Class / Patent application number | Description | Number of patent applications / Date published |
123703000 |
Exhaust gas composition sensor
| 47 |
123676000 |
Exhaust gas temperature or pressure repsonsive
| 35 |
123674000 |
With modifying or updating memory (i.e., learning)
| 22 |
123673000 |
With sensor controlling each cylinder individually
| 18 |
123679000 |
Combined with engine condition responsive means
| 16 |
123690000 |
With fail-safe, backup, or malfunction means
| 9 |
123693000 |
With compensator for sensor output (e.g., current or voltage)
| 8 |
123698000 |
With addition of secondary fluid (e.g., fuel or exhaust gas) | 3 |
20090165765 | SECONDARY AIR SUPPLY SYSTEM AND VEHICLE - A secondary air supply system includes a CPU, a ROM, an air supply pipe, and an air amount adjusting valve. One end of the air supply pipe is connected to an air cleaner box and the other end is connected to an exhaust port. Secondary air in the air cleaner box is supplied to the exhaust port through the air supply pipe. An amount of the secondary air to be supplied from the air supply pipe to the exhaust port is adjusted by the air amount adjusting valve. A target air-fuel ratio depending on a state of the engine is stored in the ROM. The CPU controls the air amount adjusting valve based on the state of the engine so that an air-fuel ratio in the exhaust port is the target air-fuel ratio. | 07-02-2009 |
20140261349 | SYSTEM AND METHOD FOR SENSOR COOLING - A system located within an engine compartment is provided. The system includes a sensor mounted proximate to an engine. The system also includes a bleed line provided from an intake line associated with the engine. The bleed line is configured to provide a supply of compressed air to the sensor. | 09-18-2014 |
20080196703 | VAPOR FUELED ENGINE - A fuel supply assembly is provided that may allow for use of vaporized fuel to power an engine and enhance fuel efficiency. The fuel supply assembly may include a vaporizing tank, a heating source, a temperature control and a monitoring and control system configured to control intermixing of ambient air and vaporized gasoline to maintain a desired hydrocarbon level in an exhaust. | 08-21-2008 |
123691000 |
Multiple sensors controlling group of cylinders | 1 |
20110083652 | METHOD AND DEVICE FOR OPERATING AN INTERNAL COMBUSTION ENGINE - An internal combustion engine has an exhaust gas tract with a first and a second exhaust gas catalyst downstream of the first one, a first exhaust gas sensor, which is disposed upstream or in the first catalyst, and a second exhaust gas sensor, which is disposed downstream of the first catalyst and upstream of the second catalyst. During trailing throttle operation, the measurement signal of the second sensor is monitored for a signal characteristic that is typical of a maximum possible saturation state with oxygen that the first catalyst can achieve, upon which a characteristic variable is determined for a saturation state of the second catalyst with oxygen as a function of an engine operating variable. Outside the trailing throttle operation, an enrichment mode is controlled by enriching the air/fuel mixture, specifically as a function of the characteristic variable for the saturation state of the second catalyst with oxygen. | 04-14-2011 |
123677000 |
Combined with ambient condition responsive means (e.g., pressure) | 1 |
20100236532 | HUMIDITY DETECTION VIA AN EXHAUST GAS SENSOR - Various systems and methods are described for operating an engine in a vehicle in response to an ambient humidity generated from an exhaust gas sensor. One example method comprises, during engine non-fueling conditions, where at least one intake valve and at least one exhaust valve of the engine are operating, generating an ambient humidity from the exhaust gas sensor and, under selected engine combusting conditions, adjusting an engine operating parameter based on the ambient humidity. | 09-23-2010 |
Entries |
Document | Title | Date |
20080236554 | Fuel Injection System Having Reduced Pollutant Emissions - A fuel injection system for an internal combustion engine is proposed. The fuel injection system has a high pressure part and a low pressure part. In the high pressure part, fuel is fed from at least one high pressure accumulator/reservoir to at least one fuel injector. In the low pressure part, the at least one fuel injector is connected to at least one low pressure accumulator/reservoir, wherein a pressure is maintained in the at least one low pressure accumulator by at least one pressure holding valve. Furthermore, the fuel injection system has at least one device for the after-treatment of exhaust gases of the internal combustion engine in an exhaust gas section. Furthermore, the fuel injection system has at least one metering device for the metered introduction of fuel into the exhaust gas section. Said at least one metering device is connected hydraulically to the at least one low pressure accumulator. | 10-02-2008 |
20080257325 | AIR-FUEL RATIO CONTROL APPARATUS FOR INTERNAL COMBUSTION ENGINE - An air-fuel ratio control apparatus for an internal combustion engine, including fuel cut state detection means for detecting the state of fuel cut in which the feed of fuel into the internal combustion engine is stopped, and catalyst deterioration decision means for deciding the deterioration of a catalyst on the basis of a period which is expended since the detection of the release of the state of the fuel cut by the fuel cut state detection means, until the output value of a second air-fuel ratio sensor agrees with a predetermined reset decision value near a target value, and the manipulation quantity of an average air-fuel ratio on the upstream side of the catalyst as is based on second air-fuel ratio feedback control means. Thus, the deterioration of the catalyst can be decided at a high precision. | 10-23-2008 |
20090078241 | METHOD FOR ADJUSTING A DISPLACEMENT PUMP THAT HAS A VARIABLE VOLUME FLOW RATE IN AN INTERNAL COMBUSTION ENGINE - The invention relates to a method for adjusting a displacement pump that has a variable volume flow rate in an internal combustion engine. Said method comprises the following steps: the displacement pump is driven; the fluid is conveyed to the consumption points in the internal combustion engine; at least one characteristic value is determined from the exhaust gas flow of the internal combustion engine; said characteristic value is forwarded to a control device as an actual value signal; the actual value signal is compared to a given target value; a control signal is preprocessed from the deviation between the actual value signal and the target value; the control signal is fed to an actuator; the volume flow rate of the displacement pump is modified by means of the actuator in accordance with the control signal; the steps of the method are repeated until the actual value signal is identical to the target value. | 03-26-2009 |
20090205622 | CONTROLLER OF INTERNAL COMBUSTION ENGINE - A controller of an internal combustion engine includes: a purge controller, operable to control a purge amount of the vaporized fuel purged to an air intake system; an exhaust air-fuel ratio detector; an air-fuel ratio feedback controller; a period determiner, operable to determine whether it is an estimation enabling period; and an alcohol concentration estimator, operable to estimate the alcohol concentration. When the purge of the vaporized fuel is cut during the estimation enabling period, the purge controller: performs control so that the purge is cut with a large degree of tailing, in an operation region where a load of the internal combustion engine is high and a rotation speed is high; and performs control so that the purge is cut with a smaller degree of tailing than the large degree of tailing, in an operation region where the load of the internal combustion engine is low and the rotation speed is low. | 08-20-2009 |
20090320813 | Exhaust Gas Control Apparatus of an Internal Combustion Engine - A first cylinder and a second cylinder are provided. A first exhaust pipe is connected to the first cylinder and a second exhaust pipe is connected to the second cylinder. A communicating pipe connects together an intermediate portion of the first exhaust pipe with an intermediate portion of the second exhaust pipe. An exhaust gas control catalyst is arranged in the second exhaust pipe downstream of the portion to which the communicating pipe is connected. Exhaust gas amount reducing devices are provided which reduce the amount of exhaust gas that flows from the first exhaust pipe into the second exhaust pipe through the communicating pipe during execution of rich/lean burn control which performs combustion with an air-fuel ratio of an air-fuel mixture that is richer than the stoichiometric air-fuel ratio in one of the first cylinder and second cylinder and performs combustion with an air-fuel ratio of an air-fuel mixture that is leaner than the stoichiometric air-fuel ratio in the other cylinder. | 12-31-2009 |
20100024789 | FUEL SYSTEM FOR MULTI-FUEL ENGINE - An engine system and corresponding control method are described. As one example, the control method includes: combusting fuel from a first fuel tank during a first engine operating condition; combusting fuel from a second fuel tank during a second engine operating condition; transferring fuel from the first fuel tank to the second fuel tank when a fuel level of the second fuel tank falls below a predetermined level; delivering air to the engine from an air compressor; and adjusting the compressor based on a combustion characteristic of fuel from the second tank. | 02-04-2010 |
20100078000 | AIR-FUEL RATIO CONTROL DEVICE OF INTERNAL COMBUSTION ENGINE - When an output of a downstream sensor provided downstream of a catalyst for exhaust gas purification becomes a leaner value than a leanness determination value, an air-fuel ratio control device supplies a rich component to the catalyst by performing rich input processing, in which increase correction for increasing fuel injection quantity stepwise is performed and then increase correction quantity of the fuel injection quantity is decreased gradually. When the increase correction quantity of the fuel injection quantity defined by the rich input processing becomes zero or when oxygen occlusion quantity of the catalyst becomes zero, the control device supplies a lean component to the catalyst by performing lean input processing, in which decrease correction for decreasing the fuel injection quantity stepwise is performed and then decrease correction quantity of the fuel injection quantity is decreased gradually. | 04-01-2010 |
20100126481 | Engine control system having emissions-based adjustment - A control system for an engine having a first cylinder and a second cylinder is disclosed including an air/fuel ratio control device configured to affect an air/fuel ratio within the first and second cylinders. The control system also has a first sensor configured to generate a first signal indicative of a combustion pressure within the first cylinder and a second sensor configured to generate a second signal indicative of a combustion pressure within the second cylinder. The control system further has a controller in communication with the air/fuel ratio control device and the first and second sensors. The controller is configured to determine a NOx production within the first cylinder based on the first signal and determine a NOx production within the second cylinder based on the second signal. The control is also configured to calculate a total NOx production of the engine based on at least the NOx produced within the first and second cylinders and selectively regulate the air/fuel ratio control device to adjust the air/fuel ratio within the first and second cylinders based on the total NOx production of the engine. | 05-27-2010 |
20100199959 | EXHAUST GAS RECIRCULATION SYSTEM AND METHOD OF OPERATING SUCH SYSTEM - An exhaust gas recirculation (EGR) system for an engine and a method of operating that system is disclosed. The system has a conduit arrangement for conducting exhaust gas from an exhaust side of the engine to an intake side of the engine, a valve arrangement configured for controlling the amount of exhaust gas to be recirculated and a conduit arrangement for providing intake air to the intake side of the engine. A sensor arrangement is provided and is configured to sense at least one parameter indicative of the humidity of the recirculated exhaust gas and the intake air at the intake side of the engine. A control arrangement is configured to receive a signal from the first sensor arrangement and further is configured to control the valve arrangement in response to a determination by the control arrangement that the first parameter is outside a desired range for low-NO | 08-12-2010 |
20100206280 | VEHICLE-MOUNTED ENGINE CONTROL APPARATUS - A vehicle-mounted engine control apparatus can accurately measure the resistance value of a label resistor arranged in an exhaust gas sensor for correcting characteristic variation thereof by using a reduced number of wires. An electric heater of the exhaust gas sensor, which is powered from a second power supply wire, as well as the label resistor and air fuel ratio measurement elements are connected to the apparatus which is powered from an on-vehicle battery through a first power supply wire. A power feed voltage of the apparatus is input to a multichannel AD converter through voltage dividing resistors, so that a positive end potential of the label resistor is measured alternatively. A negative end potential of the label resistor is input to the converter as a divided voltage thereof with a fixed resistor. The label resistance value is calculated from a fixed resistor current and a label resistor voltage. | 08-19-2010 |
20100242933 | POST OXYGEN SENSOR PERFORMANCE DIAGNOSTIC WITH MINIMUM AIR FLOW - An engine control system includes an oxygen (O | 09-30-2010 |
20100242934 | EXHAUST GAS PURIFYING APPARATUS FOR INTERNAL COMBUSTION ENGINE - An exhaust gas purifying apparatus for an internal combustion engine includes a lean control unit and a rich control unit. The lean control unit executes lean spike operation, in which an air-fuel ratio is temporarily changed in a lean direction by a lean change width relative to a reference air-fuel ratio. The rich control unit changes the air-fuel ratio in a rich direction by a rich change width relative to the reference air-fuel ratio after the lean control unit executes the lean spike operation such that the air-fuel ratio stays in a predetermined slightly rich region. The rich change width is smaller than the lean change width. | 09-30-2010 |
20110041819 | METHOD AND APPARATUS FOR OPERATING AN INTERNAL COMBUSTION ENGINE - An internal combustion engine has at least one cylinder, with which an injection valve for metering fuel is associated and an exhaust system with an exhaust gas catalytic converter. A first exhaust gas probe is disposed upstream of or in the exhaust gas catalytic converter, and a second exhaust gas probe is downstream. A lambda controller determines a regulating variable as a function of the first probe and a control variable acting on a fuel mass to be metered using the injection valve. A trim regulator determines a regulating variable thereof as a function of the second probe and the first trim control variable thereof as a function of a P regulator component and the second trim control variable thereof as a function of an I regulator component. A function of a predetermined evaluation of the first trim control variable decides whether the second trim control variable is adapted. | 02-24-2011 |
20110073085 | CONTROL SYSTEMS AND METHODS USING GEOMETRY BASED EXHAUST MIXING MODEL - A system includes a cylinder equivalence ratio (EQR) module, a location estimation module, a sensor module, and a fuel control module. The cylinder EQR module determines a first EQR corresponding to a first exhaust gas expelled from a first cylinder and determines a second EQR corresponding to a second exhaust gas expelled from a second cylinder. The location estimation module determines when the first and second exhaust gases mix in an exhaust manifold to form a third exhaust gas having a third EQR. The sensor module estimates an EQR of a fourth exhaust gas based on the third EQR. The fourth exhaust gas is located at an oxygen sensor in the exhaust manifold. The fuel control module controls an amount of fuel supplied to an engine based on a difference between the estimated EQR and an EQR corresponding to measurements from the oxygen sensor. | 03-31-2011 |
20110079205 | Method and device for operating an internal combustion engine - A method for operating an internal combustion engine ( | 04-07-2011 |
20110155112 | INTERNAL COMBUSTION ENGINE - The invention relates to a method for operating an internal combustion engine, wherein air is inducted and then compressed, before introduction into a combustion chamber of the internal combustion engine, the air humidity of the inducted air is determined and temperature of the compressed air introduced into the combustion chamber is altered depending on the air humidity of the inducted air. | 06-30-2011 |
20110155113 | DEVICE FOR DETERMINING ACTIVATION OF EXHAUST GAS SENSOR AND CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE - The invention has an object to provide a device for determining activation of an exhaust gas sensor which accurately determines a time at which an exhaust gas sensor output is usable, and can suppress an adverse effect caused by use of the exhaust gas sensor output including a large effect of adsorbed species. A time is measured from a time point when a temperature of an air-fuel ratio sensor | 06-30-2011 |
20110162628 | Compensation For Oxygenated Fuel Use In A Diesel Engine - To partially supplant the use of fossil fuels in diesel engines, oxygen-containing fuels, such as biodiesels, are proposed as blending agents in diesel fuel. Engine calibration coefficients to control EGR rate, timings and quantities of fuel injection pulses, turbocharger boost, etc, can be determined to compensate for the lower energy content of such oxygenate blends compared to diesel fuels. According to an embodiment of the disclosure, the fuel quantity of each of multiple injection pulses is increased proportionally to compensate for the impact of oxygenates. An adjustment in the fuel injection quantity is performed in response to a new tank of fuel and the adjustment is applied for that tank of fuel. A fuel compensation factor (FCF) can be determined based on the actual amount of fuel injected compared to the expected amount of diesel fuel at the present operating condition. | 07-07-2011 |
20130042846 | METHOD AND SYSTEM FOR COMPENSATING FOR ALCOHOL CONCENTRATION IN FUEL - An engine system for determining an alcohol concentration in fuel is disclosed. In one example, engine throttle position, fuel pulse width, and air-fuel ratio form a basis for determining alcohol concentration of a fuel combusted in an engine. The system and its related method may improve engine operation in conjunction with detecting an alcohol concentration of a fuel. | 02-21-2013 |
20130180509 | NON-INTRUSIVE EXHAUST GAS SENSOR MONITORING - A method for monitoring an exhaust gas sensor coupled in an engine exhaust is provided. In one embodiment, the method comprises indicating exhaust gas sensor degradation based on characteristics of a distribution of extreme values of a plurality of sets of lambda differentials collected during selected operating conditions. In this way, the exhaust gas sensor may be monitored in a non-intrusive manner. | 07-18-2013 |
20130180510 | NON-INTRUSIVE EXHAUST GAS SENSOR MONITORING - A method of monitoring an exhaust gas sensor coupled in an engine exhaust is provided. The method comprises indicating exhaust gas sensor degradation based on a difference between a first set of estimated parameters of a rich operation model and a second set of estimated parameters of a lean operation model, the estimated parameters based on commanded lambda and determined lambda values collected during selected operating conditions. In this way, sensor degradation may be indicated with data collected in a non-intrusive manner. | 07-18-2013 |
20140060506 | OXYGEN FRACTION ESTIMATION FOR DIESEL ENGINES UTILIZING VARIABLE INTAKE VALVE ACTUATION - A physically-based, generalizable method to estimate the in-cylinder oxygen fraction from production viable measurements or estimates of exhaust oxygen fraction, fresh air flow, charge flow, fuel flow, turbine flow and EGR flow. The oxygen fraction estimates can be sensitive to errors in the EGR and turbine flow, and in other embodiments, a high-gain observer is implemented to improve the estimate of EGR flow. The observer is applicable to engines utilizing high pressure cooled exhaust gas recirculation, variable geometry turbocharging and flexible intake valve actuation as well as other engines. | 03-06-2014 |
20140144416 | METHOD AND DEVICE FOR OPERATING AN INTERNAL COMBUSTION ENGINE - The internal combustion engine includes at least one cylinder, an exhaust gas tract having a measuring device, and a tank ventilation system having a purge air line, which provides pneumatic communication between the tank ventilation system and the cylinder. The purge air line has a sensor for ascertaining a hydrocarbon content of a gas flow from the tank ventilation system to the at least one cylinder. Fuel metering into the cylinder is controlled dependent on the ascertained hydrocarbon content. An exhaust gas characteristic of an exhaust gas flow that flows in the exhaust gas tract is detected by the measuring device and compared with a specified target value. If the ascertained difference between the detected exhaust gas characteristic and the specified target value exceeds a specified threshold, a test is carried out to determine whether the sensor has a malfunction. | 05-29-2014 |
20140165979 | CONTROL UNIT FOR INTERNAL-COMBUSTION ENGINE - According to the invention, a particulate matter sensor is installed in an exhaust passage of an internal-combustion engine. A control unit for this internal-combustion engine detects a particulate amount in an exhaust gas through the exhaust passage in response to an output from the particulate matter sensor. Further, the control unit for the internal-combustion engine forms a particulate layer on electrode surfaces of the particulate matter sensor by applying a particulate capturing voltage between the electrodes during a first period. Further, the control unit maintains the formed particulate layer during a second period. It is noted here that the phrase “maintain the formed particulate layer” includes the meanings “maintaining the formed particulate layer as it is” and “inhibiting control to remove the particulate layer”. | 06-19-2014 |
20140238368 | EXHAUST GAS SENSOR DIAGNOSIS AND CONTROLS ADAPTATION - Methods and systems are provided for adjusting an anticipatory controller of an exhaust gas sensor coupled in an engine exhaust. In one embodiment, the method comprises adjusting fuel injection responsive to exhaust oxygen feedback from the anticipatory controller of the exhaust gas sensor and adjusting one or more parameters of the anticipatory controller responsive to a type of oxygen sensor degradation. In this way, the anticipatory controller may be adapted based on the type and magnitude of the degradation behavior to increase performance of the air-fuel control system. | 08-28-2014 |
20140261348 | Exhaust Gas Sensor Device - An exhaust gas sensor device for recording a concentration of at least one exhaust gas component in an exhaust system of an internal combustion engine includes at least one exhaust gas sensor with intrinsic signal amplification. The at least one exhaust gas sensor records the concentration of at least one exhaust gas component. | 09-18-2014 |
20140331980 | METHOD AND SYSTEM FOR MEASURING THE MASS FLOW BY MEANS OF DILUTION OF AN EXHAUST GAS FROM INTERNAL COMBUSTION - The present invention relates to a method for measuring the content of at least one compound in an exhaust gas stream resulting from internal combustion. A first relative proportion of a first compound in the exhaust gas stream is measured by means of a first sensor, and a defined flow of a first gas is added to said exhaust gas stream downstream said first sensor. A second relative proportion of said first compound in the combined stream of said exhaust gas stream and said added gas is measured by means of a second sensor, and a mass flow of said first compound in said exhaust gas stream resulting from said combustion in said internal combustion is determined by means of said first and second relative proportions and said defined flow of said first gas. The invention also relates to a system and vehicle dynamometer. | 11-13-2014 |
20140345584 | EXHAUST GAS SENSOR CONTROLS ADAPTATION FOR ASYMMETRIC DEGRADATION RESPONSES - Methods and systems are provided for converting an asymmetric degradation response of an exhaust gas sensor to a more symmetric degradation response. In one example, a method includes adjusting fuel injection responsive to a modified exhaust oxygen feedback signal from an exhaust gas sensor, the modified exhaust oxygen feedback signal modified by transforming an asymmetric response of the exhaust gas sensor to a more symmetric response. Further, the method may include adjusting one or more parameters of an anticipatory controller of the exhaust gas sensor based on the modified symmetric response. | 11-27-2014 |
20150101582 | NON-INTRUSIVE EXHAUST GAS SENSOR MONITORING - A method for monitoring an exhaust gas sensor coupled in an engine exhaust is provided. In one embodiment, the method comprises indicating exhaust gas sensor degradation based on a time delay and line length of each sample of a set of exhaust gas sensor responses collected during a commanded change in air-fuel ratio. In this way, the exhaust gas sensor may be monitored utilizing robust parameters in a non-intrusive manner. | 04-16-2015 |
20150330322 | COORDINATED CONTROL OF ENGINE AND AFTER TREATMENT SYSTEMS - The present disclosure relates to a method and apparatus to reduce fuel consumption while remaining in NOx compliance by simultaneous and coordinated control of the engine and the selective catalytic reduction (SCR) system. More particularly, the present disclosure identifies methods and apparatus to increase NOx output within a diesel engine to optimize the performance of a given SCR system while simultaneously reducing fuel consumption at a selected and targeted intake oxygen concentration. | 11-19-2015 |
20150337752 | CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE - A sensor for detecting oxygen concentration in exhaust gas or an air-fuel ratio provided with a solid electrolyte body, an exhaust gas side electrode being disposed on one side of the solid electrolyte body and being in contact with the exhaust gas, an atmosphere side electrode being disposed on the other side of the solid electrolyte body and being in contact with the atmosphere, and an electric circuit applying a reference voltage between these electrodes is arranged in an engine exhaust passage. The sensor for detecting the oxygen concentration in the exhaust gas or the air-fuel ratio has a characteristic in which an output current continues to increase without having a limiting current region when the voltage applied between the electrodes is increased while the air-fuel ratio is constant. The air-fuel ratio is controlled based on the output current of the sensor for detecting the oxygen concentration in the exhaust gas or the air-fuel ratio. | 11-26-2015 |
20160017828 | CONTROL SYSTEM OF INTERNAL COMBUSTION ENGINE - This control device for an internal combustion engine is equipped with: an air/fuel ratio sensor provided to the exhaust passage of an internal combustion engine; and an engine control device that controls the internal combustion engine according to the output of the air/fuel ratio sensor. The air/fuel ratio sensor is equipped with: a gas chamber to be measured, into which exhaust gas flows; a pump cell that pumps oxygen into or out of the gas chamber to be measured according to the pump current; and a reference cell of which the reference cell output current detected varies according to the air/fuel ratio inside the gas chamber to be measured. The reference cell is equipped with: a first electrode that is exposed to the exhaust gas in the gas chamber to be measured; a second electrode exposed to a reference atmosphere; and a solid electrolyte layer arranged between the electrodes. The air/fuel ratio sensor is equipped with: a reference cell voltage applying device that applies a sensor applied voltage between the electrodes; and a reference cell output current detection device that detects, as the reference cell output current, the current flowing between the electrodes. | 01-21-2016 |
20160017829 | CONTROL SYSTEM OF INTERNAL COMBUSTION ENGINE - This control device for an internal combustion engine is equipped with: an air/fuel ratio sensor; and an engine control device that controls the internal combustion engine according to the output of the air/fuel ratio sensor. The air/fuel ratio sensor is configured so that the applied voltage at which the output current reaches zero varies according to the exhaust air/fuel ratio, and the output current increases if the applied voltage is increased at the air/fuel ratio sensor when the exhaust air/fuel ratio is the stoichiometric air/fuel ratio. When the air/fuel ratio of exhaust gas is to be detected by the air/fuel ratio sensor, the applied voltage at the air/fuel ratio sensor is fixed at a constant voltage, said constant voltage being different to the voltage at which the output current reaches zero when the exhaust air/fuel ratio is the stoichiometric air/fuel ratio, and being the voltage at which the output current reaches zero when the exhaust air/fuel ratio is different to the stoichiometric air/fuel ratio. Thus provided is a control device for an internal combustion engine that uses an air/fuel ratio sensor capable of detecting an absolute value for the air/fuel ratio of exhaust gas even if the air/fuel ratio of the exhaust gas is not the stoichiometric air/fuel ratio. | 01-21-2016 |
20160025029 | DUAL-FUEL ENGINE WITH ENHANCED COLD START CAPABILITY - A method for operating a dual-fuel engine. Embodiments include receiving sensor input information, including information representative of a temperature of the engine. A first fuel, optionally diesel fuel, and a second fuel that is different than the first fuel, optionally natural gas, are supplied to the engine during a start mode when the engine temperature is below a normal operating temperature range. The first and second fuels can be supplied to the engine during a run mode when the engine temperature is within the normal operating temperature range. | 01-28-2016 |
20160097336 | METHOD FOR CONTROLLING COOLING SYSTEM IN VEHICLE - A method for controlling a cooling system in a vehicle, may include an Exhaust Gas Recirculation (EGR) use determination step of determining whether to use EGR, a first coolant temperature management step of controlling a coolant temperature using a first coolant temperature map based on an output value reflecting engine operating conditions when driving the vehicle using the EGR, and a second coolant temperature management step of controlling the coolant temperature using a second coolant temperature map in which a coolant temperature of the second coolant temperature map may be set to be higher than a coolant temperature of the first coolant temperature map in a same engine operation region when driving the vehicle not using the EGR. | 04-07-2016 |