbon element in an organic solvent; and a joining step of heating the pair of ceramic sintered bodies in an inert atmosphere with the pair of ceramic sintered bodies held so that the fine particle layer is pressurized, to introduce the free silicon into the fine particle layer, thereby forming a joining layer containing at least silicon carbide so that the pair of ceramic sintered bodies are joined to each other, to obtain the ceramic joined body.01-26-2012
20120055609METHOD FOR PRODUCING A TURBOMACHINE BLADE MADE FROM A COMPOSITE MATERIAL - A method of fabricating a composite-material turbomachine blade having platform incorporated therein includes separately making a blade platform element that comprises rigidified fiber reinforcement and that has a shape close to that of a platform of the blade to be fabricated, with at least one opening being formed through the platform element. The opening has the shape of the profile of the airfoil of the blade to be fabricated. Three-dimensional weaving is used to make a flexible fiber blank as a single piece that includes blade airfoil-and-root preform portions. The platform element is engaged, via its opening, on the flexible fiber blank while deforming it so as to assemble the platform element with the fiber blank. The fiber blank is shaped together with the platform element assembled thereon to obtain a blade preform of a shape that is close to the shape of the blade to be fabricated. After shaping, the blade preform is consolidated in its shape in a shaper. Additionally, final densification of the consolidated blade preform is performed in order to obtain a composite-material blade having an incorporated platform.03-08-2012
20120175042Method For Joining Ceramic Components - A method for joining multiple ceramic components together is disclosed in one embodiment of the invention as including providing multiple ceramic components, each having a mating surface. A slip containing a mixture of alumina powder and a phosphate-containing reagent is applied to one or more of the mating surfaces. The mean particle size of the alumina powder is tailored to provide improved strength to the bond. Once the slip is applied, the ceramic components may be joined together at their mating surfaces. The joint may then be sintered to react the constituents in the mixture and thereby generate a bond between the ceramic components.07-12-2012
20120211146Materials and/or method of making vacuum insulating glass units including the same - Certain example embodiments relate to frit materials that have an improved IR absorption property. Certain examples relate to frit materials that substantially melt in about 3 minutes at a temperature of about 525° C. Certain examples relate to a method of making an edge seal by using IR energy. Certain examples relate to adjusting the IR energy applied to a frit material to form an edge seal. Certain examples also relate to making a VIG unit by applying IR energy and adjusting the amount of IR energy over multiple periods of time, e.g., in an oscillating manner.08-23-2012
20130112337SHOWER PLATE, MANUFACTURING METHOD OF THE SHOWER PLATE, AND PLASMA PROCESSING APPARATUS USING THE SHOWER PLATE - A manufacturing method of a shower plate includes inserting a green body, a degreasing body, a temporary sintered body or a sintered body of a ceramic member, which has a plurality of gas discharge holes or gas flow holes, into a longitudinal hole of a green body, a degreasing body or a temporary sintered body of the shower plate, which has been formed by power ingredients; and sintering them simultaneously.05-09-2013
20130133808METHOD FOR MANUFACTURING SPUTTERING TARGET AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - When an oxide semiconductor is deposited by a sputtering method, there is a difference in composition between a sputtering target and a film deposited using the sputtering target in some cases depending on a material of the oxide semiconductor. In manufacturing a sputtering target containing zinc oxide, a crystal which contains zinc oxide is formed in advance, the crystal is crushed, and then a predetermined amount of zinc oxide is added and mixed. After that, the resulting object is sintered to form the sputtering target. The composition of the sputtering target is adjusted by setting the proportion of zinc in the sputtering target higher than that of zinc in a film having a desired composition which is obtained at last, in consideration of the amount of zinc which is reduced at the time of deposition by a sputtering method, the amount of zinc which is reduced at the time of sintering, and the like.05-30-2013
20130174966MOLDING METHOD OF A HEAT PIPE FOR CAPILLARY STRUCTURE WITH CONTROLLABLE SINTERING POSITION - A molding method of the heat pipe for capillary structure with controllable sintering position wherein said heat pipe is fabricated by said pipe body, grid-sintered composite capillary structure, core rod, evaporation section sintered capillary structure and powder limiting grid. This allows fabrication of the evaporation section sintered capillary structure with the help of the powder limiting grid, such that the capillary structure could be molded more easily while controlling accurately the sintering position and range. Moreover, with embedding of said grid-sintered composite capillary structure, the steam flow channel of the heat pipe could be further expanded and adapted to the flexible processing of the pipe wall, thus facilitating the fabrication and improving the vaporization efficiency of the working fluid with better applicability and industrial benefits.07-11-2013
20130269858MANUFACTURING METHOD OF CASING OF HEAT PIPE - A method for manufacturing a casing of a heat pipe includes steps: providing a hollow mold; injecting a feedstock of powder and molten binder into the mold under pressure, thus forming a desired body of a first shell and a desired body of a second shell; separating the binder from the body of the first shell and the body of the second; sintering the body of the first shell and the body of the second shell, thereby forming the first shell and the second shell; and mounting the second shell on the first shell and sintering the first shell and the second shell together, thereby forming the casing of the heat pipe.10-17-2013
20140144571METHOD FOR BONDING ZIRCON SUBSTRATES - Disclosed herein are methods for bonding refractory substrates, such as zircon substrates, without the use of a bonding agent. Exemplary methods include (a) providing a plurality of refractory components, each component having at least one surface to be bonded, (b) polishing each surface to be bonded to a surface roughness (R05-29-2014
20140202618BONDING METHOD, MOUNTING TABLE AND SUBSTRATE PROCESSING APPARATUS - A distance between the surface of the base member and the electrostatic chuck having the heater pattern formed on a bottom surface thereof can be uniformized. A bonding method of bonding an electrostatic chuck and a base member to each other includes forming a filling member 07-24-2014
20150083305METHOD FOR APPLYING HEAT RESISTANT PROTECTION COMPONENTS ONTO A SURFACE OF A HEAT EXPOSED COMPONENT - The invention refers to a method for applying heat resistant protection components onto the surface of a heat exposed component. The method including providing at least two separate heat protection components, and joining the at least two separate heat protection components onto their top surface and/or bottom surface and/or at least one side surface by flexible means for obtaining an integrally handable entity. The method further includes fixing the integrally handable entity by applying and brazing the surface of each heat protection component on the surface of the heat exposed component. The materials of the flexible means and for joining the flexible means on the separate heat protection components are selected such that the materials withstand brazing being performed under protective atmosphere, i.e. an atmosphere without or with reduced amount of oxygen, at process temperatures between 700° C. and 1200° C., and that the materials are burned out after brazing during a following oxidizing thermal step.03-26-2015
20150306855METHODS FOR FORMING CERAMIC MATRIX COMPOSITE STRUCTURES - Methods of forming ceramic matrix composite structures include joining at least two lamina together to form a flexible ceramic matrix composite structure. Ceramic matrix composite structures include at least one region of reduced inter-laminar bonding at a selected location between lamina thereof. Thermal protection systems include at least one seal comprising a ceramic matrix composite material and have at least one region of reduced inter-laminar bonding at a selected location between lamina used to form the seal. Methods of forming thermal protection systems include providing one or more such seals between adjacent panels of a thermal protection system.10-29-2015
20150329412DISPLAY PANEL, METHOD OF MANUFACTURING THE SAME, AND FRIT COMPOSITION USED IN THE DISPLAY PANEL - Provided are display panel, method of manufacturing the same, and frit composition used in the display panel. A display panel comprising: a first substrate, a second substrate facing the first substrate and a frit bonding the first substrate and the second substrate together, wherein the frit has an optical density of more than about 0.0683 μm for laser light of any one wavelength in a wavelength range of about 760 to about 860 nm.11-19-2015
20150332854LAMINATED CERAMIC ELECTRONIC COMPONENT AND METHOD FOR PRODUCING LAMINATED CERAMIC ELECTRONIC COMPONENT - A laminated ceramic electronic component has a variety of superior mechanical properties and electrical properties, including a high degree of freedom in the design for ceramic materials, and can be manufactured at low cost and with a low percentage of defective products. The laminated ceramic electronic component includes a laminate including a plurality of stacked ceramic layers and a plurality of internal electrodes containing Al as a main constituent, the internal electrodes being arranged along specific interfaces between the ceramic layers, and external electrodes located on an outer surface of the laminate, wherein surface layer sections of the internal electrodes include an Al11-19-2015
20160108523MONOLITHIC GAS DISTRIBUTION MANIFOLD AND VARIOUS CONSTRUCTION TECHNIQUES AND USE CASES THEREFOR - A gas delivery substrate for mounting gas supply components of a gas delivery system for a semiconductor processing apparatus is provided. The substrate may include a plurality of layers having major surfaces thereof bonded together forming a laminate with openings for receiving and mounting first, second, third and fourth gas supply components on an outer major surface. The substrate may include a first gas channel extending across an interior major surface that at least partially overlaps a second gas channel extending across a different interior major surface. The substrate may include a first gas conduit including the first gas channel connecting the first gas supply component to the second gas supply component, and a second gas conduit including the second channel connecting the third gas supply component to the fourth gas supply component. Also disclosed are various techniques for manufacturing gas delivery substrates.04-21-2016

Patent applications in class With vitrification or firing ceramic material

Patent applications in all subclasses With vitrification or firing ceramic material

Website © 2025 Advameg, Inc.