Class / Patent application number | Description | Number of patent applications / Date published |
117003000 | PROCESSES OF GROWTH WITH A SUBSEQUENT STEP OF HEAT TREATING OR DELIBERATE CONTROLLED COOLING OF THE SINGLE-CRYSTAL | 20 |
20080229999 | Method Of Manufacturing A Calcium Fluoride Single Crystal - A method for manufacturing calcium fluoride single crystal includes the step of cooling the calcium fluoride single crystal so that maximum shear stress inside the calcium fluoride single crystal caused by thermal stress is approximately equal to or smaller than critical resolved shear stress (τ | 09-25-2008 |
20080251006 | Controlled synthesis of nanoparticles using continuous liquid-flow aerosol method - A method and apparatus for producing surface stabilized nanometer-sized particles, the method including the steps of forming the aerosol by mixing reactants, a surface-stabilizing surfactant, and a liquid to form a mixture, forming a mist of droplets of the mixture, heating the droplets to cause a reaction between species of the mixture and collecting the nanometer-sized products. The method for producing various size, shape and size distribution of nanoparticles by changing the ratio of the reagents and the ligands in the mixture of precursors. | 10-16-2008 |
20080251007 | METHOD OF CONTROLLING AN EPITAXIAL GROWTH PROCESS IN AN EPITAXIAL REACTOR - A method of controlling an epitaxial growth process in an epitaxial reactor and a system for controlling an epitaxial growth process in an epitaxial reactor. | 10-16-2008 |
20080264330 | Production of nanostructure by curie point induction heating - An apparatus for synthesizing nanostructures. In one embodiment, the apparatus includes a heating device that defines a reaction zone therein and a susceptor made of a ferromagnetic material with a Curie temperature and placed in the reaction zone, where the Curie temperature substantially corresponds to a temperature at which the growth of desired nanostructures occurs and the heating device is capable of heating the susceptor substantially at the Curie temperature. | 10-30-2008 |
20080308034 | Ribbon Crystal Pulling Furnace Afterheater with at Least One Opening - A ribbon crystal pulling furnace has an interior for enclosing at least a portion of one or more ribbon crystals, and an afterheater positioned within the interior. The afterheater has at least one wall with one or more openings that facilitate control of the temperature profile within the furnace. | 12-18-2008 |
20090000535 | Method For Manufacturing Silicon Single Crystal Wafer - The present invention provides a method for manufacturing a silicon single crystal wafer by which a silicon single crystal ingot is pulled based on a Czochralski method and a rapid thermal annealing is performed with respect to a wafer that is sliced out from the silicon single crystal ingot and has a whole area in a radial direction formed of N region, wherein a heat treatment at 800 to 1100° C. as a heat treatment temperature for two hours or below as a hear treatment time is carried out after the rapid thermal annealing while adjusting the heat treatment temperature and the heat treatment time so that at least diffusion distances of vacancies as point defects injected by the rapid thermal annealing become longer than diffusion distances of the vacancies by a heat treatment performed at 800° C. for 30 minutes, thereby annihilating a vacancy type defect. As a result, there is provided the manufacturing method capable of inexpensively manufacturing a silicon wafer that can assure a DZ layer with a sufficient thickness in a wafer front surface layer region and can also assure a sufficient quantity of oxide precipitates functioning as gettering sites in a bulk region on an earlier stage of a heat treatment in a device process. | 01-01-2009 |
20090000536 | PROCESS FOR PRODUCING POLYCRYSTALLINE BULK SEMICONDUCTOR - A high-quality polycrystalline bulk semiconductor having a large crystal grain size is produced by the casting method in which growth is regulated so as to proceed in the same plane direction, i.e., the {110}; plane or {112} plane is disclosed. The process, which is for producing a polycrystalline bulk semiconductor, comprises: a step in which a melt of a semiconductor selected among Si, Ge, and SiGe is held in a crucible; a step in which a bottom part of the crucible is cooled to give a temperature gradient and that part of the melt which is located directly on the crucible bottom is rapidly cooled in the beginning of growth to supercool the melt around the crucible bottom; a step in which the crucible is cooled to grow nuclei on the crucible bottom due to the supercooled state of the melt around the crucible bottom and thereby grow dendritic crystals along the crucible bottom; and a step in which a polycrystalline bulk of the semiconductor is then grown on the upper side of the dendritic crystals. | 01-01-2009 |
20090000537 | SILICON WAFER AND METHOD FOR PRODUCING SAME - A method for producing a silicon wafer that has a carbon concentration of 5×10 | 01-01-2009 |
20090020067 | METHOD OF MANUFACTURING SOLAR-GRADE POLYSILICON INGOT WITH RELEVANT INDUCTION APPARATUS - The present invention pertains to a method of producing solar-grade polysilicon ingot conducive to reduce the energy consumption and cost and have high yield of casting ingot without complicating equipments. It includes melting and heating raw materials into raw water; mixing the slag removal with the water for eliminating metal impurities; conducting some water vapor for obviating B-atomic and generating pure water, thereafter heated from 1500°-1700° C.; advance heating the crucible and graphite mold in the temperature range of 1000°-1400° C., further pouring the pure water therein and having water temperature from 1450°-1600° C.; adjusting the temperature of the crucible and mold from 1400°-1430° C., thence to the range of 1000°-1200° C. for concentrating the solid/liquid property and impurities of the water on central of the mold; reducing the temperature of the crucible range of 1000°-1200° C. to 200°-400° C., thus finishing an integral polysilicon ingot. | 01-22-2009 |
20090064922 | Methods of hyperdoping semiconductor materials and hyperdoped semiconductor materials and devices - Methods are disclosed for producing highly doped semiconductor materials. Using the invention, one can achieve doping densities that exceed traditional, established carrier saturation limits without deleterious side effects. Additionally, highly doped semiconductor materials are disclosed, as well as improved electronic and optoelectronic devices/components using said materials. The innovative materials and processes enabled by the invention yield significant performance improvements and/or cost reductions for a wide variety of semiconductor-based microelectronic and optoelectronic devices/systems. | 03-12-2009 |
20090249994 | CRYSTAL GROWTH APPARATUS AND METHOD - Systems and methods are disclosed for crystal growth using VGF and VB growth processes to reduce body lineage. In one exemplary embodiment, there is provided a method of inserting an ampoule with raw material into a furnace having a heating source, growing a crystal using a vertical gradient freeze process wherein the crystallizing temperature gradient is moved relative to the crystal and/or furnace to melt the raw material and reform it as a monocrystalline compound, and growing the crystal using a vertical Bridgman process on the wherein the ampoule/heating source are moved relative each other to continue to melt the raw material and reform it as a monocrystalline compound. | 10-08-2009 |
20090277376 | Method for producing an epitaxially coated semiconductor wafer - Epitaxially coated semiconductor wafers are prepared by a process in which a semiconductor wafer polished at least on its front side is placed on a susceptor in a single-wafer epitaxy reactor and epitaxially coated on its polished front side at temperatures of 1000-1200° C., wherein, after coating, the semiconductor wafer is cooled in the temperature range from 1200° C. to 900° C. at a rate of less than 5° C. per second. In a second method for producing an epitaxially coated wafer, the wafer is placed on a susceptor in the epitaxy reactor and epitaxially coated on its polished front side at a deposition temperature of 1000-1200° C., and after coating, and while still at the deposition temperature, the wafer is raised for 1-60 seconds to break connections between susceptor and wafer produced by deposited semiconductor material before the wafer is cooled. | 11-12-2009 |
20100083895 | Device and Process for Producing a Block of Crystalline Material - A temperature gradient is established in a crystallization crucible by means of a heat source and a cooling system. The cooling system comprises a heat exchanger and an adjustable additional heat source. The cooling system is preferably formed by an induction coil cooled by a coolant liquid circulating in the induction coil and by an electrically conductive induction susceptor positioned between the crucible and induction coil. The fabrication process comprises heating the crucible via the top and controlling heat extraction from the crucible downwards by means of the heat exchanger and by means of regulation of the adjustable additional heat source. | 04-08-2010 |
20100180814 | FABRICATION OF SIC SUBSTRATES WITH LOW WARP AND BOW - A method of fabricating an SiC single crystal includes (a) physical vapor transport (PVT) growing a SiC single crystal on a seed crystal in the presence of a temperature gradient, wherein an early-to-grow portion of the SiC single crystal is at a lower temperature than a later-to-grow portion of the SiC single crystal. Once grown, the SiC single crystal is annealed in the presence of a reverse temperature gradient, wherein the later-to-grow portion of the SiC single crystal is at a lower temperature than the early-to-grow portion of the SiC single crystal. | 07-22-2010 |
20110017124 | METHOD AND EQUIPMENT FOR PRODUCING SAPPHIRE SINGLE CRYSTAL - The method is capable of producing a sapphire single crystal without forming cracks and without using an expensive crucible. The method comprises the steps of: putting a seed crystal and a raw material in a crucible; setting the crucible in a cylindrical heater; heating the crucible; and producing temperature gradient in the cylindrical heater so as to sequentially crystallize a melt. The crucible is composed of a material having a specific linear expansion coefficient which is capable of preventing mutual stress, which is caused by a difference between a linear expansion coefficient of the crucible and that of the sapphire single crystal in a direction perpendicular to a growth axis thereof, from generating in the crucible and the sapphire single crystal, or which is capable of preventing deformation of the crucible without generating a crystal defect caused by the mutual stress in the sapphire single crystal. | 01-27-2011 |
20110094438 | LAMINATED BODY AND THE METHOD FOR PRODUCTION THEREOF - The present invention provides a self-supporting substrate obtained by the steps of: forming an Al-based group-III nitride thin-layer having a thickness in the range of 3-200 nm on a base substrate made of a single crystal of an inorganic substance which substantially does not decompose at 800° C. in an inert gas atmosphere and which does produce volatiles by decomposition when contacting with a reducing gas in a temperature range of 800-1600° C., for example sapphire; forming voids along the interface between the base substrate and the Al-based group-III nitride thin-layer of the obtained laminated substrate by thermally treating the laminated substrate in a temperature range of 800-1600° C. in a reducing gas atmosphere containing ammonia gas; forming a group-III nitride single crystal thick-layer on the Al-based group-III nitride thin-layer; and separating these formed layers. The self-supporting substrate is a self-supporting substrate of the group-III nitride single crystal such as AlN, which is suitably used for forming a semiconductor device such as ultraviolet light emitting device and of which crystal plane shows a large radius of curvature. | 04-28-2011 |
20110168080 | NOVEL METHOD FOR THE BOTTOM-SEEDED GROWTH OF POTASSIUM LEAD CHLORIDE CRYSTALS FROM POLYCRYSTALLINE SEEDS - A method and apparatus for growing a single crystal Kb | 07-14-2011 |
20140116323 | C-Plane Sapphire Method - A method and apparatus for the production of C-plane single crystal sapphire is disclosed. The method and apparatus may use edge defined film-fed growth techniques for the production of single crystal material exhibiting low polycrystallinity and/or low dislocation density. | 05-01-2014 |
20140137793 | METHOD OF FABRICATING WAFER - A method of fabricating a wafer according to the embodiment comprises the steps of growing an wafer on a surface of the wafer in a growth temperature; and cooling the wafer after the wafer has been grown, wherein a stepwise cooling is performed when cooling the wafer. | 05-22-2014 |
20140305367 | Passivation of Nonlinear Optical Crystals - The passivation of a nonlinear optical crystal for use in an inspection tool includes growing a nonlinear optical crystal in the presence of at least one of fluorine, a fluoride ion and a fluoride-containing compound, mechanically preparing the nonlinear optical crystal, performing an annealing process on the nonlinear optical crystal and exposing the nonlinear optical crystal to a hydrogen-containing or deuterium-containing passivating gas. | 10-16-2014 |