Class / Patent application number | Description | Number of patent applications / Date published |
134100200 | Semiconductor cleaning | 34 |
20080216864 | METHOD AND SYSTEM FOR DISTRIBUTING GAS FOR A BEVEL EDGE ETCHER - A plasma etch processing chamber configured to clean a bevel edge of a substrate is provided. The chamber includes a bottom edge electrode and a top edge electrode defined over the bottom edge electrode. The top edge electrode and the bottom edge electrode are configured to generate a cleaning plasma to clean the bevel edge of the substrate. The chamber includes a gas feed defined through a top surface of the processing chamber. The gas feed introduces a processing gas for striking the cleaning plasma at a location in the processing chamber that is between an axis of the substrate and the top edge electrode. A pump out port is defined through the top surface of the chamber and the pump out port located along a center axis of the substrate. A method for cleaning a bevel edge of a substrate is also provided. | 09-11-2008 |
20080216865 | Plasma Processing Method - The invention provides a plasma processing method capable of reducing particle caused by flinging up of particles by airflow due to the pressure fluctuation in the processing chamber during the time the sample is carried into the processing chamber, subjected to plasma processing and carried out of the processing chamber. The invention provides a plasma processing method using a plasma processing apparatus comprising multiple plasma processing chambers for processing samples, a transfer chamber connected to the processing chambers for transferring samples, and a supply system for supplying gas which is the same gas as a transferring gas supplied to the transfer chamber to both the processing chambers and transfer chamber or to only the processing chambers, wherein the process comprises (b) a step of transferring the sample into the processing chamber with the transferring gas supplied to the processing chamber; (c) thereafter, generating plasma from the transferring gas supplied to the processing chamber while maintaining the supply of transferring gas to the processing chamber; (d) a step of switching the gas supplied to the processing chamber from transferring gas to processing gas while maintaining plasma by supplying processing gas continuously to the processing chamber; and (e) a step of subjecting the sample to plasma processing. | 09-11-2008 |
20080276958 | SUBSTRATE CLEANING CHAMBER AND CLEANING AND CONDITIONING METHODS - A substrate cleaning chamber includes a contoured ceiling electrode having an arcuate surface that faces a substrate support and has a variable cross-sectional thickness to vary the gap size between the arcuate surface and the substrate support to provide a varying plasma density across the substrate support. A dielectric ring for the cleaning chamber comprises a base, a ridge, and a radially inward ledge that covers the peripheral lip of the substrate support. A base shield comprises a circular disc having at least one perimeter wall. Cleaning and conditioning processes for the cleaning chamber are also described. | 11-13-2008 |
20080289650 | LOW-TEMPERATURE CLEANING OF NATIVE OXIDE - Disclosed herein is a method of cleaning oxide from a surface in the fabrication of an integrated device using reducing radicals and UV radiation. For silicon surfaces, the cleaning may be performed at a temperature at which a hydrogen-terminated passivated surface is stable, such that the surface remains protected after loading into the chamber until the cleaning is performed. Performing the cleaning at a lower temperature also consumes a reduced portion of the thermal budget of a semiconductor device. Epitaxial deposition can then be performed over the cleaned surface. | 11-27-2008 |
20090065026 | Methods For Treating Surfaces, Methods For Removing One Or More Materials from Surfaces, And Apparatuses For Treating Surfaces - Some embodiments include utilization of both plasma and aerosol to treat substrate surfaces. The plasma and aerosol may be utilized simultaneously, or sequentially. In some embodiments, the plasma forms a plasma sheath over the substrate surfaces, with the plasma sheath having an electric field gradient therein. The aerosol comprises liquid particles charged to a polarity, and such polarity is transferred to contaminants on the substrate surfaces through interaction with the aerosol. The polarity may be used to assist in dislodging the contaminants from the substrate surfaces. The electric field of the plasma sheath may then sweep the contaminants away from the substrate surfaces. In some embodiments, multiple different aerosols are formed to remove multiple different types of materials from substrate surfaces. Some embodiments include apparatuses configured for treating substrate surfaces with both plasma and aerosol. | 03-12-2009 |
20090272402 | METHOD AND APPARATUS FOR DETECTING PLASMA UNCONFINEMENT - A method for detecting plasma unconfinement in a reaction chamber during a bevel edge cleaning operation is provided. The method initiates with selecting a wavelength associated with expected by products of a bevel edge clean process. The method includes cleaning the bevel edge area of a substrate and monitoring the intensity of the selected wavelengths during the cleaning for deviation from a threshold wavelength intensity. The cleaning is terminated if the deviation from the threshold wavelength intensity exceeds a target deviation. | 11-05-2009 |
20090293907 | METHOD OF SUBSTRATE POLYMER REMOVAL - Methods for cleaning a substrate are provided. In one embodiment, the method includes depositing a polymer on a substrate. A cleaning gas is provided to clean a frontside, a bevel edge, and a backside of the substrate. The cleaning gas may include various reactive chemicals such as H | 12-03-2009 |
20100043821 | METHOD OF PHOTORESIST REMOVAL IN THE PRESENCE OF A LOW-K DIELECTRIC LAYER - Described herein are methods and apparatus for removing photoresist in the presence of low-k dielectric layers. In one embodiment, the method includes exciting a first mixture of gases having a ratio of a flow rate of reducing process gas to a flow rate of an oxygen-containing process gas that is between 1:1 and 100:1 to generate a first reactive gas mixture. Next, the method includes exposing the photoresist layer that overlays the low-k dielectric layer on a substrate to the first reactive gas mixture to selectively remove the photoresist layer from the dielectric layer. Next, the method includes exposing the photoresist layer to a second reactive gas mixture to selectively remove the photoresist layer from the dielectric layer. The first and second reactive gas mixtures contain substantially no ions when the substrate is exposed to these mixtures in order to minimize damage to the low-k dielectric layer. | 02-25-2010 |
20100095979 | REMOTE PLASMA CLEAN PROCESS WITH CYCLED HIGH AND LOW PRESSURE CLEAN STEPS - A remote plasma process for removing unwanted deposition build-up from one or more interior surfaces of a substrate processing chamber after processing a substrate disposed in the substrate processing chamber. In one embodiment, the substrate is transferred out of the substrate processing chamber and a flow of a fluorine-containing etchant gas is introduced into a remote plasma source where reactive species are formed. A continuous flow of the reactive species from the remote plasmas source to the substrate processing chamber is generated while a cycle of high and low pressure clean steps is repeated. During the high pressure clean step, reactive species are flown into the substrate processing chamber while pressure within the substrate processing chamber is maintained between 4-15 Torr. During the low pressure clean step, reactive species are flown into the substrate processing chamber while reducing the pressure of the substrate processing chamber by at least | 04-22-2010 |
20100101603 | METHOD AND APPARATUS FOR REMOVING PHOTORESIST - A method and apparatus remove photoresist from a wafer. A process gas containing sulfur (S), oxygen (O), and hydrogen (H) is provided, and a plasma is generated from the process gas in a first chamber. A radical-rich ion-poor reaction medium is flown from the first chamber to a second chamber where the wafer is placed. The patterned photoresist layer on the wafer is removed using the reaction medium, and then the reaction medium flowing into the second chamber is stopped. Water vapor may be introduced in a salvation zone provided in a passage of the reaction medium flowing down from the plasma such that the water vapor solvates the reaction medium to form solvated clusters of species before the reaction medium reaches the wafer. The photoresist is removed using the solvated reaction medium. | 04-29-2010 |
20100170530 | METHOD FOR CLEANING SEMICONDUCTOR EQUIPMENT - A method for cleaning a semiconductor equipment is provided. First, a first cleaning step is performed to the process chamber. The first cleaning step includes conducting a cleaning gas into the process chamber via a short processing gas injector for generating a plasma of the cleaning gas in the process chamber. Then, a cleaning step is performed to a long cleaning gas injector. The cleaning step performed to the long cleaning gas injector includes conducting the cleaning gas into the process chamber via the long processing gas injector. Then, a second cleaning step is performed to the process chamber. The second cleaning step includes conducting the plasma of the cleaning gas into the process chamber via the short processing gas injector. | 07-08-2010 |
20110114115 | TUNING HARDWARE FOR PLASMA ASHING APPARATUS AND METHODS OF USE THEREOF - A continuously variable microwave circuit capable of being tuned to operate under a plurality of distinct operating conditions, comprising: a waveguide comprising an adjustable tuning element having a core configured to protrude into the waveguide; an actuator in operative communication with the adjustable tuning element, wherein the actuator is operable to selectively vary a length of the core that is protruding into the waveguide so as to minimize reflected microwave power in the plasma asher; and a controller in operative communication with the actuator, wherein the controller is configured to selectively activate the actuator upon a change in the plurality of operating conditions. | 05-19-2011 |
20110139176 | LOW DAMAGE PHOTORESIST STRIP METHOD FOR LOW-K DIELECTRICS - Improved methods for stripping photoresist and removing etch-related residues from dielectric materials are provided. In one aspect of the invention, methods involve removing material from a dielectric layer using a hydrogen-based etch process employing a weak oxidizing agent and fluorine-containing compound. Substrate temperature is maintained at a level of about 160° C. or less, e.g., less than about 90° C. | 06-16-2011 |
20110180097 | THERMAL ISOLATION ASSEMBLIES FOR WAFER TRANSPORT APPARATUS AND METHODS OF USE THEREOF - An apparatus for treating a workpiece, the apparatus comprising a first chamber configured to treat the workpiece at an elevated temperature, the first chamber including an opening for receiving the workpiece; a second chamber in operative communication with the first chamber, the second chamber including an opening for transferring the workpiece to and from the first chamber, wherein the first chamber opening is aligned with the second chamber opening, and wherein a selected one of the first and the second chambers comprises a gate valve configured to selectively open and close access to the first and second chamber openings; and a thermal isolation plate formed of a material effective to substantially prevent heat transfer from the first chamber to the second chamber, wherein the thermal isolation plate is disposed about the first and second chamber openings in a sealing relationship. | 07-28-2011 |
20120132228 | SUBSTRATE PROCESSING APPARATUS, METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE, AND BAFFLE STRUCTURE OF THE SUBSTRATE PROCESSING APPARATUS - A conventional substrate processing apparatus for generating plasma cannot generate plasma with high density and thus throughput of substrate processing is low. In order to solve this problem, provided is a substrate processing apparatus including a reaction vessel having a tubular shape and provided with a coil installed at an outer circumference thereof; a cover installed at a first end of the reaction vessel; a gas introduction port installed at the cover; a first plate installed between the gas introduction port and an upper end of the coil; a second plate installed between the first plate and the upper end of the coil; a substrate processing chamber installed at a second end of the reaction vessel; and a gas exhaust part connected to the substrate processing chamber. | 05-31-2012 |
20120174944 | CLEANING METHOD FOR SILICON CARBIDE SEMICONDUCTOR AND CLEANING APPARATUS FOR SILICON CARBIDE SEMICONDUCTOR - A cleaning method for a SiC semiconductor includes the step of forming an oxide film on a front surface of a SiC semiconductor, and the step of removing the oxide film, and oxygen plasma is used in the step of forming the oxide film. Hydrogen fluoride may be used in the step of removing the oxide film. Thereby, a cleaning effect on the SiC semiconductor can be exhibited. | 07-12-2012 |
20120186604 | SEMICONDUCTOR MANUFACTURING APPARATUS AND CLEANING METHOD THEREOF - According to one embodiment, a cleaning gas is sealed in a chamber of a semiconductor manufacturing apparatus, and the cleaning gas and deposits adhered in the chamber are reacted with each other to generate a reactive gas. After a predetermined time, the gas is exhausted from the chamber. Then, the chamber is evacuated while the cleaning gas is introduced into the chamber, and the reactive gas concentration contained in an exhausted gas is measured. The reactive gas concentration is compared with a determination value obtained when the deposits are removed from the chamber to determine whether the cleaning is terminated. | 07-26-2012 |
20130025624 | METHOD OF CLEANING A SEMICONDUCTOR DEVICE MANUFACTURING APPARATUS - According to example embodiments, there is provided a method of cleaning a semiconductor device manufacturing apparatus. In the method, a fluorine-containing gas is provided into a chamber to clean a byproduct formed on a surface of a chamber during formation of a layer structure therein. A material is provided into the chamber to chemisorb the material on the surface of the chamber. The material is substantially similar to or the same as a source gas for forming the layer structure. A plasma is generated in the chamber, and the chamber is purged. | 01-31-2013 |
20130056023 | Chemical for Forming Protective Film - Disclosed is a liquid chemical for forming a water repellent protective film on a wafer that has at its surface a finely uneven pattern and contains silicon element at least at a part of the uneven pattern, the water repellent protective film being formed at least on surfaces of recessed portions of the uneven pattern at the time of cleaning the wafer. The liquid chemical contains: a silicon compound (A) represented by the general formula R | 03-07-2013 |
20130160795 | Plasma Etcher Design with Effective No-Damage In-Situ Ash - In some embodiments, the present disclosure relates to a plasma etching system having direct and localized plasma sources in communication with a processing chamber. The direct plasma is operated to provide a direct plasma to the processing chamber for etching a semiconductor workpiece. The direct plasma has a high potential, formed by applying a large bias voltage to the workpiece. After etching is completed the bias voltage and direct plasma source are turned off. The localized plasma source is then operated to provide a low potential, localized plasma to a position within the processing chamber that is spatially separated from the workpiece. The spatial separation results in formation of a diffused plasma having a zero/low potential that is in contact with the workpiece. The zero/low potential of the diffused plasma allows for reactive ashing to be performed, while mitigating workpiece damage resulting from ion bombardment caused by positive plasma potentials. | 06-27-2013 |
20130213434 | METHOD FOR ELIMINATING CONTACT BRIDGE IN CONTACT HOLE PROCESS - A method for eliminating contact bridge in a contact hole process is disclosed, wherein a cleaning menu comprising a multi-step adaptive protective thin film deposition process is provided, so that a stack adaptive protective thin film is formed on the sidewall of the chamber of the HDP CVD equipment. The stack adaptive protective thin film has good adhesivity, compactness and uniformity to protect the sidewall of the chamber of the HDP CVD equipment from being damaged by the plasma, and avoid the generation of defect particles, thereby improving the HDP CVD technical yield and eliminating the contact bridge phenomenon in the contact hole process. | 08-22-2013 |
20130276821 | Method and System for Distributing Gas for A Bevel Edge Etcher - A plasma etch processing chamber configured to clean a bevel edge of a substrate is provided. The chamber includes a bottom edge electrode and a top edge electrode defined over the bottom edge electrode. The top edge electrode and the bottom edge electrode are configured to generate a cleaning plasma to clean the bevel edge of the substrate. The chamber includes a gas feed defined through a top surface of the processing chamber. The gas feed introduces a processing gas for striking the cleaning plasma at a location in the processing chamber that is between an axis of the substrate and the top edge electrode. A pump out port is defined through the top surface of the chamber and the pump out port located along a center axis of the substrate. A method for cleaning a bevel edge of a substrate is also provided. | 10-24-2013 |
20130298942 | ETCH REMNANT REMOVAL - Methods of removing residual polymer from vertical walls of a patterned dielectric layer are described. The methods involve the use of a gas phase etch to remove the residual polymer without substantially disturbing the patterned dielectric layer. The gas phase etch may be used on a patterned low-k dielectric layer and may maintain the low dielectric constant of the patterned dielectric layer. The gas phase etch may further avoid stressing the patterned low-k dielectric layer by avoiding the use of liquid etchants whose surface tension can upset delicate low-K features. The gas phase etch may further avoid the formation of solid etch by-products which cars also deform the delicate features. | 11-14-2013 |
20140060572 | PLASMA PROCESSING APPARATUS AND CLEANING METHOD FOR REMOVING METAL OXIDE FILM - In a plasma processing apparatus, a mounting table is provided in a processing chamber, and a remote plasma generating unit is configured to generate an excited gas by exiting a hydrogen-containing gas. The remote plasma generating unit has an outlet for discharging the excited gas. A diffusion unit is provided to correspond to the outlet of the remote plasma generating unit and serves to receive the excited gas flowing from the outlet and diffuse the hydrogen active species having a reduced amount of hydrogen ions. An ion filter is disposed between the diffusion unit and the mounting table while being separated from the diffusion unit. The ion filter serves to capture the hydrogen ions contained in the hydrogen active species diffused by the diffusion unit and allow the hydrogen active species having a further reduced amount of hydrogen ions to pass therethrough the mounting table. | 03-06-2014 |
20140109930 | METHOD FOR IN-SITU DRY CLEANING, PASSIVATION AND FUNCTIONALIZATION OF SI-GE SEMICONDUCTOR SURFACES - A method for in-situ dry cleaning of a SiGe semiconductor surface doses the SiGe surface with ex-situ wet HF in a clean ambient environment or in-situ dosing with gaseous NH | 04-24-2014 |
20140144462 | STICTION-FREE DRYING PROCESS WITH CONTAMINANT REMOVAL FOR HIGH-ASPECT RATIO SEMICONDUCTOR DEVICE STRUCTURES - Embodiments of the invention generally relate to a method of cleaning a substrate and a substrate processing apparatus that is configured to perform the method of cleaning the substrate. More specifically, embodiments of the present invention relate to a method of cleaning a substrate in a manner that reduces or eliminates the negative effects of line stiction between semiconductor device features. Other embodiments of the present invention relate to a substrate processing apparatus that allows for cleaning of the substrate in a manner that reduces or eliminates line stiction between semiconductor device features formed on the substrate. | 05-29-2014 |
20140190513 | APPARATUS AND METHOD FOR TREATING SUBSTRATE - Provided is a substrate treatment apparatus. The substrate treatment apparatus includes a load port on which a carrier accommodating a plurality of substrates to which a back-ground wafer is attached to a mounting tape fixed to a frame ring is placed, a plasma treatment unit supplying plasma to treat a top surface of the wafer, and a substrate transfer unit transferring the substrate between the carrier and the plasma treatment unit. | 07-10-2014 |
20150020848 | Systems and Methods for In-Situ Wafer Edge and Backside Plasma Cleaning - A lower electrode plate receives radiofrequency power. A first upper plate is positioned parallel to and spaced apart from the lower electrode plate. A grounded second upper plate is positioned next to the first upper plate. A dielectric support provides support of a workpiece within a region between the lower electrode plate and the first upper plate. A purge gas is supplied at a central location of the first upper plate. A process gas is supplied to a periphery of the first upper plate. The dielectric support positions the workpiece proximate and parallel to the first upper plate, such that the purge gas flows over a top surface of the workpiece so as to prevent the process gas from flowing over the top surface of the workpiece, and so as to cause the process gas to flow around a peripheral edge of the workpiece and below the workpiece. | 01-22-2015 |
20150075558 | Method and System of Surface Polishing - A method of polishing a surface of an object disposed within a gas chamber is provided. The method includes filling the gas chamber with a discharging medium to a predefined pressure, applying a voltage between an electrode and the surface, calibrating a height of the electrode relative to the surface so as to establish electrical breakdown threshold criteria, and scanning the electrode with respect to the surface so as to sequentially position the electrode over a plurality of locations on the surface, each location characterized by a surface error. When a respective location in the plurality of locations has a surface error that meets the electrical breakdown threshold criteria, electrical breakdown occurs, whereby the electrical breakdown results in a discharging pulse that polishes the surface. | 03-19-2015 |
20150107618 | OXYGEN CONTAINING PLASMA CLEANING TO REMOVE CONTAMINATION FROM ELECTRONIC DEVICE COMPONENTS - A gas comprising oxygen is supplied to a plasma source. A plasma jet comprising oxygen plasma particles is generated from the gas. A contaminant is removed from the component using the oxygen plasma particles. | 04-23-2015 |
20150144155 | Method for High Aspect Ratio Photoresist Removal in Pure Reducing Plasma - A method for removing photoresist, an oxidation layer, or both from a semiconductor substrate is disclosed. The method includes placing a substrate in a processing chamber, the processing chamber separate from a plasma chamber for generating a non-oxidizing plasma to be used in treating the substrate; generating a first non-oxidizing plasma from a first reactant gas and a first carrier gas in the plasma chamber, wherein the first non-oxidizing plasma comprises from about 10% to about 40% of the first reactant gas, wherein the first reactant gas has a flow rate of from about 100 standard cubic centimeters per minute to about 15,000 standard cubic centimeters per minute, and wherein the first carrier gas has a flow rate of from about 500 standard cubic centimeters per minute to about 20,000 standard cubic centimeters per minute; and treating the substrate by exposing the substrate to the first non-oxidizing plasma in the processing chamber. | 05-28-2015 |
20160064209 | METHODS OF DRY STRIPPING BORON-CARBON FILMS - Embodiments of the invention generally relate to methods of dry stripping boron-carbon films. In one embodiment, alternating plasmas of hydrogen and oxygen are used to remove a boron-carbon film. In another embodiment, co-flowed oxygen and hydrogen plasma is used to remove a boron-carbon containing film. A nitrous oxide plasma may be used in addition to or as an alternative to either of the above oxygen plasmas. In another embodiment, a plasma generated from water vapor is used to remove a boron-carbon film. The boron-carbon removal processes may also include an optional polymer removal process prior to removal of the boron-carbon films. The polymer removal process includes exposing the boron-carbon film to NF | 03-03-2016 |
20160118220 | GEOMETRIC FIELD ENHANCEMENT TO MAINTAIN ELECTRODE CONDUCTIVITY - Features that create localized electric field enhancement are deliberately introduced on conductors where deposits having insulating characteristics can form. The purpose of the introduced features is to enhance localized breakdown of the deposits in order to maintain electrode conductivity. | 04-28-2016 |
20160148789 | PRE-CLEANING CHAMBER AND A SEMICONDUCTOR PROCESSING APPARATUS CONTAINING THE SAME - The present disclosure provides a pre-cleaning chamber. The pre-cleaning chamber includes a cavity, a top cover of the cavity, and an ion filtering unit with venting holes. The ion filtering unit is configured to divide the cavity into an upper sub-cavity and a lower sub-cavity and to filter out ions from plasma when the plasma is moving through the filtering unit from the upper sub-cavity to the lower sub-cavity. The pre-cleaning chamber further includes a carry unit located in the lower sub-cavity for supporting a wafer. | 05-26-2016 |