Class / Patent application number | Description | Number of patent applications / Date published |
073728000 | Electromagnetic | 7 |
20090007683 | Pressure Detection Device - Provided is a pressure detection device capable of easy installation and removal of a sensor in/from a diaphragm, measurement of a pressure in a wide rage, and manufacture at a low cost while reducing a size. A sensor part (A) has: a magnet ( | 01-08-2009 |
20110232390 | ELASTIC MATERIAL FOR PRESSURE MEASUREMENT AND PRESSURE MEASURING DEVICE - An elastic material for pressure measurement, containing an elastic resin composition having at least either a urethane bond or a urea bond and being obtained by reacting an isocyanate with (A) a linear polyol and then curing the obtained prepolymer with use of a curing agent having two —NH | 09-29-2011 |
20120125116 | SENSOR - The invention relates to a measuring apparatus for measuring a measurement variable of a fluid, in particular a sensor, such as a pressure sensor or a travel sensor. The measuring apparatus has a housing, a diaphragm which is arranged in and/or on the housing and an elastic element, which is designed in the manner of a leaf spring, for restoring the diaphragm. A signal transmitter is operatively connected to the diaphragm and/or to the elastic element, and a signal receiver interacts with the signal transmitter. Structures for providing reinforcement are arranged in the edge region and/or in the center of the elastic element. | 05-24-2012 |
20140150560 | MEMS Pressure Sensor Assembly with Electromagnetic Shield - A pressure sensor assembly includes a pressure sensor die and a circuit die. The pressure sensor die includes a MEMS pressure sensor and an electromagnetic shield layer. The circuit die includes an ASIC configured to generate an electrical output corresponding to a pressure sensed by the MEMS pressure sensor. The ASIC is electrically connected to the pressure sensor die. The electromagnetic shield is configured to shield the MEMS pressure sensor and the ASIC from electromagnetic radiation. | 06-05-2014 |
20150292904 | Corrosion resistant pressure transducer - A pressure transducer is disclosed wherein no wetted areas have been welded. A cavity is milled into the back of each of the blocks of a material which will make up the body of the transducer. Pickup coils are placed into these cavities and are held in place generally with epoxy cement. With the coils mounted within the sensor body, the surface which will be exposed to the sample or reference fluids is comprised of a single, solid material with no welding joints. Further, as the sensor block half is made of a single, solid material, fluid fitting connections may be machined directly into the body. The pickup coil placed within the improved sensor body may be wound on an open frame of nickel superalloy (NiSA). Another embodiment involves coating or encapsulating the sensing membrane within a soft, non-magnetic material protecting it from corrosion. | 10-15-2015 |
20160091378 | MICROELECTROMECHANICAL SYSTEMS (MEMS) PRESSURE SENSOR HAVING A LEAKAGE PATH TO A CAVITY - Microelectromechanical systems (MEMS) pressure sensors having a leakage path are described. Provided implementations can comprise a MEMS pressure sensor system associated with a back cavity and a membrane that separates the back cavity and an ambient atmosphere. A pressure of the ambient atmosphere is determined based on a parameter associated with movement of the membrane. | 03-31-2016 |
20160146686 | Sensor and Method for Detecting a Position of an Effective Surface of the Sensor - A sensor for detecting a position of an effective surface of the sensor includes a first magnetic field generator, a magnetic tunnel resistor, and a second magnetic field generator. The first magnetic field generator generates a first magnetic field that is oriented in an axis of a movement direction of the effective surface. The magnetic tunnel resistor is spaced from the first magnetic field generator in the extension of the axis. The magnetic tunnel resistor has a first magnetic layer, a second magnetic layer, and a tunnel barrier. The tunnel barrier is arranged between the first layer and the second layer, and the first layer is electrically insulated from the second layer. The second magnetic field generator is configured to generate a second magnetic field that is oriented transversally to the axis. The second magnetic field generator is oriented in a fixed manner relative to the tunnel resistor. | 05-26-2016 |